On the Improved Modeling of the Magnetoelastic Force in a Vibrational Energy Harvesting System
Objective The efficiency of vibrational energy harvesting systems that consist of a cantilever beam with attached piezoceramic layers can be increased by intentionally introducing nonlinearities. These nonlinearities are often implemented in the form of permanent magnets near the beam’s free end. Th...
Ausführliche Beschreibung
Autor*in: |
Noll, Max-Uwe [verfasserIn] Lentz, Lukas [verfasserIn] von Wagner, Utz [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of vibration engineering & technologies - Singapore : Springer Singapore, 2018, 8(2019), 2 vom: 24. Juni, Seite 285-295 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2019 ; number:2 ; day:24 ; month:06 ; pages:285-295 |
Links: |
---|
DOI / URN: |
10.1007/s42417-019-00159-4 |
---|
Katalog-ID: |
SPR039251438 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR039251438 | ||
003 | DE-627 | ||
005 | 20220112043522.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s42417-019-00159-4 |2 doi | |
035 | |a (DE-627)SPR039251438 | ||
035 | |a (SPR)s42417-019-00159-4-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q ASE |
082 | 0 | 4 | |a 620 |q ASE |
100 | 1 | |a Noll, Max-Uwe |e verfasserin |4 aut | |
245 | 1 | 0 | |a On the Improved Modeling of the Magnetoelastic Force in a Vibrational Energy Harvesting System |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Objective The efficiency of vibrational energy harvesting systems that consist of a cantilever beam with attached piezoceramic layers can be increased by intentionally introducing nonlinearities. These nonlinearities are often implemented in the form of permanent magnets near the beam’s free end. The influence of these magnets is typically assumed to be a single transverse force that depends cubically on the displacement of the beam tip. The coefficients of a corresponding single degree of freedom model are often found heuristically, without an explicit modeling of the magnetoelastic force. Methods In this paper, we present and assess the validity of a procedure to determine the magnetoelastic forces acting on the beam from physical laws of the magnetic field with corresponding parameters. The paper outlines the method itself, describing initially how the magnetic field is computed by a Finite Element simulation. In the second step, the total transverse force on the beam is determined from the magnetic field by means of a numerical evaluation of the Maxwell stress tensor. The required minimum degree of a suitable polynomial force approximation of the numeric values is discussed briefly. The validity of this model is then considered by investigating its bifurcation behavior with respect to mono-, bi-, and tristability for different distances between the magnets and comparing the findings to results found by experiments. Results While the model’s predictions of the number of equilibrium positions for any magnet distance are generally in good agreement with results of experiments, there are deviations when it comes to the exact positions of the equilibria. With respect to these findings, the limitations of a two-dimensional magnetic field modeling with only linear material models are addressed. Conclusion The paper concludes that the method outlined here is a step toward the deduction of a detailed model based on physical laws of the magnetic field with corresponding parameters replacing simple heuristic polynomial magnetic force laws. | ||
650 | 4 | |a Energy harvesting |7 (dpeaa)DE-He213 | |
650 | 4 | |a Bistable oscillator |7 (dpeaa)DE-He213 | |
650 | 4 | |a Magnetoelastic force |7 (dpeaa)DE-He213 | |
650 | 4 | |a Maxwell stress tensor |7 (dpeaa)DE-He213 | |
700 | 1 | |a Lentz, Lukas |e verfasserin |4 aut | |
700 | 1 | |a von Wagner, Utz |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of vibration engineering & technologies |d Singapore : Springer Singapore, 2018 |g 8(2019), 2 vom: 24. Juni, Seite 285-295 |w (DE-627)1030123837 |w (DE-600)2941414-3 |x 2523-3939 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2019 |g number:2 |g day:24 |g month:06 |g pages:285-295 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s42417-019-00159-4 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2019 |e 2 |b 24 |c 06 |h 285-295 |
author_variant |
m u n mun l l ll w u v wu wuv |
---|---|
matchkey_str |
article:25233939:2019----::nhipoemdlnoteanteatcociairtoae |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.1007/s42417-019-00159-4 doi (DE-627)SPR039251438 (SPR)s42417-019-00159-4-e DE-627 ger DE-627 rakwb eng 620 ASE 620 ASE Noll, Max-Uwe verfasserin aut On the Improved Modeling of the Magnetoelastic Force in a Vibrational Energy Harvesting System 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Objective The efficiency of vibrational energy harvesting systems that consist of a cantilever beam with attached piezoceramic layers can be increased by intentionally introducing nonlinearities. These nonlinearities are often implemented in the form of permanent magnets near the beam’s free end. The influence of these magnets is typically assumed to be a single transverse force that depends cubically on the displacement of the beam tip. The coefficients of a corresponding single