Density functional theory calculations of spectral, NLO, reactivity, NBO properties and docking study of Vincosamide-N-Oxide active against lung cancer cell lines H1299
Abstract The present paper reports the density functional theory calculations of IR, NMR and UV–Visible, nonlinear optical (NLO) properties, highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy band gap as measure of reactivity, molecular electrostatic potentia...
Ausführliche Beschreibung
Autor*in: |
Mishra, Ashok Kumar [verfasserIn] Tewari, Satya Prakash [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: SN applied sciences - [Cham] : Springer International Publishing, 2019, 2(2020), 6 vom: 06. Mai |
---|---|
Übergeordnetes Werk: |
volume:2 ; year:2020 ; number:6 ; day:06 ; month:05 |
Links: |
---|
DOI / URN: |
10.1007/s42452-020-2842-9 |
---|
Katalog-ID: |
SPR039628809 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR039628809 | ||
003 | DE-627 | ||
005 | 20230519223508.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s42452-020-2842-9 |2 doi | |
035 | |a (DE-627)SPR039628809 | ||
035 | |a (DE-599)SPRs42452-020-2842-9-e | ||
035 | |a (SPR)s42452-020-2842-9-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 500 |q ASE |
082 | 0 | 4 | |a 500 |q ASE |
084 | |a 50.00 |2 bkl | ||
084 | |a 35.00 |2 bkl | ||
084 | |a 33.00 |2 bkl | ||
100 | 1 | |a Mishra, Ashok Kumar |e verfasserin |4 aut | |
245 | 1 | 0 | |a Density functional theory calculations of spectral, NLO, reactivity, NBO properties and docking study of Vincosamide-N-Oxide active against lung cancer cell lines H1299 |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract The present paper reports the density functional theory calculations of IR, NMR and UV–Visible, nonlinear optical (NLO) properties, highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy band gap as measure of reactivity, molecular electrostatic potential surface (MESP), thermodynamic parameters and natural bond orbital (NBO) properties of the title molecule as well as its possible protein–ligand interactions using molecular docking approach. Theoretical NMR chemical shifts (1H and 13C) as well as the characteristics regions in IR active vibrations are in fair agreement with their experimental counterparts. UV–Visible absorption peak resulting from electronic transitions HOMO-5 → LUMO, HOMO-4 → LUMO observed at 324.27 nm is also in good agreement with its experimental value. The first order hyper polarizability of this molecule has been calculated to be 3182.124 × $ 10^{–33} $ esu which is 9.26 times to that of Urea indicating its suitability for nonlinear optical applications. The HOMO–LUMO energy band gap has been found to be reasonably small ≈ − 0.14596 a.u and MESP surface to be a chemically reactive site suited for drug activity. It is observed that the C11-atom of ring is more prone to the electrophilic attack. NBO analysis reveals that donor (O23) π → π *(C18-N22) acceptor interaction corresponds to the highest second order perturbation energy $ E^{(2)} $ = 29.12 kcal/mole associated with electron delocalization. This biomolecule binds with 1GCN, 1HSG, 1X2J, 2NMO, 3I40 and 5C5S protein receptors showing that this molecule possesses multifunctional biological activity. Nonlinear optical and multifunctional biological activity reported in our study may be exploited for the novel applications of the heading molecule. | ||
650 | 4 | |a DFT |7 (dpeaa)DE-He213 | |
650 | 4 | |a HOMO–LUMO |7 (dpeaa)DE-He213 | |
650 | 4 | |a NBO |7 (dpeaa)DE-He213 | |
650 | 4 | |a Reactivity dscriptors |7 (dpeaa)DE-He213 | |
650 | 4 | |a NLO |7 (dpeaa)DE-He213 | |
650 | 4 | |a Docking |7 (dpeaa)DE-He213 | |
700 | 1 | |a Tewari, Satya Prakash |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t SN applied sciences |d [Cham] : Springer International Publishing, 2019 |g 2(2020), 6 vom: 06. Mai |w (DE-627)103761139X |w (DE-600)2947292-1 |x 2523-3971 |7 nnns |
773 | 1 | 8 | |g volume:2 |g year:2020 |g number:6 |g day:06 |g month:05 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s42452-020-2842-9 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 50.00 |q ASE |
936 | b | k | |a 35.00 |q ASE |
936 | b | k | |a 33.00 |q ASE |
951 | |a AR | ||
952 | |d 2 |j 2020 |e 6 |b 06 |c 05 |
author_variant |
a k m ak akm s p t sp spt |
---|---|
matchkey_str |
article:25233971:2020----::estfntoatercluainosetanoeciiybpoeteadoknsuyficsmdnxd |
