Feature selection generating directed rough-spanning tree for crime pattern analysis
Abstract Nowadays, crime is a major threat to the society that affects the normal life of human beings all over the world. It is very important to make the world free from all aspects of crime activities. The main motivation of this work is to understand various crime patterns for avoiding and preve...
Ausführliche Beschreibung
Autor*in: |
Das, Priyanka [verfasserIn] Das, Asit Kumar [verfasserIn] Nayak, Janmenjoy [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Neural computing & applications - London : Springer, 1993, 32(2018), 12 vom: 20. Nov., Seite 7623-7639 |
---|---|
Übergeordnetes Werk: |
volume:32 ; year:2018 ; number:12 ; day:20 ; month:11 ; pages:7623-7639 |
Links: |
---|
DOI / URN: |
10.1007/s00521-018-3880-8 |
---|
Katalog-ID: |
SPR04003318X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR04003318X | ||
003 | DE-627 | ||
005 | 20220110191238.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s00521-018-3880-8 |2 doi | |
035 | |a (DE-627)SPR04003318X | ||
035 | |a (SPR)s00521-018-3880-8-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q ASE |
082 | 0 | 4 | |a 004 |q ASE |
084 | |a 54.72 |2 bkl | ||
100 | 1 | |a Das, Priyanka |e verfasserin |4 aut | |
245 | 1 | 0 | |a Feature selection generating directed rough-spanning tree for crime pattern analysis |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Nowadays, crime is a major threat to the society that affects the normal life of human beings all over the world. It is very important to make the world free from all aspects of crime activities. The main motivation of this work is to understand various crime patterns for avoiding and preventing the crime events to occur in future and save the world from such curse. Though research is going on for solving such problems, no work is noticed to handle the roughness or ambiguity that exists in the crime reports. The present work extracts all possible crime features from the crime reports and selects only the important features required for crime pattern analysis. For this purpose, it develops a purely supervised feature selection model integrating rough set theory and graph theory (spanning tree of a directed weighted graph). The crime reports are preprocessed, and crime features are extracted to represent each report as a feature vector (i.e., a set of distinct crime features). For crime pattern analysis, the main objective of our work, all extracted features are not necessarily essential, rather a minimal subset of relevant features are sufficient. Thus, feature selection is the main contribution in the paper that not only enhances the efficiency of subsequent mining process but also increases its correctness. The rough set theory-based relative indiscernibility relation is defined to measure the similarity between two features relative to the crime type. Based on the similarity score, a weighted and directed graph has been constructed that comprises the features as nodes and the inverse of the similarity score representing the similarity of feature v to u as the weight of the corresponding edge. Then, a minimal spanning tree (termed as rough-spanning tree) is generated using Edmond/Chu–Liu algorithm from the constructed directed graph and the importance of the nodes in the spanning tree is measured using the weights of the edges and the degrees (in-degrees and out-degrees) of the nodes in the spanning tree. Finally, a feature selection algorithm has been proposed that selects the most important node and remove it from the spanning tree iteratively until the modified graph (not necessarily a tree) becomes a null graph. The selected nodes are considered as the important feature subset sufficient for crime pattern analysis. The method is evaluated using various statistical measures and compared with related state-of-the-art methods to express its effectiveness in crime pattern analysis. The Wilcoxon rank-sum test, a popular nonparametric version of the two-sample t test, is done to express that the proposed supervised model is statistically significant. | ||
650 | 4 | |a Data mining |7 (dpeaa)DE-He213 | |
650 | 4 | |a Feature selection |7 (dpeaa)DE-He213 | |
650 | 4 | |a Rough set theory |7 (dpeaa)DE-He213 | |
650 | 4 | |a Relative indiscernibility relation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Minimal spanning tree |7 (dpeaa)DE-He213 | |
650 | 4 | |a Classification |7 (dpeaa)DE-He213 | |
650 | 4 | |a Crime pattern analysis |7 (dpeaa)DE-He213 | |
700 | 1 | |a Das, Asit Kumar |e verfasserin |4 aut | |
700 | 1 | |a Nayak, Janmenjoy |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Neural computing & applications |d London : Springer, 1993 |g 32(2018), 12 vom: 20. Nov., Seite 7623-7639 |w (DE-627)271595574 |w (DE-600)1480526-1 |x 1433-3058 |7 nnns |
773 | 1 | 8 | |g volume:32 |g year:2018 |g number:12 |g day:20 |g month:11 |g pages:7623-7639 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s00521-018-3880-8 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2070 | ||
912 | |a GBV_ILN_2086 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2116 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 54.72 |q ASE |
951 | |a AR | ||
952 | |d 32 |j 2018 |e 12 |b 20 |c 11 |h 7623-7639 |
author_variant |
p d pd a k d ak akd j n jn |
---|---|
matchkey_str |
article:14333058:2018----::etrslcineeaigietdogsanntefr |
hierarchy_sort_str |
2018 |
bklnumber |
54.72 |
publishDate |
2018 |
allfields |