degree of freedom model are often found heuristically, without an explicit modeling of the magnetoelastic force. Methods In this paper, we present and assess the validity of a procedure to determine the magnetoelastic forces acting on the beam from physical laws of the magnetic field with corresponding parameters. The paper outlines the method itself, describing initially how the magnetic field is computed by a Finite Element simulation. In the second step, the total transverse force on the beam is determined from the magnetic field by means of a numerical evaluation of the Maxwell stress tensor. The required minimum degree of a suitable polynomial force approximation of the numeric values is discussed briefly. The validity of this model is then considered by investigating its bifurcation behavior with respect to mono-, bi-, and tristability for different distances between the magnets and comparing the findings to results found by experiments. Results While the model’s predictions of the number of equilibrium positions for any magnet distance are generally in good agreement with results of experiments, there are deviations when it comes to the exact positions of the equilibria. With respect to these findings, the limitations of a two-dimensional magnetic field modeling with only linear material models are addressed. Conclusion The paper concludes that the method outlined here is a step toward the deduction of a detailed model based on physical laws of the magnetic field with corresponding parameters replacing simple heuristic polynomial magnetic force laws. Energy harvesting (dpeaa)DE-He213 Bistable oscillator (dpeaa)DE-He213 Magnetoelastic force (dpeaa)DE-He213 Maxwell stress tensor (dpeaa)DE-He213 Lentz, Lukas verfasserin aut von Wagner, Utz verfasserin aut Enthalten in Journal of vibration engineering & technologies Singapore : Springer Singapore, 2018 8(2019), 2 vom: 24. Juni, Seite 285-295 (DE-627)1030123837 (DE-600)2941414-3 2523-3939 nnns volume:8 year:2019 number:2 day:24 month:06 pages:285-295 https://dx.doi.org/10.1007/s42417-019-00159-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 8 2019 2 24 06 285-295 |
spelling |
10.1007/s42417-019-00159-4 doi (DE-627)SPR039251438 (SPR)s42417-019-00159-4-e DE-627 ger DE-627 rakwb eng 620 ASE 620 ASE Noll, Max-Uwe verfasserin aut On the Improved Modeling of the Magnetoelastic Force in a Vibrational Energy Harvesting System 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Objective The efficiency of vibrational energy harvesting systems that consist of a cantilever beam with attached piezoceramic layers can be increased by intentionally introducing nonlinearities. These nonlinearities are often implemented in the form of permanent magnets near the beam’s free end. The influence of these magnets is typically assumed to be a single transverse force that depends cubically on the displacement of the beam tip. The coefficients of a corresponding single degree of freedom model are often found heuristically, without an explicit modeling of the magnetoelastic force. Methods In this paper, we present and assess the validity of a procedure to determine the magnetoelastic forces acting on the beam from physical laws of the magnetic field with corresponding parameters. The paper outlines the method itself, describing initially how the magnetic field is computed by a Finite Element simulation. In the second step, the total transverse force on the beam is determined from the magnetic field by means of a numerical evaluation of the Maxwell stress tensor. The required minimum degree of a suitable polynomial force approximation of the numeric values is discussed briefly. The validity of this model is then considered by investigating its bifurcation behavior with respect to mono-, bi-, and tristability for different distances between the magnets and comparing the findings to results found by experiments. Results While the model’s predictions of the number of equilibrium positions for any magnet distance are generally in good agreement with results of experiments, there are deviations when it comes to the exact positions of the equilibria. With respect to these findings, the limitations of a two-dimensional magnetic field modeling with only linear material models are addressed. Conclusion The paper concludes that the method outlined here is a step toward the deduction of a detailed model based on physical laws of the magnetic field with corresponding parameters replacing simple heuristic polynomial magnetic force laws. Energy harvesting (dpeaa)DE-He213 Bistable oscillator (dpeaa)DE-He213 Magnetoelastic force (dpeaa)DE-He213 Maxwell stress tensor (dpeaa)DE-He213 Lentz, Lukas verfasserin aut von Wagner, Utz verfasserin aut Enthalten in Journal of vibration engineering & technologies Singapore : Springer Singapore, 2018 8(2019), 2 vom: 24. Juni, Seite 285-295 (DE-627)1030123837 (DE-600)2941414-3 2523-3939 nnns volume:8 year:2019 number:2 day:24 month:06 pages:285-295 https://dx.doi.org/10.1007/s42417-019-00159-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 8 2019 2 24 06 285-295 |
allfields_unstemmed |