hierarchy_sort_str |
2020 |
bklnumber |
50.00 35.00 33.00 |
publishDate |
2020 |
allfields |
10.1007/s42452-020-2842-9 doi (DE-627)SPR039628809 (DE-599)SPRs42452-020-2842-9-e (SPR)s42452-020-2842-9-e DE-627 ger DE-627 rakwb eng 500 ASE 500 ASE 50.00 bkl 35.00 bkl 33.00 bkl Mishra, Ashok Kumar verfasserin aut Density functional theory calculations of spectral, NLO, reactivity, NBO properties and docking study of Vincosamide-N-Oxide active against lung cancer cell lines H1299 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The present paper reports the density functional theory calculations of IR, NMR and UV–Visible, nonlinear optical (NLO) properties, highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy band gap as measure of reactivity, molecular electrostatic potential surface (MESP), thermodynamic parameters and natural bond orbital (NBO) properties of the title molecule as well as its possible protein–ligand interactions using molecular docking approach. Theoretical NMR chemical shifts (1H and 13C) as well as the characteristics regions in IR active vibrations are in fair agreement with their experimental counterparts. UV–Visible absorption peak resulting from electronic transitions HOMO-5 → LUMO, HOMO-4 → LUMO observed at 324.27 nm is also in good agreement with its experimental value. The first order hyper polarizability of this molecule has been calculated to be 3182.124 × $ 10^{–33} $ esu which is 9.26 times to that of Urea indicating its suitability for nonlinear optical applications. The HOMO–LUMO energy band gap has been found to be reasonably small ≈ − 0.14596 a.u and MESP surface to be a chemically reactive site suited for drug activity. It is observed that the C11-atom of ring is more prone to the electrophilic attack. NBO analysis reveals that donor (O23) π → π *(C18-N22) acceptor interaction corresponds to the highest second order perturbation energy $ E^{(2)} $ = 29.12 kcal/mole associated with electron delocalization. This biomolecule binds with 1GCN, 1HSG, 1X2J, 2NMO, 3I40 and 5C5S protein receptors showing that this molecule possesses multifunctional biological activity. Nonlinear optical and multifunctional biological activity reported in our study may be exploited for the novel applications of the heading molecule. DFT (dpeaa)DE-He213 HOMO–LUMO (dpeaa)DE-He213 NBO (dpeaa)DE-He213 Reactivity dscriptors (dpeaa)DE-He213 NLO (dpeaa)DE-He213 Docking (dpeaa)DE-He213 Tewari, Satya Prakash verfasserin aut Enthalten in SN applied sciences [Cham] : Springer International Publishing, 2019 2(2020), 6 vom: 06. Mai (DE-627)103761139X (DE-600)2947292-1 2523-3971 nnns volume:2 year:2020 number:6 day:06 month:05 https://dx.doi.org/10.1007/s42452-020-2842-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 50.00 ASE 35.00 ASE 33.00 ASE AR 2 2020 6 06 05 |
spelling |
10.1007/s42452-020-2842-9 doi (DE-627)SPR039628809 (DE-599)SPRs42452-020-2842-9-e (SPR)s42452-020-2842-9-e DE-627 ger DE-627 rakwb eng 500 ASE 500 ASE 50.00 bkl 35.00 bkl 33.00 bkl Mishra, Ashok Kumar verfasserin aut Density functional theory calculations of spectral, NLO, reactivity, NBO properties and docking study of Vincosamide-N-Oxide active against lung cancer cell lines H1299 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The present paper reports the density functional theory calculations of IR, NMR and UV–Visible, nonlinear optical (NLO) properties, highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy band gap as measure of reactivity, molecular electrostatic potential surface (MESP), thermodynamic parameters and natural bond orbital (NBO) properties of the title molecule as well as its possible protein–ligand interactions using molecular docking approach. Theoretical NMR chemical shifts (1H and 13C) as well as the characteristics regions in IR active vibrations are in fair agreement with their experimental counterparts. UV–Visible absorption peak resulting from electronic transitions HOMO-5 → LUMO, HOMO-4 → LUMO observed at 324.27 nm is also in good agreement with its experimental value. The first order hyper polarizability of this molecule has been calculated to be 3182.124 × $ 10^{–33} $ esu which is 9.26 times to that of Urea indicating its suitability for nonlinear optical applications. The HOMO–LUMO energy band gap has been found to be reasonably small ≈ − 0.14596 a.u and MESP surface