10.1007/s00521-018-3880-8 doi (DE-627)SPR04003318X (SPR)s00521-018-3880-8-e DE-627 ger DE-627 rakwb eng 004 ASE 004 ASE 54.72 bkl Das, Priyanka verfasserin aut Feature selection generating directed rough-spanning tree for crime pattern analysis 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Nowadays, crime is a major threat to the society that affects the normal life of human beings all over the world. It is very important to make the world free from all aspects of crime activities. The main motivation of this work is to understand various crime patterns for avoiding and preventing the crime events to occur in future and save the world from such curse. Though research is going on for solving such problems, no work is noticed to handle the roughness or ambiguity that exists in the crime reports. The present work extracts all possible crime features from the crime reports and selects only the important features required for crime pattern analysis. For this purpose, it develops a purely supervised feature selection model integrating rough set theory and graph theory (spanning tree of a directed weighted graph). The crime reports are preprocessed, and crime features are extracted to represent each report as a feature vector (i.e., a set of distinct crime features). For crime pattern analysis, the main objective of our work, all extracted features are not necessarily essential, rather a minimal subset of relevant features are sufficient. Thus, feature selection is the main contribution in the paper that not only enhances the efficiency of subsequent mining process but also increases its correctness. The rough set theory-based relative indiscernibility relation is defined to measure the similarity between two features relative to the crime type. Based on the similarity score, a weighted and directed graph has been constructed that comprises the features as nodes and the inverse of the similarity score representing the similarity of feature v to u as the weight of the corresponding edge. Then, a minimal spanning tree (termed as rough-spanning tree) is generated using Edmond/Chu–Liu algorithm from the constructed directed graph and the importance of the nodes in the spanning tree is measured using the weights of the edges and the degrees (in-degrees and out-degrees) of the nodes in the spanning tree. Finally, a feature selection algorithm has been proposed that selects the most important node and remove it from the spanning tree iteratively until the modified graph (not necessarily a tree) becomes a null graph. The selected nodes are considered as the important feature subset sufficient for crime pattern analysis. The method is evaluated using various statistical measures and compared with related state-of-the-art methods to express its effectiveness in crime pattern analysis. The Wilcoxon rank-sum test, a popular nonparametric version of the two-sample t test, is done to express that the proposed supervised model is statistically significant. Data mining (dpeaa)DE-He213 Feature selection (dpeaa)DE-He213 Rough set theory (dpeaa)DE-He213 Relative indiscernibility relation (dpeaa)DE-He213 Minimal spanning tree (dpeaa)DE-He213 Classification (dpeaa)DE-He213 Crime pattern analysis (dpeaa)DE-He213 Das, Asit Kumar verfasserin aut Nayak, Janmenjoy verfasserin aut Enthalten in Neural computing & applications London : Springer, 1993 32(2018), 12 vom: 20. Nov., Seite 7623-7639 (DE-627)271595574 (DE-600)1480526-1 1433-3058 nnns volume:32 year:2018 number:12 day:20 month:11 pages:7623-7639 https://dx.doi.org/10.1007/s00521-018-3880-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 54.72 ASE AR 32 2018 12 20 11 7623-7639 |
spelling |
10.1007/s00521-018-3880-8 doi (DE-627)SPR04003318X (SPR)s00521-018-3880-8-e DE-627 ger DE-627 rakwb eng 004 ASE 004 ASE 54.72 bkl Das, Priyanka verfasserin aut Feature selection generating directed rough-spanning tree for crime pattern analysis 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Nowadays, crime is a major threat to the society that affects the normal life of human beings all over the world. It is very important to make the world free from all aspects of crime activities. The main motivation of this work is to understand various crime patterns for avoiding and preventing the crime events to occur in future and save the world from such curse. Though research is going on for solving such problems, no work is noticed to handle the roughness or ambiguity that exists in the crime reports. The present work extracts all possible crime features from the crime reports and selects only the important features required for crime pattern analysis. For this purpose, it develops a purely supervised feature selection model integrating rough set theory and graph theory (spanning tree of a directed weighted graph). The crime reports are preprocessed, and crime features are extracted to represent each report as a feature vector (i.e., a set of distinct crime features). For crime pattern analysis, the main objective of our work, all extracted features are not necessarily essential, rather a minimal subset of relevant features are sufficient. Thus, feature selection is the main contribution in the paper that not only enhances the efficiency of subsequent mining process but also increases its correctness. The rough set theory-based relative indiscernibility relation is defined to measure the similarity between two features relative to the crime type. Based on the similarity score, a weighted and directed graph has been constructed that comprises the features as nodes and the inverse of the similarity score representing the similarity of feature v to u as the weight of the corresponding edge. Then, a minimal spanning tree (termed as rough-spanning tree) is generated using Edmond/Chu–Liu algorithm from the constructed directed graph and the importance of the nodes in the spanning tree is measured using the weights of the edges and the degrees (in-degrees and out-degrees) of the nodes in the spanning tree. Finally, a feature selection algorithm has been proposed that selects the most important node and remove