10.1007/s42417-019-00159-4 doi (DE-627)SPR039251438 (SPR)s42417-019-00159-4-e DE-627 ger DE-627 rakwb eng 620 ASE 620 ASE Noll, Max-Uwe verfasserin aut On the Improved Modeling of the Magnetoelastic Force in a Vibrational Energy Harvesting System 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Objective The efficiency of vibrational energy harvesting systems that consist of a cantilever beam with attached piezoceramic layers can be increased by intentionally introducing nonlinearities. These nonlinearities are often implemented in the form of permanent magnets near the beam’s free end. The influence of these magnets is typically assumed to be a single transverse force that depends cubically on the displacement of the beam tip. The coefficients of a corresponding single degree of freedom model are often found heuristically, without an explicit modeling of the magnetoelastic force. Methods In this paper, we present and assess the validity of a procedure to determine the magnetoelastic forces acting on the beam from physical laws of the magnetic field with corresponding parameters. The paper outlines the method itself, describing initially how the magnetic field is computed by a Finite Element simulation. In the second step, the total transverse force on the beam is determined from the magnetic field by means of a numerical evaluation of the Maxwell stress tensor. The required minimum degree of a suitable polynomial force approximation of the numeric values is discussed briefly. The validity of this model is then considered by investigating its bifurcation behavior with respect to mono-, bi-, and tristability for different distances between the magnets and comparing the findings to results found by experiments. Results While the model’s predictions of the number of equilibrium positions for any magnet distance are generally in good agreement with results of experiments, there are deviations when it comes to the exact positions of the equilibria. With respect to these findings, the limitations of a two-dimensional magnetic field modeling with only linear material models are addressed. Conclusion The paper concludes that the method outlined here is a step toward the deduction of a detailed model based on physical laws of the magnetic field with corresponding parameters replacing simple heuristic polynomial magnetic force laws. Energy harvesting (dpeaa)DE-He213 Bistable oscillator (dpeaa)DE-He213 Magnetoelastic force (dpeaa)DE-He213 Maxwell stress tensor (dpeaa)DE-He213 Lentz, Lukas verfasserin aut von Wagner, Utz verfasserin aut Enthalten in Journal of vibration engineering & technologies Singapore : Springer Singapore, 2018 8(2019), 2 vom: 24. Juni, Seite 285-295 (DE-627)1030123837 (DE-600)2941414-3 2523-3939 nnns volume:8 year:2019 number:2 day:24 month:06 pages:285-295 https://dx.doi.org/10.1007/s42417-019-00159-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 8 2019 2 24 06 285-295 |
allfieldsGer |
10.1007/s42417-019-00159-4 doi (DE-627)SPR039251438 (SPR)s42417-019-00159-4-e DE-627 ger DE-627 rakwb eng 620 ASE 620 ASE Noll, Max-Uwe verfasserin aut On the Improved Modeling of the Magnetoelastic Force in a Vibrational Energy Harvesting System 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Objective The efficiency of vibrational energy harvesting systems that consist of a cantilever beam with attached piezoceramic layers can be increased by intentionally introducing nonlinearities. These nonlinearities are often implemented in the form of permanent magnets near the beam’s free end. The influence of these magnets is typically assumed to be a single transverse force that depends cubically on the displacement of the beam tip. The coefficients of a corresponding single degree of freedom model are often found heuristically, without an explicit modeling of the magnetoelastic force. Methods In this paper, we present and assess the validity of a procedure to determine the magnetoelastic forces acting on the beam from physical laws of the magnetic field with corresponding parameters. The paper outlines the method itself, describing initially how the magnetic field is computed by a Finite Element simulation. In the second step, the total transverse force on the beam is determined from the magnetic field by means of a numerical evaluation of the Maxwell stress tensor. The required minimum degree of a suitable polynomial force approximation of the numeric values is discussed briefly. The validity of this model is then considered by investigating its bifurcation behavior with respect to mono-, bi-, and tristability for different distances between the magnets and comparing the findings to results found by experiments. Results While the model’s predictions of the number of equilibrium positions for any magnet distance are generally in good agreement with results of experiments, there are deviations when it comes to the exact positions of the equilibria. With respect to these findings, the limitations of a two-dimensional magnetic field modeling with only linear material models are addressed. Conclusion The paper concludes that the method outlined here is a step toward the deduction of a detailed model based on physical laws of the magnetic field with corresponding parameters replacing simple heuristic polynomial magnetic force laws. Energy harvesting (dpeaa)DE-He213 Bistable oscillator (dpeaa)DE-He213 Magnetoelastic force (dpeaa)DE-He213 Maxwell stress tensor (dpeaa)DE-He213 Lentz, Lukas verfasserin aut von Wagner, Utz verfasserin aut Enthalten in Journal of vibration engineering & technologies Singapore : Springer Singapore, 2018 8(2019), 2 vom: 24. Juni, Seite 285-295 (DE-627)1030123837 (DE-600)2941414-3 2523-3939 nnns volume:8 year:2019 number:2 day:24 month:06 pages:285-295 https://dx.doi.org/10.1007/s42417-019-00159-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 8 2019 2 24 06 285-295 |