to be a chemically reactive site suited for drug activity. It is observed that the C11-atom of ring is more prone to the electrophilic attack. NBO analysis reveals that donor (O23) π → π *(C18-N22) acceptor interaction corresponds to the highest second order perturbation energy $ E^{(2)} $ = 29.12 kcal/mole associated with electron delocalization. This biomolecule binds with 1GCN, 1HSG, 1X2J, 2NMO, 3I40 and 5C5S protein receptors showing that this molecule possesses multifunctional biological activity. Nonlinear optical and multifunctional biological activity reported in our study may be exploited for the novel applications of the heading molecule. DFT (dpeaa)DE-He213 HOMO–LUMO (dpeaa)DE-He213 NBO (dpeaa)DE-He213 Reactivity dscriptors (dpeaa)DE-He213 NLO (dpeaa)DE-He213 Docking (dpeaa)DE-He213 Tewari, Satya Prakash verfasserin aut Enthalten in SN applied sciences [Cham] : Springer International Publishing, 2019 2(2020), 6 vom: 06. Mai (DE-627)103761139X (DE-600)2947292-1 2523-3971 nnns volume:2 year:2020 number:6 day:06 month:05 https://dx.doi.org/10.1007/s42452-020-2842-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 50.00 ASE 35.00 ASE 33.00 ASE AR 2 2020 6 06 05 |
allfields_unstemmed |
10.1007/s42452-020-2842-9 doi (DE-627)SPR039628809 (DE-599)SPRs42452-020-2842-9-e (SPR)s42452-020-2842-9-e DE-627 ger DE-627 rakwb eng 500 ASE 500 ASE 50.00 bkl 35.00 bkl 33.00 bkl Mishra, Ashok Kumar verfasserin aut Density functional theory calculations of spectral, NLO, reactivity, NBO properties and docking study of Vincosamide-N-Oxide active against lung cancer cell lines H1299 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The present paper reports the density functional theory calculations of IR, NMR and UV–Visible, nonlinear optical (NLO) properties, highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy band gap as measure of reactivity, molecular electrostatic potential surface (MESP), thermodynamic parameters and natural bond orbital (NBO) properties of the title molecule as well as its possible protein–ligand interactions using molecular docking approach. Theoretical NMR chemical shifts (1H and 13C) as well as the characteristics regions in IR active vibrations are in fair agreement with their experimental counterparts. UV–Visible absorption peak resulting from electronic transitions HOMO-5 → LUMO, HOMO-4 → LUMO observed at 324.27 nm is also in good agreement with its experimental value. The first order hyper polarizability of this molecule has been calculated to be 3182.124 × $ 10^{–33} $ esu which is 9.26 times to that of Urea indicating its suitability for nonlinear optical applications. The HOMO–LUMO energy band gap has been found to be reasonably small ≈ − 0.14596 a.u and MESP surface to be a chemically reactive site suited for drug activity. It is observed that the C11-atom of ring is more prone to the electrophilic attack. NBO analysis reveals that donor (O23) π → π *(C18-N22) acceptor interaction corresponds to the highest second order perturbation energy $ E^{(2)} $ = 29.12 kcal/mole associated with electron delocalization. This biomolecule binds with 1GCN, 1HSG, 1X2J, 2NMO, 3I40 and 5C5S protein receptors showing that this molecule possesses multifunctional biological activity. Nonlinear optical and multifunctional biological activity reported in our study may be exploited for the novel applications of the heading molecule. DFT (dpeaa)DE-He213 HOMO–LUMO (dpeaa)DE-He213 NBO (dpeaa)DE-He213 Reactivity dscriptors (dpeaa)DE-He213 NLO (dpeaa)DE-He213 Docking (dpeaa)DE-He213 Tewari, Satya Prakash verfasserin aut Enthalten in SN applied sciences [Cham] : Springer International Publishing, 2019 2(2020), 6 vom: 06. Mai (DE-627)103761139X (DE-600)2947292-1 2523-3971 nnns volume:2 year:2020 number:6 day:06 month:05 https://dx.doi.org/10.1007/s42452-020-2842-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 50.00 ASE 35.00 ASE 33.00 ASE AR 2 2020 6 06 05 |
allfieldsGer |
