Combination of ARTP mutagenesis and color-mediated high-throughput screening to enhance 1-naphthol yield from microbial oxidation of naphthalene in aqueous system
Abstract Strain QCG of the aerobic bacteria Bacillus cereus is capable of producing 1-naphthol from naphthalene, this strain was first isolated and characterized in this study. Strain QCG was mutagenized to enhance 1-naphthol production, using atmospheric and room temperature plasma (ARTP) technolog...
Ausführliche Beschreibung
Autor*in: |
Qiu, Chenggang [verfasserIn] Zhang, Alei [verfasserIn] Tao, Sha [verfasserIn] Li, Kang [verfasserIn] Chen, Kequan [verfasserIn] Ouyang, Pingkai [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Frontiers of chemical engineering in China - Beijing : Higher Education Press, 2007, 14(2020), 5 vom: 03. Jan., Seite 793-801 |
---|---|
Übergeordnetes Werk: |
volume:14 ; year:2020 ; number:5 ; day:03 ; month:01 ; pages:793-801 |
Links: |
---|
DOI / URN: |
10.1007/s11705-019-1876-2 |
---|
Katalog-ID: |
SPR039882136 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR039882136 | ||
003 | DE-627 | ||
005 | 20230519221134.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11705-019-1876-2 |2 doi | |
035 | |a (DE-627)SPR039882136 | ||
035 | |a (SPR)s11705-019-1876-2-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 540 |q ASE |
100 | 1 | |a Qiu, Chenggang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Combination of ARTP mutagenesis and color-mediated high-throughput screening to enhance 1-naphthol yield from microbial oxidation of naphthalene in aqueous system |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Strain QCG of the aerobic bacteria Bacillus cereus is capable of producing 1-naphthol from naphthalene, this strain was first isolated and characterized in this study. Strain QCG was mutagenized to enhance 1-naphthol production, using atmospheric and room temperature plasma (ARTP) technology. Then, a microbial clone screening system was used to accelerate the operation. Meanwhile, a novel color-mediated high-throughput screening using 4-aminoantipyrine was performed to screen mutants. The optimal mutant strain QCG4 produced 19.58±0.34 mg∙$ L^{−1} $ 1-naphthol from naphthalene that was 47.32% higher than that of the original strain (13.29±0.28 mg∙$ L^{−1} $). In addition, the optimal conditions for 1-naphthol production via whole-cell catalysis of strain QCG4 were determined to be an $ OD_{600} $ of 40,150 mg∙$ L^{−1} $ naphthalene, and 7.5% dimethyl formamide as a co-solvent at pH 7.5 and 26°C for 3 h, resulting in 41.18±0.12 mg-$ L^{−1} $ 1-naphthol, i.e., the mutant strain produces a 2.1-fold higher yield compared to the original strain. | ||
650 | 4 | |a QCG |7 (dpeaa)DE-He213 | |
650 | 4 | |a naphthalene |7 (dpeaa)DE-He213 | |
650 | 4 | |a 1-naphthol |7 (dpeaa)DE-He213 | |
650 | 4 | |a ARTP mutagenesis |7 (dpeaa)DE-He213 | |
650 | 4 | |a high-throughput screening |7 (dpeaa)DE-He213 | |
650 | 4 | |a 4-aminoantipyrine |7 (dpeaa)DE-He213 | |
700 | 1 | |a Zhang, Alei |e verfasserin |4 aut | |
700 | 1 | |a Tao, Sha |e verfasserin |4 aut | |
700 | 1 | |a Li, Kang |e verfasserin |4 aut | |
700 | 1 | |a Chen, Kequan |e verfasserin |4 aut | |
700 | 1 | |a Ouyang, Pingkai |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Frontiers of chemical engineering in China |d Beijing : Higher Education Press, 2007 |g 14(2020), 5 vom: 03. Jan., Seite 793-801 |w (DE-627)545787602 |w (DE-600)2388862-3 |x 1673-7474 |7 nnns |
773 | 1 | 8 | |g volume:14 |g year:2020 |g number:5 |g day:03 |g month:01 |g pages:793-801 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11705-019-1876-2 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
951 | |a AR | ||
952 | |d 14 |j 2020 |e 5 |b 03 |c 01 |h 793-801 |
author_variant |
c q cq a z az s t st k l kl k c kc p o po |
---|---|
matchkey_str |