allfieldsSound |
10.1007/s42417-019-00159-4 doi (DE-627)SPR039251438 (SPR)s42417-019-00159-4-e DE-627 ger DE-627 rakwb eng 620 ASE 620 ASE Noll, Max-Uwe verfasserin aut On the Improved Modeling of the Magnetoelastic Force in a Vibrational Energy Harvesting System 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Objective The efficiency of vibrational energy harvesting systems that consist of a cantilever beam with attached piezoceramic layers can be increased by intentionally introducing nonlinearities. These nonlinearities are often implemented in the form of permanent magnets near the beam’s free end. The influence of these magnets is typically assumed to be a single transverse force that depends cubically on the displacement of the beam tip. The coefficients of a corresponding single degree of freedom model are often found heuristically, without an explicit modeling of the magnetoelastic force. Methods In this paper, we present and assess the validity of a procedure to determine the magnetoelastic forces acting on the beam from physical laws of the magnetic field with corresponding parameters. The paper outlines the method itself, describing initially how the magnetic field is computed by a Finite Element simulation. In the second step, the total transverse force on the beam is determined from the magnetic field by means of a numerical evaluation of the Maxwell stress tensor. The required minimum degree of a suitable polynomial force approximation of the numeric values is discussed briefly. The validity of this model is then considered by investigating its bifurcation behavior with respect to mono-, bi-, and tristability for different distances between the magnets and comparing the findings to results found by experiments. Results While the model’s predictions of the number of equilibrium positions for any magnet distance are generally in good agreement with results of experiments, there are deviations when it comes to the exact positions of the equilibria. With respect to these findings, the limitations of a two-dimensional magnetic field modeling with only linear material models are addressed. Conclusion The paper concludes that the method outlined here is a step toward the deduction of a detailed model based on physical laws of the magnetic field with corresponding parameters replacing simple heuristic polynomial magnetic force laws. Energy harvesting (dpeaa)DE-He213 Bistable oscillator (dpeaa)DE-He213 Magnetoelastic force (dpeaa)DE-He213 Maxwell stress tensor (dpeaa)DE-He213 Lentz, Lukas verfasserin aut von Wagner, Utz verfasserin aut Enthalten in Journal of vibration engineering & technologies Singapore : Springer Singapore, 2018 8(2019), 2 vom: 24. Juni, Seite 285-295 (DE-627)1030123837 (DE-600)2941414-3 2523-3939 nnns volume:8 year:2019 number:2 day:24 month:06 pages:285-295 https://dx.doi.org/10.1007/s42417-019-00159-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 8 2019 2 24 06 285-295 |
language |
English |
source |
Enthalten in Journal of vibration engineering & technologies 8(2019), 2 vom: 24. Juni, Seite 285-295 volume:8 year:2019 number:2 day:24 month:06 pages:285-295 |
sourceStr |
Enthalten in Journal of vibration engineering & technologies 8(2019), 2 vom: 24. Juni, Seite 285-295 volume:8 year:2019 number:2 day:24 month:06 pages:285-295 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Energy harvesting Bistable oscillator Magnetoelastic force Maxwell stress tensor |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Journal of vibration engineering & technologies |
authorswithroles_txt_mv |
Noll, Max-Uwe @@aut@@ Lentz, Lukas @@aut@@ von Wagner, Utz @@aut@@ |
publishDateDaySort_date |
2019-06-24T00:00:00Z |
hierarchy_top_id |
1030123837 |
dewey-sort |
3620 |
id |
SPR039251438 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR039251438</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220112043522.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s42417-019-00159-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR039251438</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s42417-019-00159-4-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Noll, Max-Uwe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the Improved Modeling of the Magnetoelastic Force in a Vibrational Energy Harvesting System</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Objective The efficiency of vibrational energy harvesting systems that consist of a cantilever beam with attached piezoceramic layers can be increased by intentionally introducing nonlinearities. These nonlinearities are often implemented in the form of permanent magnets near the beam’s free end. The influence of these magnets is typically assumed to be a single transverse force that depends cubically on the displacement of the beam tip. The coefficients