10.1007/s42452-020-2842-9 doi (DE-627)SPR039628809 (DE-599)SPRs42452-020-2842-9-e (SPR)s42452-020-2842-9-e DE-627 ger DE-627 rakwb eng 500 ASE 500 ASE 50.00 bkl 35.00 bkl 33.00 bkl Mishra, Ashok Kumar verfasserin aut Density functional theory calculations of spectral, NLO, reactivity, NBO properties and docking study of Vincosamide-N-Oxide active against lung cancer cell lines H1299 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The present paper reports the density functional theory calculations of IR, NMR and UV–Visible, nonlinear optical (NLO) properties, highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy band gap as measure of reactivity, molecular electrostatic potential surface (MESP), thermodynamic parameters and natural bond orbital (NBO) properties of the title molecule as well as its possible protein–ligand interactions using molecular docking approach. Theoretical NMR chemical shifts (1H and 13C) as well as the characteristics regions in IR active vibrations are in fair agreement with their experimental counterparts. UV–Visible absorption peak resulting from electronic transitions HOMO-5 → LUMO, HOMO-4 → LUMO observed at 324.27 nm is also in good agreement with its experimental value. The first order hyper polarizability of this molecule has been calculated to be 3182.124 × $ 10^{–33} $ esu which is 9.26 times to that of Urea indicating its suitability for nonlinear optical applications. The HOMO–LUMO energy band gap has been found to be reasonably small ≈ − 0.14596 a.u and MESP surface to be a chemically reactive site suited for drug activity. It is observed that the C11-atom of ring is more prone to the electrophilic attack. NBO analysis reveals that donor (O23) π → π *(C18-N22) acceptor interaction corresponds to the highest second order perturbation energy $ E^{(2)} $ = 29.12 kcal/mole associated with electron delocalization. This biomolecule binds with 1GCN, 1HSG, 1X2J, 2NMO, 3I40 and 5C5S protein receptors showing that this molecule possesses multifunctional biological activity. Nonlinear optical and multifunctional biological activity reported in our study may be exploited for the novel applications of the heading molecule. DFT (dpeaa)DE-He213 HOMO–LUMO (dpeaa)DE-He213 NBO (dpeaa)DE-He213 Reactivity dscriptors (dpeaa)DE-He213 NLO (dpeaa)DE-He213 Docking (dpeaa)DE-He213 Tewari, Satya Prakash verfasserin aut Enthalten in SN applied sciences [Cham] : Springer International Publishing, 2019 2(2020), 6 vom: 06. Mai (DE-627)103761139X (DE-600)2947292-1 2523-3971 nnns volume:2 year:2020 number:6 day:06 month:05 https://dx.doi.org/10.1007/s42452-020-2842-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 50.00 ASE 35.00 ASE 33.00 ASE AR 2 2020 6 06 05 |
allfieldsSound |
10.1007/s42452-020-2842-9 doi (DE-627)SPR039628809 (DE-599)SPRs42452-020-2842-9-e (SPR)s42452-020-2842-9-e DE-627 ger DE-627 rakwb eng 500 ASE 500 ASE 50.00 bkl 35.00 bkl 33.00 bkl Mishra, Ashok Kumar verfasserin aut Density functional theory calculations of spectral, NLO, reactivity, NBO properties and docking study of Vincosamide-N-Oxide active against lung cancer cell lines H1299 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The present paper reports the density functional theory calculations of IR, NMR and UV–Visible, nonlinear optical (NLO) properties, highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy band gap as measure of reactivity, molecular electrostatic potential surface (MESP), thermodynamic parameters and natural bond orbital (NBO) properties of the title molecule as well as its possible protein–ligand interactions using molecular docking approach. Theoretical NMR chemical shifts (1H and 13C) as well as the characteristics regions in IR active vibrations are in fair agreement with their experimental counterparts. UV–Visible absorption peak resulting from electronic transitions HOMO-5 → LUMO, HOMO-4 → LUMO observed at 324.27 nm is also in good agreement with its experimental value. The first order hyper polarizability of this molecule has been calculated to be 3182.124 × $ 10^{–33} $ esu which is 9.26 times to that of Urea indicating its suitability for nonlinear optical applications. The HOMO–LUMO energy band gap has been found to be reasonably small ≈ − 0.14596 a.u and MESP surface to be a chemically reactive site suited for drug activity. It is observed that the C11-atom of ring is more prone to the electrophilic attack. NBO analysis reveals that donor (O23) π → π *(C18-N22) acceptor interaction corresponds to the highest second order perturbation energy $ E^{(2)} $ = 29.12 kcal/mole associated with electron delocalization. This biomolecule binds with 1GCN, 1HSG, 1X2J, 2NMO, 3I40 and 5C5S protein receptors showing that this molecule possesses multifunctional biological activity. Nonlinear optical and multifunctional biological activity reported in our study may be exploited for the novel applications of the heading molecule. DFT (dpeaa)DE-He213 HOMO–LUMO (dpeaa)DE-He213 NBO (dpeaa)DE-He213 Reactivity dscriptors (dpeaa)DE-He213 NLO (dpeaa)DE-He213 Docking (dpeaa)DE-He213 Tewari, Satya Prakash verfasserin aut Enthalten in SN applied sciences [Cham] : Springer International Publishing, 2019 2(2020), 6 vom: 06. Mai (DE-627)103761139X (DE-600)2947292-1 2523-3971 nnns volume:2 year:2020 number:6 day:06 month:05 https://dx.doi.org/10.1007/s42452-020-2842-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 50.00 ASE 35.00 ASE 33.00 ASE AR 2 2020 6 06 05 |
