A Dirichlet process biterm-based mixture model for short text stream clustering

Abstract Short text stream clustering has become an important problem for mining textual data in diverse social media platforms (e.g., Twitter). However, most of the existing clustering methods (e.g., LDA and PLSA) are developed based on the assumption of a static corpus of long texts, while little...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Chen, Junyang [verfasserIn]

Gong, Zhiguo [verfasserIn]

Liu, Weiwen [verfasserIn]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2020

Schlagwörter:

Data mining

Stream clustering

Topic modeling

Übergeordnetes Werk:

Enthalten in: Applied intelligence - Dordrecht [u.a.] : Springer Science + Business Media B.V, 1991, 50(2020), 5 vom: 01. Feb., Seite 1609-1619

Übergeordnetes Werk:

volume:50 ; year:2020 ; number:5 ; day:01 ; month:02 ; pages:1609-1619

Links:

Volltext

DOI / URN:

10.1007/s10489-019-01606-1

Katalog-ID:

SPR039334961

Nicht das Richtige dabei?

Schreiben Sie uns!