of a corresponding single degree of freedom model are often found heuristically, without an explicit modeling of the magnetoelastic force. Methods In this paper, we present and assess the validity of a procedure to determine the magnetoelastic forces acting on the beam from physical laws of the magnetic field with corresponding parameters. The paper outlines the method itself, describing initially how the magnetic field is computed by a Finite Element simulation. In the second step, the total transverse force on the beam is determined from the magnetic field by means of a numerical evaluation of the Maxwell stress tensor. The required minimum degree of a suitable polynomial force approximation of the numeric values is discussed briefly. The validity of this model is then considered by investigating its bifurcation behavior with respect to mono-, bi-, and tristability for different distances between the magnets and comparing the findings to results found by experiments. Results While the model’s predictions of the number of equilibrium positions for any magnet distance are generally in good agreement with results of experiments, there are deviations when it comes to the exact positions of the equilibria. With respect to these findings, the limitations of a two-dimensional magnetic field modeling with only linear material models are addressed. Conclusion The paper concludes that the method outlined here is a step toward the deduction of a detailed model based on physical laws of the magnetic field with corresponding parameters replacing simple heuristic polynomial magnetic force laws.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy harvesting</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bistable oscillator</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetoelastic force</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maxwell stress tensor</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lentz, Lukas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">von Wagner, Utz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of vibration engineering & technologies</subfield><subfield code="d">Singapore : Springer Singapore, 2018</subfield><subfield code="g">8(2019), 2 vom: 24. Juni, Seite 285-295</subfield><subfield code="w">(DE-627)1030123837</subfield><subfield code="w">(DE-600)2941414-3</subfield><subfield code="x">2523-3939</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:2</subfield><subfield code="g">day:24</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:285-295</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s42417-019-00159-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2019</subfield><subfield code="e">2</subfield><subfield code="b">24</subfield><subfield code="c">06</subfield><subfield code="h">285-295</subfield></datafield></record></collection>
|
author |
Noll, Max-Uwe |
spellingShingle |
Noll, Max-Uwe ddc 620 misc Energy harvesting misc Bistable oscillator misc Magnetoelastic force misc Maxwell stress tensor On the Improved Modeling of the Magnetoelastic Force in a Vibrational Energy Harvesting System |
authorStr |
Noll, Max-Uwe |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1030123837 |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2523-3939 |
topic_title |
620 ASE On the Improved Modeling of the Magnetoelastic Force in a Vibrational Energy Harvesting System Energy harvesting (dpeaa)DE-He213 Bistable oscillator (dpeaa)DE-He213 Magnetoelastic force (dpeaa)DE-He213 Maxwell stress tensor (dpeaa)DE-He213 |
topic |
ddc 620 misc Energy harvesting misc Bistable oscillator misc Magnetoelastic force misc Maxwell stress tensor |
topic_unstemmed |
ddc 620 misc Energy harvesting misc Bistable oscillator misc Magnetoelastic force misc Maxwell stress tensor |
topic_browse |
ddc 620 misc Energy harvesting misc Bistable oscillator misc Magnetoelastic force misc Maxwell stress tensor |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of vibration engineering & technologies |
hierarchy_parent_id |
1030123837 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
Journal of vibration engineering & technologies |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)1030123837 (DE-600)2941414-3 |
title |
On the Improved Modeling of the Magnetoelastic Force in a Vibrational Energy Harvesting System |
ctrlnum |
(DE-627)SPR039251438 (SPR)s42417-019-00159-4-e |
title_full |
On the Improved Modeling of the Magnetoelastic Force in a Vibrational Energy Harvesting System |
author_sort |
Noll, Max-Uwe |
journal |
Journal of vibration engineering & technologies |
journalStr |
Journal of vibration engineering & technologies |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
285 |
author_browse |
Noll, Max-Uwe Lentz, Lukas von Wagner, Utz |
container_volume |
8 |
class |
620 ASE |
format_se |
Elektronische Aufsätze |
author-letter |
Noll, Max-Uwe |
doi_str_mv |
10.1007/s42417-019-00159-4 |
dewey-full |
620 |
author2-role |
verfasserin |
title_sort |
on the improved modeling of the magnetoelastic force in a vibrational energy harvesting system |
title_auth |
On the Improved Modeling of the Magnetoelastic Force in a Vibrational Energy Harvesting System |
abstract |