language |
English |
source |
Enthalten in SN applied sciences 2(2020), 6 vom: 06. Mai volume:2 year:2020 number:6 day:06 month:05 |
sourceStr |
Enthalten in SN applied sciences 2(2020), 6 vom: 06. Mai volume:2 year:2020 number:6 day:06 month:05 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
DFT HOMO–LUMO NBO Reactivity dscriptors NLO Docking |
dewey-raw |
500 |
isfreeaccess_bool |
false |
container_title |
SN applied sciences |
authorswithroles_txt_mv |
Mishra, Ashok Kumar @@aut@@ Tewari, Satya Prakash @@aut@@ |
publishDateDaySort_date |
2020-05-06T00:00:00Z |
hierarchy_top_id |
103761139X |
dewey-sort |
3500 |
id |
SPR039628809 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR039628809</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519223508.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s42452-020-2842-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR039628809</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)SPRs42452-020-2842-9-e</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s42452-020-2842-9-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mishra, Ashok Kumar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Density functional theory calculations of spectral, NLO, reactivity, NBO properties and docking study of Vincosamide-N-Oxide active against lung cancer cell lines H1299</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The present paper reports the density functional theory calculations of IR, NMR and UV–Visible, nonlinear optical (NLO) properties, highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy band gap as measure of reactivity, molecular electrostatic potential surface (MESP), thermodynamic parameters and natural bond orbital (NBO) properties of the title molecule as well as its possible protein–ligand interactions using molecular docking approach. Theoretical NMR chemical shifts (1H and 13C) as well as the characteristics regions in IR active vibrations are in fair agreement with their experimental counterparts. UV–Visible absorption peak resulting from electronic transitions HOMO-5 → LUMO, HOMO-4 → LUMO observed at 324.27 nm is also in good agreement with its experimental value. The first order hyper polarizability of this molecule has been calculated to be 3182.124 × $ 10^{–33} $ esu which is 9.26 times to that of Urea indicating its suitability for nonlinear optical applications. The HOMO–LUMO energy band gap has been found to be reasonably small ≈ − 0.14596 a.u and MESP surface to be a chemically reactive site suited for drug activity. It is observed that the C11-atom of ring is more prone to the electrophilic attack. NBO analysis reveals that donor (O23) π → π *(C18-N22) acceptor interaction corresponds to the highest second order perturbation energy $ E^{(2)} $ = 29.12 kcal/mole associated with electron delocalization. This biomolecule binds with 1GCN, 1HSG, 1X2J, 2NMO, 3I40 and 5C5S protein receptors showing that this molecule possesses multifunctional biological activity. Nonlinear optical and multifunctional biological activity reported in our study may be exploited for the novel applications of the heading molecule.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DFT</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">HOMO–LUMO</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NBO</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reactivity dscriptors</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NLO</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Docking</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tewari, Satya Prakash</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">SN applied sciences</subfield><subfield code="d">[Cham] : Springer International Publishing, 2019</subfield><subfield code="g">2(2020), 6 vom: 06. Mai</subfield><subfield code="w">(DE-627)103761139X</subfield><subfield code="w">(DE-600)2947292-1</subfield><subfield code="x">2523-3971</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:6</subfield><subfield code="g">day:06</subfield><subfield code="g">month:05</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s42452-020-2842-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2</subfield><subfield code="j">2020</subfield><subfield code="e">6</subfield><subfield code="b">06</subfield><subfield code="c">05</subfield></datafield></record></collection>