article:16737474:2020----::obntooatmtgnssnclreitdihhogptcenntehnenptoyedrmirbao |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.1007/s11705-019-1876-2 doi (DE-627)SPR039882136 (SPR)s11705-019-1876-2-e DE-627 ger DE-627 rakwb eng 540 ASE Qiu, Chenggang verfasserin aut Combination of ARTP mutagenesis and color-mediated high-throughput screening to enhance 1-naphthol yield from microbial oxidation of naphthalene in aqueous system 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Strain QCG of the aerobic bacteria Bacillus cereus is capable of producing 1-naphthol from naphthalene, this strain was first isolated and characterized in this study. Strain QCG was mutagenized to enhance 1-naphthol production, using atmospheric and room temperature plasma (ARTP) technology. Then, a microbial clone screening system was used to accelerate the operation. Meanwhile, a novel color-mediated high-throughput screening using 4-aminoantipyrine was performed to screen mutants. The optimal mutant strain QCG4 produced 19.58±0.34 mg∙$ L^{−1} $ 1-naphthol from naphthalene that was 47.32% higher than that of the original strain (13.29±0.28 mg∙$ L^{−1} $). In addition, the optimal conditions for 1-naphthol production via whole-cell catalysis of strain QCG4 were determined to be an $ OD_{600} $ of 40,150 mg∙$ L^{−1} $ naphthalene, and 7.5% dimethyl formamide as a co-solvent at pH 7.5 and 26°C for 3 h, resulting in 41.18±0.12 mg-$ L^{−1} $ 1-naphthol, i.e., the mutant strain produces a 2.1-fold higher yield compared to the original strain. QCG (dpeaa)DE-He213 naphthalene (dpeaa)DE-He213 1-naphthol (dpeaa)DE-He213 ARTP mutagenesis (dpeaa)DE-He213 high-throughput screening (dpeaa)DE-He213 4-aminoantipyrine (dpeaa)DE-He213 Zhang, Alei verfasserin aut Tao, Sha verfasserin aut Li, Kang verfasserin aut Chen, Kequan verfasserin aut Ouyang, Pingkai verfasserin aut Enthalten in Frontiers of chemical engineering in China Beijing : Higher Education Press, 2007 14(2020), 5 vom: 03. Jan., Seite 793-801 (DE-627)545787602 (DE-600)2388862-3 1673-7474 nnns volume:14 year:2020 number:5 day:03 month:01 pages:793-801 https://dx.doi.org/10.1007/s11705-019-1876-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 14 2020 5 03 01 793-801 |
spelling |
10.1007/s11705-019-1876-2 doi (DE-627)SPR039882136 (SPR)s11705-019-1876-2-e DE-627 ger DE-627 rakwb eng 540 ASE Qiu, Chenggang verfasserin aut Combination of ARTP mutagenesis and color-mediated high-throughput screening to enhance 1-naphthol yield from microbial oxidation of naphthalene in aqueous system 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Strain QCG of the aerobic bacteria Bacillus cereus is capable of producing 1-naphthol from naphthalene, this strain was first isolated and characterized in this study. Strain QCG was mutagenized to enhance 1-naphthol production, using atmospheric and room temperature plasma (ARTP) technology. Then, a microbial clone screening system was used to accelerate the operation. Meanwhile, a novel color-mediated high-throughput screening using 4-aminoantipyrine was performed to screen mutants. The optimal mutant strain QCG4 produced 19.58±0.34 mg∙$ L^{−1} $ 1-naphthol from naphthalene that was 47.32% higher than that of the original strain (13.29±0.28 mg∙$ L^{−1} $). In addition, the optimal conditions for 1-naphthol production via whole-cell catalysis of strain QCG4 were determined to be an $ OD_{600} $ of 40,150 mg∙$ L^{−1} $ naphthalene, and 7.5% dimethyl formamide as a co-solvent at pH 7.5 and 26°C for 3 h, resulting in 41.18±0.12 mg-$ L^{−1} $ 1-naphthol, i.e., the mutant strain produces a 2.1-fold higher yield compared to the original strain. QCG (dpeaa)DE-He213 naphthalene (dpeaa)DE-He213 1-naphthol (dpeaa)DE-He213 ARTP mutagenesis (dpeaa)DE-He213 high-throughput screening (dpeaa)DE-He213 4-aminoantipyrine (dpeaa)DE-He213 Zhang, Alei verfasserin aut Tao, Sha verfasserin aut Li, Kang verfasserin aut Chen, Kequan verfasserin aut Ouyang, Pingkai verfasserin aut Enthalten in Frontiers of chemical engineering in China Beijing : Higher Education Press, 2007 14(2020), 5 vom: 03. Jan., Seite 793-801 (DE-627)545787602 (DE-600)2388862-3 1673-7474 nnns volume:14 year:2020 number:5 day:03 month:01 pages:793-801 https://dx.doi.org/10.1007/s11705-019-1876-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 14 2020 5 03 01 793-801 |
allfields_unstemmed |
