Numerical simulation of temperature field in heterogeneous material with the XFEM
Abstract The purpose of this paper is to focus on modeling temperature field in heterogeneous materials. The heat conductivity is adopted as the basic parameter for calculation. The extended finite element method (XFEM) is applied for simulation of temperature field. For one element that contains no...
Ausführliche Beschreibung
Autor*in: |
Yu, T. T. [verfasserIn] Gong, Z. W. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2013 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Archives of civil and mechanical engineering - London : Springer London, 2006, 13(2013), 2 vom: 20. Feb., Seite 199-208 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2013 ; number:2 ; day:20 ; month:02 ; pages:199-208 |
Links: |
---|
DOI / URN: |
10.1016/j.acme.2013.02.004 |
---|
Katalog-ID: |
SPR039253813 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR039253813 | ||
003 | DE-627 | ||
005 | 20220112050423.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2013 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.acme.2013.02.004 |2 doi | |
035 | |a (DE-627)SPR039253813 | ||
035 | |a (SPR)j.acme.2013.02.004-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 690 |q ASE |
084 | |a 56.00 |2 bkl | ||
084 | |a 52.10 |2 bkl | ||
100 | 1 | |a Yu, T. T. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Numerical simulation of temperature field in heterogeneous material with the XFEM |
264 | 1 | |c 2013 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract The purpose of this paper is to focus on modeling temperature field in heterogeneous materials. The heat conductivity is adopted as the basic parameter for calculation. The extended finite element method (XFEM) is applied for simulation of temperature field. For one element that contains no material interface, the temperature function will be degenerated into that of the conventional finite element. For the element containing material interfaces, the standard temperature based approximation is enriched by incorporating level-set-based enrichment functions which model the interfaces. For unsteady temperature field, the improved precise integration method is adopted for the solution of the ordinary differential equations. The mesh generation can be consider¬ably simplified and high-quality meshes are obtained; meanwhile the solution of good precision and stability can be achieved. | ||
650 | 4 | |a Temperature field |7 (dpeaa)DE-He213 | |
650 | 4 | |a Heterogeneous materials |7 (dpeaa)DE-He213 | |
650 | 4 | |a XFEM |7 (dpeaa)DE-He213 | |
650 | 4 | |a Improved precise integration method |7 (dpeaa)DE-He213 | |
700 | 1 | |a Gong, Z. W. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Archives of civil and mechanical engineering |d London : Springer London, 2006 |g 13(2013), 2 vom: 20. Feb., Seite 199-208 |w (DE-627)632432136 |w (DE-600)2565753-7 |x 1644-9665 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2013 |g number:2 |g day:20 |g month:02 |g pages:199-208 |
856 | 4 | 0 | |u https://dx.doi.org/10.1016/j.acme.2013.02.004 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_647 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_4307 | ||
936 | b | k | |a 56.00 |q ASE |
936 | b | k | |a 52.10 |q ASE |
951 | |a AR | ||
952 | |d 13 |j 2013 |e 2 |b 20 |c 02 |h 199-208 |
author_variant |
t t y tt tty z w g zw zwg |
---|---|
matchkey_str |
article:16449665:2013----::ueiasmltootmeaueilihtrgno |
hierarchy_sort_str |
2013 |
bklnumber |
56.00 52.10 |
publishDate |
2013 |
allfields |
10.1016/j.acme.2013.02.004 doi (DE-627)SPR039253813 (SPR)j.acme.2013.02.004-e DE-627 ger DE-627 rakwb eng 690 ASE 56.00 bkl 52.10 bkl Yu, T. T. verfasserin aut Numerical simulation of temperature field in heterogeneous material with the XFEM 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The purpose of this paper is to focus on modeling temperature field in heterogeneous materials. The heat conductivity is adopted as the basic parameter for calculation. The extended finite element method (XFEM) is applied for simulation of temperature field. For one element that contains no material interface, the temperature function will be degenerated into that of the conventional finite element. For the element containing material interfaces, the standard temperature based approximation is enriched by incorporating level-set-based enrichment functions which model the interfaces. For unsteady temperature field, the improved precise integration method is adopted for the solution of the ordinary differential equations. The mesh generation can be consider¬ably simplified and high-quality meshes are obtained; meanwhile the solution of good precision and stability can be achieved. Temperature field (dpeaa)DE-He213 Heterogeneous materials (dpeaa)DE-He213 XFEM (dpeaa)DE-He213 Improved precise integration method (dpeaa)DE-He213 Gong, Z. W. verfasserin aut Enthalten in Archives of civil and mechanical engineering London : Springer London, 2006 13(2013), 2 vom: 20. Feb., Seite 199-208 (DE-627)632432136 (DE-600)2565753-7 1644-9665 nnns volume:13 year:2013 number:2 day:20 month:02 pages:199-208 https://dx.doi.org/10.1016/j.acme.2013.02.004 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_31 GBV_ILN_63 GBV_ILN_95 GBV_ILN_150 GBV_ILN_187 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2004 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_4307 56.00 ASE 52.10 ASE AR 13 2013 2 20 02 199-208 |