|
author |
Mishra, Ashok Kumar |
spellingShingle |
Mishra, Ashok Kumar ddc 500 bkl 50.00 bkl 35.00 bkl 33.00 misc DFT misc HOMO–LUMO misc NBO misc Reactivity dscriptors misc NLO misc Docking Density functional theory calculations of spectral, NLO, reactivity, NBO properties and docking study of Vincosamide-N-Oxide active against lung cancer cell lines H1299 |
authorStr |
Mishra, Ashok Kumar |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)103761139X |
format |
electronic Article |
dewey-ones |
500 - Natural sciences & mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2523-3971 |
topic_title |
500 ASE 50.00 bkl 35.00 bkl 33.00 bkl Density functional theory calculations of spectral, NLO, reactivity, NBO properties and docking study of Vincosamide-N-Oxide active against lung cancer cell lines H1299 DFT (dpeaa)DE-He213 HOMO–LUMO (dpeaa)DE-He213 NBO (dpeaa)DE-He213 Reactivity dscriptors (dpeaa)DE-He213 NLO (dpeaa)DE-He213 Docking (dpeaa)DE-He213 |
topic |
ddc 500 bkl 50.00 bkl 35.00 bkl 33.00 misc DFT misc HOMO–LUMO misc NBO misc Reactivity dscriptors misc NLO misc Docking |
topic_unstemmed |
ddc 500 bkl 50.00 bkl 35.00 bkl 33.00 misc DFT misc HOMO–LUMO misc NBO misc Reactivity dscriptors misc NLO misc Docking |
topic_browse |
ddc 500 bkl 50.00 bkl 35.00 bkl 33.00 misc DFT misc HOMO–LUMO misc NBO misc Reactivity dscriptors misc NLO misc Docking |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
SN applied sciences |
hierarchy_parent_id |
103761139X |
dewey-tens |
500 - Science |
hierarchy_top_title |
SN applied sciences |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)103761139X (DE-600)2947292-1 |
title |
Density functional theory calculations of spectral, NLO, reactivity, NBO properties and docking study of Vincosamide-N-Oxide active against lung cancer cell lines H1299 |
ctrlnum |
(DE-627)SPR039628809 (DE-599)SPRs42452-020-2842-9-e (SPR)s42452-020-2842-9-e |
title_full |
Density functional theory calculations of spectral, NLO, reactivity, NBO properties and docking study of Vincosamide-N-Oxide active against lung cancer cell lines H1299 |
author_sort |
Mishra, Ashok Kumar |
journal |
SN applied sciences |
journalStr |
SN applied sciences |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Mishra, Ashok Kumar Tewari, Satya Prakash |
container_volume |
2 |
class |
500 ASE 50.00 bkl 35.00 bkl 33.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Mishra, Ashok Kumar |
doi_str_mv |
10.1007/s42452-020-2842-9 |
dewey-full |
500 |
author2-role |
verfasserin |
title_sort |
density functional theory calculations of spectral, nlo, reactivity, nbo properties and docking study of vincosamide-n-oxide active against lung cancer cell lines h1299 |
title_auth |
Density functional theory calculations of spectral, NLO, reactivity, NBO properties and docking study of Vincosamide-N-Oxide active against lung cancer cell lines H1299 |
abstract |
Abstract The present paper reports the density functional theory calculations of IR, NMR and UV–Visible, nonlinear optical (NLO) properties, highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy band gap as measure of reactivity, molecular electrostatic potential surface (MESP), thermodynamic parameters and natural bond orbital (NBO) properties of the title molecule as well as its possible protein–ligand interactions using molecular docking approach. Theoretical NMR chemical shifts (1H and 13C) as well as the characteristics regions in IR active vibrations are in fair agreement with their experimental counterparts. UV–Visible absorption peak resulting from electronic transitions HOMO-5 → LUMO, HOMO-4 → LUMO observed at 324.27 nm is also in good agreement with its experimental value. The first order hyper polarizability of this molecule has