10.1007/s11705-019-1876-2 doi (DE-627)SPR039882136 (SPR)s11705-019-1876-2-e DE-627 ger DE-627 rakwb eng 540 ASE Qiu, Chenggang verfasserin aut Combination of ARTP mutagenesis and color-mediated high-throughput screening to enhance 1-naphthol yield from microbial oxidation of naphthalene in aqueous system 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Strain QCG of the aerobic bacteria Bacillus cereus is capable of producing 1-naphthol from naphthalene, this strain was first isolated and characterized in this study. Strain QCG was mutagenized to enhance 1-naphthol production, using atmospheric and room temperature plasma (ARTP) technology. Then, a microbial clone screening system was used to accelerate the operation. Meanwhile, a novel color-mediated high-throughput screening using 4-aminoantipyrine was performed to screen mutants. The optimal mutant strain QCG4 produced 19.58±0.34 mg∙$ L^{−1} $ 1-naphthol from naphthalene that was 47.32% higher than that of the original strain (13.29±0.28 mg∙$ L^{−1} $). In addition, the optimal conditions for 1-naphthol production via whole-cell catalysis of strain QCG4 were determined to be an $ OD_{600} $ of 40,150 mg∙$ L^{−1} $ naphthalene, and 7.5% dimethyl formamide as a co-solvent at pH 7.5 and 26°C for 3 h, resulting in 41.18±0.12 mg-$ L^{−1} $ 1-naphthol, i.e., the mutant strain produces a 2.1-fold higher yield compared to the original strain. QCG (dpeaa)DE-He213 naphthalene (dpeaa)DE-He213 1-naphthol (dpeaa)DE-He213 ARTP mutagenesis (dpeaa)DE-He213 high-throughput screening (dpeaa)DE-He213 4-aminoantipyrine (dpeaa)DE-He213 Zhang, Alei verfasserin aut Tao, Sha verfasserin aut Li, Kang verfasserin aut Chen, Kequan verfasserin aut Ouyang, Pingkai verfasserin aut Enthalten in Frontiers of chemical engineering in China Beijing : Higher Education Press, 2007 14(2020), 5 vom: 03. Jan., Seite 793-801 (DE-627)545787602 (DE-600)2388862-3 1673-7474 nnns volume:14 year:2020 number:5 day:03 month:01 pages:793-801 https://dx.doi.org/10.1007/s11705-019-1876-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 14 2020 5 03 01 793-801 |
allfieldsGer |
10.1007/s11705-019-1876-2 doi (DE-627)SPR039882136 (SPR)s11705-019-1876-2-e DE-627 ger DE-627 rakwb eng 540 ASE Qiu, Chenggang verfasserin aut Combination of ARTP mutagenesis and color-mediated high-throughput screening to enhance 1-naphthol yield from microbial oxidation of naphthalene in aqueous system 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Strain QCG of the aerobic bacteria Bacillus cereus is capable of producing 1-naphthol from naphthalene, this strain was first isolated and characterized in this study. Strain QCG was mutagenized to enhance 1-naphthol production, using atmospheric and room temperature plasma (ARTP) technology. Then, a microbial clone screening system was used to accelerate the operation. Meanwhile, a novel color-mediated high-throughput screening using 4-aminoantipyrine was performed to screen mutants. The optimal mutant strain QCG4 produced 19.58±0.34 mg∙$ L^{−1} $ 1-naphthol from naphthalene that was 47.32% higher than that of the original strain (13.29±0.28 mg∙$ L^{−1} $). In addition, the optimal conditions for 1-naphthol production via whole-cell catalysis of strain QCG4 were determined to be an $ OD_{600} $ of 40,150 mg∙$ L^{−1} $ naphthalene, and 7.5% dimethyl formamide as a co-solvent at pH 7.5 and 26°C for 3 h, resulting in 41.18±0.12 mg-$ L^{−1} $ 1-naphthol, i.e., the mutant strain produces a 2.1-fold higher yield compared to the original strain. QCG (dpeaa)DE-He213 naphthalene (dpeaa)DE-He213 1-naphthol (dpeaa)DE-He213 ARTP mutagenesis (dpeaa)DE-He213 high-throughput screening (dpeaa)DE-He213 4-aminoantipyrine (dpeaa)DE-He213 Zhang, Alei verfasserin aut Tao, Sha verfasserin aut Li, Kang verfasserin aut Chen, Kequan verfasserin aut Ouyang, Pingkai verfasserin aut Enthalten in Frontiers of chemical engineering in China Beijing : Higher Education Press, 2007 14(2020), 5 vom: 03. Jan., Seite 793-801 (DE-627)545787602 (DE-600)2388862-3 1673-7474 nnns volume:14 year:2020 number:5 day:03 month:01 pages:793-801 https://dx.doi.org/10.1007/s11705-019-1876-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 14 2020 5 03 01 793-801 |