spelling |
10.1016/j.acme.2013.02.004 doi (DE-627)SPR039253813 (SPR)j.acme.2013.02.004-e DE-627 ger DE-627 rakwb eng 690 ASE 56.00 bkl 52.10 bkl Yu, T. T. verfasserin aut Numerical simulation of temperature field in heterogeneous material with the XFEM 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The purpose of this paper is to focus on modeling temperature field in heterogeneous materials. The heat conductivity is adopted as the basic parameter for calculation. The extended finite element method (XFEM) is applied for simulation of temperature field. For one element that contains no material interface, the temperature function will be degenerated into that of the conventional finite element. For the element containing material interfaces, the standard temperature based approximation is enriched by incorporating level-set-based enrichment functions which model the interfaces. For unsteady temperature field, the improved precise integration method is adopted for the solution of the ordinary differential equations. The mesh generation can be consider¬ably simplified and high-quality meshes are obtained; meanwhile the solution of good precision and stability can be achieved. Temperature field (dpeaa)DE-He213 Heterogeneous materials (dpeaa)DE-He213 XFEM (dpeaa)DE-He213 Improved precise integration method (dpeaa)DE-He213 Gong, Z. W. verfasserin aut Enthalten in Archives of civil and mechanical engineering London : Springer London, 2006 13(2013), 2 vom: 20. Feb., Seite 199-208 (DE-627)632432136 (DE-600)2565753-7 1644-9665 nnns volume:13 year:2013 number:2 day:20 month:02 pages:199-208 https://dx.doi.org/10.1016/j.acme.2013.02.004 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_31 GBV_ILN_63 GBV_ILN_95 GBV_ILN_150 GBV_ILN_187 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2004 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_4307 56.00 ASE 52.10 ASE AR 13 2013 2 20 02 199-208 |
allfields_unstemmed |
10.1016/j.acme.2013.02.004 doi (DE-627)SPR039253813 (SPR)j.acme.2013.02.004-e DE-627 ger DE-627 rakwb eng 690 ASE 56.00 bkl 52.10 bkl Yu, T. T. verfasserin aut Numerical simulation of temperature field in heterogeneous material with the XFEM 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The purpose of this paper is to focus on modeling temperature field in heterogeneous materials. The heat conductivity is adopted as the basic parameter for calculation. The extended finite element method (XFEM) is applied for simulation of temperature field. For one element that contains no material interface, the temperature function will be degenerated into that of the conventional finite element. For the element containing material interfaces, the standard temperature based approximation is enriched by incorporating level-set-based enrichment functions which model the interfaces. For unsteady temperature field, the improved precise integration method is adopted for the solution of the ordinary differential equations. The mesh generation can be consider¬ably simplified and high-quality meshes are obtained; meanwhile the solution of good precision and stability can be achieved. Temperature field (dpeaa)DE-He213 Heterogeneous materials (dpeaa)DE-He213 XFEM (dpeaa)DE-He213 Improved precise integration method (dpeaa)DE-He213 Gong, Z. W. verfasserin aut Enthalten in Archives of civil and mechanical engineering London : Springer London, 2006 13(2013), 2 vom: 20. Feb., Seite 199-208 (DE-627)632432136 (DE-600)2565753-7 1644-9665 nnns volume:13 year:2013 number:2 day:20 month:02 pages:199-208 https://dx.doi.org/10.1016/j.acme.2013.02.004 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_31 GBV_ILN_63 GBV_ILN_95 GBV_ILN_150 GBV_ILN_187 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2004 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_4307 56.00 ASE 52.10 ASE AR 13 2013 2 20 02 199-208 |
allfieldsGer |
10.1016/j.acme.2013.02.004 doi (DE-627)SPR039253813 (SPR)j.acme.2013.02.004-e DE-627 ger DE-627 rakwb eng 690 ASE 56.00 bkl 52.10 bkl Yu, T. T. verfasserin aut Numerical simulation of temperature field in heterogeneous material with the XFEM 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The purpose of this paper is to focus on modeling temperature field in heterogeneous materials. The heat conductivity is adopted as the basic parameter for calculation. The extended finite element method (XFEM) is applied for simulation of temperature field. For one element that contains no material interface, the temperature function will be degenerated into that of the conventional finite element. For the element containing material interfaces, the standard temperature based approximation is enriched by incorporating level-set-based