been calculated to be 3182.124 × $ 10^{–33} $ esu which is 9.26 times to that of Urea indicating its suitability for nonlinear optical applications. The HOMO–LUMO energy band gap has been found to be reasonably small ≈ − 0.14596 a.u and MESP surface to be a chemically reactive site suited for drug activity. It is observed that the C11-atom of ring is more prone to the electrophilic attack. NBO analysis reveals that donor (O23) π → π *(C18-N22) acceptor interaction corresponds to the highest second order perturbation energy $ E^{(2)} $ = 29.12 kcal/mole associated with electron delocalization. This biomolecule binds with 1GCN, 1HSG, 1X2J, 2NMO, 3I40 and 5C5S protein receptors showing that this molecule possesses multifunctional biological activity. Nonlinear optical and multifunctional biological activity reported in our study may be exploited for the novel applications of the heading molecule. |
abstractGer |
Abstract The present paper reports the density functional theory calculations of IR, NMR and UV–Visible, nonlinear optical (NLO) properties, highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy band gap as measure of reactivity, molecular electrostatic potential surface (MESP), thermodynamic parameters and natural bond orbital (NBO) properties of the title molecule as well as its possible protein–ligand interactions using molecular docking approach. Theoretical NMR chemical shifts (1H and 13C) as well as the characteristics regions in IR active vibrations are in fair agreement with their experimental counterparts. UV–Visible absorption peak resulting from electronic transitions HOMO-5 → LUMO, HOMO-4 → LUMO observed at 324.27 nm is also in good agreement with its experimental value. The first order hyper polarizability of this molecule has been calculated to be 3182.124 × $ 10^{–33} $ esu which is 9.26 times to that of Urea indicating its suitability for nonlinear optical applications. The HOMO–LUMO energy band gap has been found to be reasonably small ≈ − 0.14596 a.u and MESP surface to be a chemically reactive site suited for drug activity. It is observed that the C11-atom of ring is more prone to the electrophilic attack. NBO analysis reveals that donor (O23) π → π *(C18-N22) acceptor interaction corresponds to the highest second order perturbation energy $ E^{(2)} $ = 29.12 kcal/mole associated with electron delocalization. This biomolecule binds with 1GCN, 1HSG, 1X2J, 2NMO, 3I40 and 5C5S protein receptors showing that this molecule possesses multifunctional biological activity. Nonlinear optical and multifunctional biological activity reported in our study may be exploited for the novel applications of the heading molecule. |
abstract_unstemmed |
Abstract The present paper reports the density functional theory calculations of IR, NMR and UV–Visible, nonlinear optical (NLO) properties, highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy band gap as measure of reactivity, molecular electrostatic potential surface (MESP), thermodynamic parameters and natural bond orbital (NBO) properties of the title molecule as well as its possible protein–ligand interactions using molecular docking approach. Theoretical NMR chemical shifts (1H and 13C) as well as the characteristics regions in IR active vibrations are in fair agreement with their experimental counterparts. UV–Visible absorption peak resulting from electronic transitions HOMO-5 → LUMO, HOMO-4 → LUMO observed at 324.27 nm is also in good agreement with its experimental value. The first order hyper polarizability of this molecule has been calculated to be 3182.124 × $ 10^{–33} $ esu which is 9.26 times to that of Urea indicating its suitability for nonlinear optical applications. The HOMO–LUMO energy band gap has been found to be reasonably small ≈ − 0.14596 a.u and MESP surface to be a chemically reactive site suited for drug activity. It is observed that the C11-atom of ring is more prone to the electrophilic attack. NBO analysis reveals that donor (O23) π → π *(C18-N22) acceptor interaction corresponds to the highest second order perturbation energy $ E^{(2)} $ = 29.12 kcal/mole associated with electron delocalization. This biomolecule binds with 1GCN, 1HSG, 1X2J, 2NMO, 3I40 and 5C5S protein receptors showing that this molecule possesses multifunctional biological activity. Nonlinear optical and multifunctional biological activity reported in our study may be exploited for the novel applications of the heading molecule. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