Objective The efficiency of vibrational energy harvesting systems that consist of a cantilever beam with attached piezoceramic layers can be increased by intentionally introducing nonlinearities. These nonlinearities are often implemented in the form of permanent magnets near the beam’s free end. The influence of these magnets is typically assumed to be a single transverse force that depends cubically on the displacement of the beam tip. The coefficients of a corresponding single degree of freedom model are often found heuristically, without an explicit modeling of the magnetoelastic force. Methods In this paper, we present and assess the validity of a procedure to determine the magnetoelastic forces acting on the beam from physical laws of the magnetic field with corresponding parameters. The paper outlines the method itself, describing initially how the magnetic field is computed by a Finite Element simulation. In the second step, the total transverse force on the beam is determined from the magnetic field by means of a numerical evaluation of the Maxwell stress tensor. The required minimum degree of a suitable polynomial force approximation of the numeric values is discussed briefly. The validity of this model is then considered by investigating its bifurcation behavior with respect to mono-, bi-, and tristability for different distances between the magnets and comparing the findings to results found by experiments. Results While the model’s predictions of the number of equilibrium positions for any magnet distance are generally in good agreement with results of experiments, there are deviations when it comes to the exact positions of the equilibria. With respect to these findings, the limitations of a two-dimensional magnetic field modeling with only linear material models are addressed. Conclusion The paper concludes that the method outlined here is a step toward the deduction of a detailed model based on physical laws of the magnetic field with corresponding parameters replacing simple heuristic polynomial magnetic force laws. |
abstractGer |
Objective The efficiency of vibrational energy harvesting systems that consist of a cantilever beam with attached piezoceramic layers can be increased by intentionally introducing nonlinearities. These nonlinearities are often implemented in the form of permanent magnets near the beam’s free end. The influence of these magnets is typically assumed to be a single transverse force that depends cubically on the displacement of the beam tip. The coefficients of a corresponding single degree of freedom model are often found heuristically, without an explicit modeling of the magnetoelastic force. Methods In this paper, we present and assess the validity of a procedure to determine the magnetoelastic forces acting on the beam from physical laws of the magnetic field with corresponding parameters. The paper outlines the method itself, describing initially how the magnetic field is computed by a Finite Element simulation. In the second step, the total transverse force on the beam is determined from the magnetic field by means of a numerical evaluation of the Maxwell stress tensor. The required minimum degree of a suitable polynomial force approximation of the numeric values is discussed briefly. The validity of this model is then considered by investigating its bifurcation behavior with respect to mono-, bi-, and tristability for different distances between the magnets and comparing the findings to results found by experiments. Results While the model’s predictions of the number of equilibrium positions for any magnet distance are generally in good agreement with results of experiments, there are deviations when it comes to the exact positions of the equilibria. With respect to these findings, the limitations of a two-dimensional magnetic field modeling with only linear material models are addressed. Conclusion The paper concludes that the method outlined here is a step toward the deduction of a detailed model based on physical laws of the magnetic field with corresponding parameters replacing simple heuristic polynomial magnetic force laws. |
abstract_unstemmed |
Objective The efficiency of vibrational energy harvesting systems that consist of a cantilever beam with attached piezoceramic layers can be increased by intentionally introducing nonlinearities. These nonlinearities are often implemented in the form of permanent magnets near the beam’s free end. The influence of these magnets is typically assumed to be a single transverse force that depends cubically on the displacement of the beam tip. The coefficients of a corresponding single degree of freedom model are often found heuristically, without an explicit modeling of the magnetoelastic force. Methods In this paper, we present and assess the validity of a procedure to determine the magnetoelastic forces acting on the beam from physical laws of the magnetic field with corresponding parameters. The paper outlines the method itself, describing initially how the magnetic field is computed by a Finite Element simulation. In the second step, the total transverse force on the beam is determined from the magnetic field by means of a numerical evaluation of the Maxwell stress tensor. The required minimum degree of a suitable polynomial force approximation of the numeric values is discussed briefly. The