enrichment functions which model the interfaces. For unsteady temperature field, the improved precise integration method is adopted for the solution of the ordinary differential equations. The mesh generation can be consider¬ably simplified and high-quality meshes are obtained; meanwhile the solution of good precision and stability can be achieved. Temperature field (dpeaa)DE-He213 Heterogeneous materials (dpeaa)DE-He213 XFEM (dpeaa)DE-He213 Improved precise integration method (dpeaa)DE-He213 Gong, Z. W. verfasserin aut Enthalten in Archives of civil and mechanical engineering London : Springer London, 2006 13(2013), 2 vom: 20. Feb., Seite 199-208 (DE-627)632432136 (DE-600)2565753-7 1644-9665 nnns volume:13 year:2013 number:2 day:20 month:02 pages:199-208 https://dx.doi.org/10.1016/j.acme.2013.02.004 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_31 GBV_ILN_63 GBV_ILN_95 GBV_ILN_150 GBV_ILN_187 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2004 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_4307 56.00 ASE 52.10 ASE AR 13 2013 2 20 02 199-208 |
allfieldsSound |
10.1016/j.acme.2013.02.004 doi (DE-627)SPR039253813 (SPR)j.acme.2013.02.004-e DE-627 ger DE-627 rakwb eng 690 ASE 56.00 bkl 52.10 bkl Yu, T. T. verfasserin aut Numerical simulation of temperature field in heterogeneous material with the XFEM 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The purpose of this paper is to focus on modeling temperature field in heterogeneous materials. The heat conductivity is adopted as the basic parameter for calculation. The extended finite element method (XFEM) is applied for simulation of temperature field. For one element that contains no material interface, the temperature function will be degenerated into that of the conventional finite element. For the element containing material interfaces, the standard temperature based approximation is enriched by incorporating level-set-based enrichment functions which model the interfaces. For unsteady temperature field, the improved precise integration method is adopted for the solution of the ordinary differential equations. The mesh generation can be consider¬ably simplified and high-quality meshes are obtained; meanwhile the solution of good precision and stability can be achieved. Temperature field (dpeaa)DE-He213 Heterogeneous materials (dpeaa)DE-He213 XFEM (dpeaa)DE-He213 Improved precise integration method (dpeaa)DE-He213 Gong, Z. W. verfasserin aut Enthalten in Archives of civil and mechanical engineering London : Springer London, 2006 13(2013), 2 vom: 20. Feb., Seite 199-208 (DE-627)632432136 (DE-600)2565753-7 1644-9665 nnns volume:13 year:2013 number:2 day:20 month:02 pages:199-208 https://dx.doi.org/10.1016/j.acme.2013.02.004 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_31 GBV_ILN_63 GBV_ILN_95 GBV_ILN_150 GBV_ILN_187 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2004 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_4307 56.00 ASE 52.10 ASE AR 13 2013 2 20 02 199-208 |
language |
English |
source |
Enthalten in Archives of civil and mechanical engineering 13(2013), 2 vom: 20. Feb., Seite 199-208 volume:13 year:2013 number:2 day:20 month:02 pages:199-208 |
sourceStr |
Enthalten in Archives of civil and mechanical engineering 13(2013), 2 vom: 20. Feb., Seite 199-208 volume:13 year:2013 number:2 day:20 month:02 pages:199-208 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Temperature field Heterogeneous materials XFEM Improved precise integration method |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
Archives of civil and mechanical engineering |
authorswithroles_txt_mv |
Yu, T. T. @@aut@@ Gong, Z. W. @@aut@@ |
publishDateDaySort_date |
2013-02-20T00:00:00Z |
hierarchy_top_id |
632432136 |
dewey-sort |
3690 |
id |
SPR039253813 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR039253813</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220112050423.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.acme.2013.02.004</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR039253813</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)j.acme.2013.02.004-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">56.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yu, T. T.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical simulation of temperature field in heterogeneous material with the XFEM</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The purpose of this paper is to focus on modeling temperature field in heterogeneous materials. The heat conductivity is adopted as the basic parameter for calculation. The extended finite element method (XFEM) is applied for simulation of temperature field. For one element that contains no material interface, the temperature function will be degenerated into that of the conventional finite element. For the element containing material interfaces, the standard temperature based approximation is enriched by incorporating level-set-based enrichment functions which model the interfaces. For unsteady temperature field, the improved precise integration method is adopted for the solution of the ordinary differential equations. The mesh generation can be consider¬ably simplified and high-quality meshes are obtained; meanwhile the solution of good precision and stability can be achieved.