6 |
title_short |
Density functional theory calculations of spectral, NLO, reactivity, NBO properties and docking study of Vincosamide-N-Oxide active against lung cancer cell lines H1299 |
url |
https://dx.doi.org/10.1007/s42452-020-2842-9 |
remote_bool |
true |
author2 |
Tewari, Satya Prakash |
author2Str |
Tewari, Satya Prakash |
ppnlink |
103761139X |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s42452-020-2842-9 |
up_date |
2024-07-04T00:49:25.343Z |
_version_ |
1803607516481847296 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR039628809</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519223508.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s42452-020-2842-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR039628809</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)SPRs42452-020-2842-9-e</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s42452-020-2842-9-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mishra, Ashok Kumar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Density functional theory calculations of spectral, NLO, reactivity, NBO properties and docking study of Vincosamide-N-Oxide active against lung cancer cell lines H1299</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The present paper reports the density functional theory calculations of IR, NMR and UV–Visible, nonlinear optical (NLO) properties, highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy band gap as measure of reactivity, molecular electrostatic potential surface (MESP), thermodynamic parameters and natural bond orbital (NBO) properties of the title molecule as well as its possible protein–ligand interactions using molecular docking approach. Theoretical NMR chemical shifts (1H and 13C) as well as the characteristics regions in IR active vibrations are in fair agreement with their experimental counterparts. UV–Visible absorption peak resulting from electronic transitions HOMO-5 → LUMO, HOMO-4 → LUMO observed at 324.27 nm is also in good agreement with its experimental value. The first order hyper polarizability of this molecule has been calculated to be 3182.124 × $ 10^{–33} $ esu which is 9.26 times to that of Urea indicating its suitability for nonlinear optical applications. The HOMO–LUMO energy band gap has been found to be reasonably small ≈ − 0.14596 a.u and MESP surface to be a chemically reactive site suited for drug activity. It is observed that the C11-atom of ring is more prone to the electrophilic attack. NBO analysis reveals that donor (O23) π → π *(C18-N22) acceptor interaction corresponds to the highest second order perturbation energy $ E^{(2)} $ = 29.12 kcal/mole associated with electron delocalization. This biomolecule binds with 1GCN, 1HSG, 1X2J, 2NMO, 3I40 and 5C5S protein receptors showing that this molecule possesses multifunctional biological activity. Nonlinear optical and multifunctional biological activity reported in our study may be exploited for the novel applications of the heading molecule.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DFT</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">HOMO–LUMO</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NBO</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reactivity dscriptors</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NLO</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Docking</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tewari, Satya Prakash</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">SN applied sciences</subfield><subfield code="d">[Cham] : Springer International Publishing, 2019</subfield><subfield code="g">2(2020), 6 vom: 06. Mai</subfield><subfield code="w">(DE-627)103761139X</subfield><subfield code="w">(DE-600)2947292-1</subfield><subfield code="x">2523-3971</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:6</subfield><subfield code="g">day:06</subfield><subfield code="g">month:05</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s42452-020-2842-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2</subfield><subfield code="j">2020</subfield><subfield code="e">6</subfield><subfield code="b">06</subfield><subfield code="c">05</subfield></datafield></record></collection>
|
score |
7.402669 |