allfieldsSound |
10.1007/s11705-019-1876-2 doi (DE-627)SPR039882136 (SPR)s11705-019-1876-2-e DE-627 ger DE-627 rakwb eng 540 ASE Qiu, Chenggang verfasserin aut Combination of ARTP mutagenesis and color-mediated high-throughput screening to enhance 1-naphthol yield from microbial oxidation of naphthalene in aqueous system 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Strain QCG of the aerobic bacteria Bacillus cereus is capable of producing 1-naphthol from naphthalene, this strain was first isolated and characterized in this study. Strain QCG was mutagenized to enhance 1-naphthol production, using atmospheric and room temperature plasma (ARTP) technology. Then, a microbial clone screening system was used to accelerate the operation. Meanwhile, a novel color-mediated high-throughput screening using 4-aminoantipyrine was performed to screen mutants. The optimal mutant strain QCG4 produced 19.58±0.34 mg∙$ L^{−1} $ 1-naphthol from naphthalene that was 47.32% higher than that of the original strain (13.29±0.28 mg∙$ L^{−1} $). In addition, the optimal conditions for 1-naphthol production via whole-cell catalysis of strain QCG4 were determined to be an $ OD_{600} $ of 40,150 mg∙$ L^{−1} $ naphthalene, and 7.5% dimethyl formamide as a co-solvent at pH 7.5 and 26°C for 3 h, resulting in 41.18±0.12 mg-$ L^{−1} $ 1-naphthol, i.e., the mutant strain produces a 2.1-fold higher yield compared to the original strain. QCG (dpeaa)DE-He213 naphthalene (dpeaa)DE-He213 1-naphthol (dpeaa)DE-He213 ARTP mutagenesis (dpeaa)DE-He213 high-throughput screening (dpeaa)DE-He213 4-aminoantipyrine (dpeaa)DE-He213 Zhang, Alei verfasserin aut Tao, Sha verfasserin aut Li, Kang verfasserin aut Chen, Kequan verfasserin aut Ouyang, Pingkai verfasserin aut Enthalten in Frontiers of chemical engineering in China Beijing : Higher Education Press, 2007 14(2020), 5 vom: 03. Jan., Seite 793-801 (DE-627)545787602 (DE-600)2388862-3 1673-7474 nnns volume:14 year:2020 number:5 day:03 month:01 pages:793-801 https://dx.doi.org/10.1007/s11705-019-1876-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 14 2020 5 03 01 793-801 |
language |
English |
source |
Enthalten in Frontiers of chemical engineering in China 14(2020), 5 vom: 03. Jan., Seite 793-801 volume:14 year:2020 number:5 day:03 month:01 pages:793-801 |
sourceStr |
Enthalten in Frontiers of chemical engineering in China 14(2020), 5 vom: 03. Jan., Seite 793-801 volume:14 year:2020 number:5 day:03 month:01 pages:793-801 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
QCG naphthalene 1-naphthol ARTP mutagenesis high-throughput screening 4-aminoantipyrine |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
Frontiers of chemical engineering in China |
authorswithroles_txt_mv |
Qiu, Chenggang @@aut@@ Zhang, Alei @@aut@@ Tao, Sha @@aut@@ Li, Kang @@aut@@ Chen, Kequan @@aut@@ Ouyang, Pingkai @@aut@@ |
publishDateDaySort_date |
2020-01-03T00:00:00Z |
hierarchy_top_id |
545787602 |
dewey-sort |
3540 |
id |
SPR039882136 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR039882136</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519221134.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11705-019-1876-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR039882136</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11705-019-1876-2-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Qiu, Chenggang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Combination of ARTP mutagenesis and color-mediated high-throughput screening to enhance 1-naphthol yield from microbial oxidation of naphthalene in aqueous system</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Strain QCG of the aerobic bacteria Bacillus cereus is capable of producing 1-naphthol from naphthalene, this strain was first isolated and characterized in this study. Strain QCG was mutagenized to enhance 1-naphthol production, using atmospheric and room temperature plasma (ARTP) technology. Then, a microbial clone screening system was used to accelerate