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temperature field</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heterogeneous materials</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">XFEM</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Improved precise integration method</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gong, Z. W.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Archives of civil and mechanical engineering</subfield><subfield code="d">London : Springer London, 2006</subfield><subfield code="g">13(2013), 2 vom: 20. Feb., Seite 199-208</subfield><subfield code="w">(DE-627)632432136</subfield><subfield code="w">(DE-600)2565753-7</subfield><subfield code="x">1644-9665</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:2</subfield><subfield code="g">day:20</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:199-208</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1016/j.acme.2013.02.004</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">56.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.10</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2013</subfield><subfield code="e">2</subfield><subfield code="b">20</subfield><subfield code="c">02</subfield><subfield code="h">199-208</subfield></datafield></record></collection>
|
author |
Yu, T. T. |
spellingShingle |
Yu, T. T. ddc 690 bkl 56.00 bkl 52.10 misc Temperature field misc Heterogeneous materials misc XFEM misc Improved precise integration method Numerical simulation of temperature field in heterogeneous material with the XFEM |
authorStr |
Yu, T. T. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)632432136 |
format |
electronic Article |
dewey-ones |
690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1644-9665 |
topic_title |
690 ASE 56.00 bkl 52.10 bkl Numerical simulation of temperature field in heterogeneous material with the XFEM Temperature field (dpeaa)DE-He213 Heterogeneous materials (dpeaa)DE-He213 XFEM (dpeaa)DE-He213 Improved precise integration method (dpeaa)DE-He213 |
topic |
ddc 690 bkl 56.00 bkl 52.10 misc Temperature field misc Heterogeneous materials misc XFEM misc Improved precise integration method |
topic_unstemmed |
ddc 690 bkl 56.00 bkl 52.10 misc Temperature field misc Heterogeneous materials misc XFEM misc Improved precise integration method |
topic_browse |
ddc 690 bkl 56.00 bkl 52.10 misc Temperature field misc Heterogeneous materials misc XFEM misc Improved precise integration method |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Archives of civil and mechanical engineering |
hierarchy_parent_id |
632432136 |
dewey-tens |
690 - Building & construction |
hierarchy_top_title |
Archives of civil and mechanical engineering |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)632432136 (DE-600)2565753-7 |
title |
Numerical simulation of temperature field in heterogeneous material with the XFEM |
ctrlnum |
(DE-627)SPR039253813 (SPR)j.acme.2013.02.004-e |
title_full |
Numerical simulation of temperature field in heterogeneous material with the XFEM |
author_sort |
Yu, T. T. |
journal |
Archives of civil and mechanical engineering |
journalStr |
Archives of civil and mechanical engineering |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
txt |
container_start_page |
199 |
author_browse |
Yu, T. T. Gong, Z. W. |
container_volume |
13 |
class |
690 ASE 56.00 bkl 52.10 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Yu, T. T. |
doi_str_mv |
10.1016/j.acme.2013.02.004 |
dewey-full |
690 |
author2-role |
verfasserin |
title_sort |
numerical simulation of temperature field in heterogeneous material with the xfem |
title_auth |
Numerical simulation of temperature field in heterogeneous material with the XFEM |
abstract |
Abstract The purpose of this paper is to focus on modeling temperature field in heterogeneous materials. The heat conductivity is adopted as the basic parameter for calculation. The extended finite element method (XFEM) is applied for simulation of temperature field. For one element that contains no material interface, the temperature function will be degenerated into that of the conventional finite element. For the element containing material interfaces, the standard temperature based approximation is enriched by incorporating level-set-based enrichment functions which model the interfaces. For unsteady temperature field, the improved precise integration method is adopted for the solution of the ordinary differential equations. The mesh generation can be consider¬ably simplified and high-quality meshes are obtained; meanwhile the solution of good precision and stability can be achieved. |
abstractGer |