validity of this model is then considered by investigating its bifurcation behavior with respect to mono-, bi-, and tristability for different distances between the magnets and comparing the findings to results found by experiments. Results While the model’s predictions of the number of equilibrium positions for any magnet distance are generally in good agreement with results of experiments, there are deviations when it comes to the exact positions of the equilibria. With respect to these findings, the limitations of a two-dimensional magnetic field modeling with only linear material models are addressed. Conclusion The paper concludes that the method outlined here is a step toward the deduction of a detailed model based on physical laws of the magnetic field with corresponding parameters replacing simple heuristic polynomial magnetic force laws. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
2 |
title_short |
On the Improved Modeling of the Magnetoelastic Force in a Vibrational Energy Harvesting System |
url |
https://dx.doi.org/10.1007/s42417-019-00159-4 |
remote_bool |
true |
author2 |
Lentz, Lukas von Wagner, Utz |
author2Str |
Lentz, Lukas von Wagner, Utz |
ppnlink |
1030123837 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s42417-019-00159-4 |
up_date |
2024-07-03T22:54:19.559Z |
_version_ |
1803600275243532288 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR039251438</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220112043522.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s42417-019-00159-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR039251438</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s42417-019-00159-4-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Noll, Max-Uwe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the Improved Modeling of the Magnetoelastic Force in a Vibrational Energy Harvesting System</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Objective The efficiency of vibrational energy harvesting systems that consist of a cantilever beam with attached piezoceramic layers can be increased by intentionally introducing nonlinearities. These nonlinearities are often implemented in the form of permanent magnets near the beam’s free end. The influence of these magnets is typically assumed to be a single transverse force that depends cubically on the displacement of the beam tip. The coefficients of a corresponding single degree of freedom model are often found heuristically, without an explicit modeling of the magnetoelastic force. Methods In this paper, we present and assess the validity of a procedure to determine the magnetoelastic forces acting on the beam from physical laws of the magnetic field with corresponding parameters. The paper outlines the method itself, describing initially how the magnetic field is computed by a Finite Element simulation. In the second step, the total transverse force on the beam is determined from the magnetic field by means of a numerical evaluation of the Maxwell stress tensor. The required minimum degree of a suitable polynomial force approximation of the numeric values is discussed briefly. The validity of this model is then considered by investigating its bifurcation behavior with respect to mono-, bi-, and tristability for different distances between the magnets and comparing the findings to results found by experiments. Results While the model’s predictions of the number of equilibrium positions for any magnet distance are generally in good agreement with results of experiments, there are deviations when it comes to the exact positions of the equilibria. With respect to these findings, the limitations of a two-dimensional magnetic field modeling with only linear material models are addressed. Conclusion The paper concludes that the method outlined here is a step toward the deduction of a detailed model based on physical laws of the magnetic field with corresponding parameters replacing simple heuristic polynomial magnetic force laws.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy harvesting</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bistable oscillator</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetoelastic force</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maxwell stress tensor</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lentz, Lukas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">von Wagner, Utz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of vibration engineering & technologies</subfield><subfield code="d">Singapore : Springer Singapore, 2018</subfield><subfield code="g">8(2019), 2 vom: 24. Juni, Seite 285-295</subfield><subfield code="w">(DE-627)1030123837</subfield><subfield code="w">(DE-600)2941414-3</subfield><subfield code="x">2523-3939</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:2</subfield><subfield code="g">day:24</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:285-295</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s42417-019-00159-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2019</subfield><subfield code="e">2</subfield><subfield code="b">24</subfield><subfield code="c">06</subfield><subfield code="h">285-295</subfield></datafield></record></collection>
|
score |
7.4006615 |