the operation. Meanwhile, a novel color-mediated high-throughput screening using 4-aminoantipyrine was performed to screen mutants. The optimal mutant strain QCG4 produced 19.58±0.34 mg∙$ L^{−1} $ 1-naphthol from naphthalene that was 47.32% higher than that of the original strain (13.29±0.28 mg∙$ L^{−1} $). In addition, the optimal conditions for 1-naphthol production via whole-cell catalysis of strain QCG4 were determined to be an $ OD_{600} $ of 40,150 mg∙$ L^{−1} $ naphthalene, and 7.5% dimethyl formamide as a co-solvent at pH 7.5 and 26°C for 3 h, resulting in 41.18±0.12 mg-$ L^{−1} $ 1-naphthol, i.e., the mutant strain produces a 2.1-fold higher yield compared to the original strain.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">QCG</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">naphthalene</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">1-naphthol</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ARTP mutagenesis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">high-throughput screening</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">4-aminoantipyrine</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Alei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tao, Sha</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Kang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Kequan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ouyang, Pingkai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Frontiers of chemical engineering in China</subfield><subfield code="d">Beijing : Higher Education Press, 2007</subfield><subfield code="g">14(2020), 5 vom: 03. Jan., Seite 793-801</subfield><subfield code="w">(DE-627)545787602</subfield><subfield code="w">(DE-600)2388862-3</subfield><subfield code="x">1673-7474</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:5</subfield><subfield code="g">day:03</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:793-801</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11705-019-1876-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2020</subfield><subfield code="e">5</subfield><subfield code="b">03</subfield><subfield code="c">01</subfield><subfield code="h">793-801</subfield></datafield></record></collection>
|
author |
Qiu, Chenggang |
spellingShingle |
Qiu, Chenggang ddc 540 misc QCG misc naphthalene misc 1-naphthol misc ARTP mutagenesis misc high-throughput screening misc 4-aminoantipyrine Combination of ARTP mutagenesis and color-mediated high-throughput screening to enhance 1-naphthol yield from microbial oxidation of naphthalene in aqueous system |
authorStr |
Qiu, Chenggang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)545787602 |
format |
electronic Article |
dewey-ones |
540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1673-7474 |
topic_title |
540 ASE Combination of ARTP mutagenesis and color-mediated high-throughput screening to enhance 1-naphthol yield from microbial oxidation of naphthalene in aqueous system QCG (dpeaa)DE-He213 naphthalene (dpeaa)DE-He213 1-naphthol (dpeaa)DE-He213 ARTP mutagenesis (dpeaa)DE-He213 high-throughput screening (dpeaa)DE-He213 4-aminoantipyrine (dpeaa)DE-He213 |
topic |
ddc 540 misc QCG misc naphthalene misc 1-naphthol misc ARTP mutagenesis misc high-throughput screening misc 4-aminoantipyrine |
topic_unstemmed |
ddc 540 misc QCG misc naphthalene misc 1-naphthol misc ARTP mutagenesis misc high-throughput screening misc 4-aminoantipyrine |
topic_browse |
ddc 540 misc QCG misc naphthalene misc 1-naphthol misc ARTP mutagenesis misc high-throughput screening misc 4-aminoantipyrine |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Frontiers of chemical engineering in China |
hierarchy_parent_id |
545787602 |
dewey-tens |
540 - Chemistry |
hierarchy_top_title |
Frontiers of chemical engineering in China |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)545787602 (DE-600)2388862-3 |
title |
Combination of ARTP mutagenesis and color-mediated high-throughput screening to enhance 1-naphthol yield from microbial oxidation of naphthalene in aqueous system |
ctrlnum |