Abstract The purpose of this paper is to focus on modeling temperature field in heterogeneous materials. The heat conductivity is adopted as the basic parameter for calculation. The extended finite element method (XFEM) is applied for simulation of temperature field. For one element that contains no material interface, the temperature function will be degenerated into that of the conventional finite element. For the element containing material interfaces, the standard temperature based approximation is enriched by incorporating level-set-based enrichment functions which model the interfaces. For unsteady temperature field, the improved precise integration method is adopted for the solution of the ordinary differential equations. The mesh generation can be consider¬ably simplified and high-quality meshes are obtained; meanwhile the solution of good precision and stability can be achieved. |
abstract_unstemmed |
Abstract The purpose of this paper is to focus on modeling temperature field in heterogeneous materials. The heat conductivity is adopted as the basic parameter for calculation. The extended finite element method (XFEM) is applied for simulation of temperature field. For one element that contains no material interface, the temperature function will be degenerated into that of the conventional finite element. For the element containing material interfaces, the standard temperature based approximation is enriched by incorporating level-set-based enrichment functions which model the interfaces. For unsteady temperature field, the improved precise integration method is adopted for the solution of the ordinary differential equations. The mesh generation can be consider¬ably simplified and high-quality meshes are obtained; meanwhile the solution of good precision and stability can be achieved. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_31 GBV_ILN_63 GBV_ILN_95 GBV_ILN_150 GBV_ILN_187 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2004 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_4307 |
container_issue |
2 |
title_short |
Numerical simulation of temperature field in heterogeneous material with the XFEM |
url |
https://dx.doi.org/10.1016/j.acme.2013.02.004 |
remote_bool |
true |
author2 |
Gong, Z. W. |
author2Str |
Gong, Z. W. |
ppnlink |
632432136 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.acme.2013.02.004 |
up_date |
2024-07-03T22:54:57.586Z |
_version_ |
1803600315137654785 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR039253813</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220112050423.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.acme.2013.02.004</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR039253813</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)j.acme.2013.02.004-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">56.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yu, T. T.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical simulation of temperature field in heterogeneous material with the XFEM</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The purpose of this paper is to focus on modeling temperature field in heterogeneous materials. The heat conductivity is adopted as the basic parameter for calculation. The extended finite element method (XFEM) is applied for simulation of temperature field. For one element that contains no material interface, the temperature function will be degenerated into that of the conventional finite element. For the element containing material interfaces, the standard temperature based approximation is enriched by incorporating level-set-based enrichment functions which model the interfaces. For unsteady temperature field, the improved precise integration method is adopted for the solution of the ordinary differential equations. The mesh generation can be consider¬ably simplified and high-quality meshes are obtained; meanwhile the solution of good precision and stability can be achieved.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temperature field</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heterogeneous materials</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">XFEM</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Improved precise integration method</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gong, Z. W.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Archives of civil and mechanical engineering</subfield><subfield code="d">London : Springer London, 2006</subfield><subfield code="g">13(2013), 2 vom: 20. Feb., Seite 199-208</subfield><subfield code="w">(DE-627)632432136</subfield><subfield code="w">(DE-600)2565753-7</subfield><subfield code="x">1644-9665</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:2</subfield><subfield code="g">day:20</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:199-208</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1016/j.acme.2013.02.004</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">56.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.10</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2013</subfield><subfield code="e">2</subfield><subfield code="b">20</subfield><subfield code="c">02</subfield><subfield code="h">199-208</subfield></datafield></record></collection>
|
score |
7.401045 |