(DE-627)SPR039882136 (SPR)s11705-019-1876-2-e |
title_full |
Combination of ARTP mutagenesis and color-mediated high-throughput screening to enhance 1-naphthol yield from microbial oxidation of naphthalene in aqueous system |
author_sort |
Qiu, Chenggang |
journal |
Frontiers of chemical engineering in China |
journalStr |
Frontiers of chemical engineering in China |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
793 |
author_browse |
Qiu, Chenggang Zhang, Alei Tao, Sha Li, Kang Chen, Kequan Ouyang, Pingkai |
container_volume |
14 |
class |
540 ASE |
format_se |
Elektronische Aufsätze |
author-letter |
Qiu, Chenggang |
doi_str_mv |
10.1007/s11705-019-1876-2 |
dewey-full |
540 |
author2-role |
verfasserin |
title_sort |
combination of artp mutagenesis and color-mediated high-throughput screening to enhance 1-naphthol yield from microbial oxidation of naphthalene in aqueous system |
title_auth |
Combination of ARTP mutagenesis and color-mediated high-throughput screening to enhance 1-naphthol yield from microbial oxidation of naphthalene in aqueous system |
abstract |
Abstract Strain QCG of the aerobic bacteria Bacillus cereus is capable of producing 1-naphthol from naphthalene, this strain was first isolated and characterized in this study. Strain QCG was mutagenized to enhance 1-naphthol production, using atmospheric and room temperature plasma (ARTP) technology. Then, a microbial clone screening system was used to accelerate the operation. Meanwhile, a novel color-mediated high-throughput screening using 4-aminoantipyrine was performed to screen mutants. The optimal mutant strain QCG4 produced 19.58±0.34 mg∙$ L^{−1} $ 1-naphthol from naphthalene that was 47.32% higher than that of the original strain (13.29±0.28 mg∙$ L^{−1} $). In addition, the optimal conditions for 1-naphthol production via whole-cell catalysis of strain QCG4 were determined to be an $ OD_{600} $ of 40,150 mg∙$ L^{−1} $ naphthalene, and 7.5% dimethyl formamide as a co-solvent at pH 7.5 and 26°C for 3 h, resulting in 41.18±0.12 mg-$ L^{−1} $ 1-naphthol, i.e., the mutant strain produces a 2.1-fold higher yield compared to the original strain. |
abstractGer |
Abstract Strain QCG of the aerobic bacteria Bacillus cereus is capable of producing 1-naphthol from naphthalene, this strain was first isolated and characterized in this study. Strain QCG was mutagenized to enhance 1-naphthol production, using atmospheric and room temperature plasma (ARTP) technology. Then, a microbial clone screening system was used to accelerate the operation. Meanwhile, a novel color-mediated high-throughput screening using 4-aminoantipyrine was performed to screen mutants. The optimal mutant strain QCG4 produced 19.58±0.34 mg∙$ L^{−1} $ 1-naphthol from naphthalene that was 47.32% higher than that of the original strain (13.29±0.28 mg∙$ L^{−1} $). In addition, the optimal conditions for 1-naphthol production via whole-cell catalysis of strain QCG4 were determined to be an $ OD_{600} $ of 40,150 mg∙$ L^{−1} $ naphthalene, and 7.5% dimethyl formamide as a co-solvent at pH 7.5 and 26°C for 3 h, resulting in 41.18±0.12 mg-$ L^{−1} $ 1-naphthol, i.e., the mutant strain produces a 2.1-fold higher yield compared to the original strain. |
abstract_unstemmed |
Abstract Strain QCG of the aerobic bacteria Bacillus cereus is capable of producing 1-naphthol from naphthalene, this strain was first isolated and characterized in this study. Strain QCG was mutagenized to enhance 1-naphthol production, using atmospheric and room temperature plasma (ARTP) technology. Then, a microbial clone screening system was used to accelerate the operation. Meanwhile, a novel color-mediated high-throughput screening using 4-aminoantipyrine was performed to screen mutants. The optimal mutant strain QCG4 produced 19.58±0.34 mg∙$ L^{−1} $ 1-naphthol from naphthalene that was 47.32% higher than that of the original strain (13.29±0.28 mg∙$ L^{−1} $). In addition, the optimal conditions for 1-naphthol production via whole-cell catalysis of strain QCG4 were determined to be an $ OD_{600} $ of 40,150 mg∙$ L^{−1} $ naphthalene, and 7.5% dimethyl formamide as a co-solvent at pH 7.5 and 26°C for 3 h, resulting in 41.18±0.12 mg-$ L^{−1} $ 1-naphthol, i.e., the mutant strain produces a 2.1-fold higher yield compared to the original strain. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 |
container_issue |
5 |
title_short |
Combination of ARTP mutagenesis and color-mediated high-throughput screening to enhance 1-naphthol yield from microbial oxidation of naphthalene in aqueous system |
url |
https://dx.doi.org/10.1007/s11705-019-1876-2 |
remote_bool |
true |
author2 |
Zhang, Alei Tao, Sha Li, Kang Chen, Kequan Ouyang, Pingkai |
author2Str |
Zhang, Alei Tao, Sha Li, Kang Chen, Kequan Ouyang, Pingkai |
ppnlink |
545787602 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11705-019-1876-2 |
up_date |
2024-07-04T01:59:11.066Z |
_version_ |
1803611905530527744 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR039882136</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519221134.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11705-019-1876-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR039882136</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11705-019-1876-2-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Qiu, Chenggang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Combination of ARTP mutagenesis and color-mediated high-throughput screening to enhance 1-naphthol yield from microbial oxidation of naphthalene in aqueous system</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Strain QCG of the aerobic bacteria Bacillus cereus is capable of producing 1-naphthol from naphthalene, this strain was first isolated and characterized in this study. Strain QCG was mutagenized to enhance 1-naphthol production, using atmospheric and room temperature plasma (ARTP) technology. Then, a microbial clone screening system was used to accelerate the operation. Meanwhile, a novel color-mediated high-throughput screening using 4-aminoantipyrine was performed to screen mutants. The optimal mutant strain QCG4 produced 19.58±0.34 mg∙$ L^{−1} $ 1-naphthol from naphthalene that was 47.32% higher than that of the original strain (13.29±0.28 mg∙$ L^{−1} $). In addition, the optimal conditions for 1-naphthol production via whole-cell catalysis of strain QCG4 were determined to be an $ OD_{600} $ of 40,150 mg∙$ L^{−1} $ naphthalene, and 7.5% dimethyl formamide as a co-solvent at pH 7.5 and 26°C for 3 h, resulting in 41.18±0.12 mg-$ L^{−1} $ 1-naphthol, i.e., the mutant strain produces a 2.1-fold higher yield compared to the original strain.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">QCG</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">naphthalene</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">1-naphthol</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ARTP mutagenesis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">high-throughput screening</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">4-aminoantipyrine</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Alei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tao, Sha</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Kang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Kequan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ouyang, Pingkai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Frontiers of chemical engineering in China</subfield><subfield code="d">Beijing : Higher Education Press, 2007</subfield><subfield code="g">14(2020), 5 vom: 03. Jan., Seite 793-801</subfield><subfield code="w">(DE-627)545787602</subfield><subfield code="w">(DE-600)2388862-3</subfield><subfield code="x">1673-7474</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:5</subfield><subfield code="g">day:03</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:793-801</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11705-019-1876-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2020</subfield><subfield code="e">5</subfield><subfield code="b">03</subfield><subfield code="c">01</subfield><subfield code="h">793-801</subfield></datafield></record></collection>
|
score |
7.399884 |