it from the spanning tree iteratively until the modified graph (not necessarily a tree) becomes a null graph. The selected nodes are considered as the important feature subset sufficient for crime pattern analysis. The method is evaluated using various statistical measures and compared with related state-of-the-art methods to express its effectiveness in crime pattern analysis. The Wilcoxon rank-sum test, a popular nonparametric version of the two-sample t test, is done to express that the proposed supervised model is statistically significant. Data mining (dpeaa)DE-He213 Feature selection (dpeaa)DE-He213 Rough set theory (dpeaa)DE-He213 Relative indiscernibility relation (dpeaa)DE-He213 Minimal spanning tree (dpeaa)DE-He213 Classification (dpeaa)DE-He213 Crime pattern analysis (dpeaa)DE-He213 Das, Asit Kumar verfasserin aut Nayak, Janmenjoy verfasserin aut Enthalten in Neural computing & applications London : Springer, 1993 32(2018), 12 vom: 20. Nov., Seite 7623-7639 (DE-627)271595574 (DE-600)1480526-1 1433-3058 nnns volume:32 year:2018 number:12 day:20 month:11 pages:7623-7639 https://dx.doi.org/10.1007/s00521-018-3880-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 54.72 ASE AR 32 2018 12 20 11 7623-7639 |
allfields_unstemmed |
10.1007/s00521-018-3880-8 doi (DE-627)SPR04003318X (SPR)s00521-018-3880-8-e DE-627 ger DE-627 rakwb eng 004 ASE 004 ASE 54.72 bkl Das, Priyanka verfasserin aut Feature selection generating directed rough-spanning tree for crime pattern analysis 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Nowadays, crime is a major threat to the society that affects the normal life of human beings all over the world. It is very important to make the world free from all aspects of crime activities. The main motivation of this work is to understand various crime patterns for avoiding and preventing the crime events to occur in future and save the world from such curse. Though research is going on for solving such problems, no work is noticed to handle the roughness or ambiguity that exists in the crime reports. The present work extracts all possible crime features from the crime reports and selects only the important features required for crime pattern analysis. For this purpose, it develops a purely supervised feature selection model integrating rough set theory and graph theory (spanning tree of a directed weighted graph). The crime reports are preprocessed, and crime features are extracted to represent each report as a feature vector (i.e., a set of distinct crime features). For crime pattern analysis, the main objective of our work, all extracted features are not necessarily essential, rather a minimal subset of relevant features are sufficient. Thus, feature selection is the main contribution in the paper that not only enhances the efficiency of subsequent mining process but also increases its correctness. The rough set theory-based relative indiscernibility relation is defined to measure the similarity between two features relative to the crime type. Based on the similarity score, a weighted and directed graph has been constructed that comprises the features as nodes and the inverse of the similarity score representing the similarity of feature v to u as the weight of the corresponding edge. Then, a minimal spanning tree (termed as rough-spanning tree) is generated using Edmond/Chu–Liu algorithm from the constructed directed graph and the importance of the nodes in the spanning tree is measured using the weights of the edges and the degrees (in-degrees and out-degrees) of the nodes in the spanning tree. Finally, a feature selection algorithm has been proposed that selects the most important node and remove it from the spanning tree iteratively until the modified graph (not necessarily a tree) becomes a null graph. The selected nodes are considered as the important feature subset sufficient for crime pattern analysis. The method is evaluated using various statistical measures and compared with related state-of-the-art methods to express its effectiveness in crime pattern analysis. The Wilcoxon rank-sum test, a popular nonparametric version of the two-sample t test, is done to express that the proposed supervised model is statistically significant. Data mining (dpeaa)DE-He213 Feature selection (dpeaa)DE-He213 Rough set theory (dpeaa)DE-He213 Relative indiscernibility relation (dpeaa)DE-He213 Minimal spanning tree (dpeaa)DE-He213 Classification (dpeaa)DE-He213 Crime pattern analysis (dpeaa)DE-He213 Das, Asit Kumar verfasserin aut Nayak, Janmenjoy verfasserin aut Enthalten in Neural computing & applications London : Springer, 1993 32(2018), 12 vom: 20. Nov., Seite 7623-7639 (DE-627)271595574 (DE-600)1480526-1 1433-3058 nnns volume:32 year:2018 number:12 day:20 month:11 pages:7623-7639 https://dx.doi.org/10.1007/s00521-018-3880-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 54.72 ASE AR 32 2018 12 20 11 7623-7639 |
allfieldsGer |
10.1007/s00521-018-3880-8 doi (DE-627)SPR04003318X (SPR)s00521-018-3880-8-e DE-627 ger DE-627 rakwb eng 004 ASE 004 ASE 54.72 bkl Das, Priyanka verfasserin aut Feature selection generating directed rough-spanning tree for crime pattern analysis 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Nowadays, crime is a major threat to the society that affects the normal life of human beings all over the world. It is very important to make the world free from all aspects of crime activities. The main motivation of this work is to understand various crime patterns for avoiding and preventing the crime events to occur in future and save the world from such curse. Though research is going on for solving such problems, no work is noticed to handle the roughness or ambiguity that exists in the crime reports. The present work extracts all possible crime features from the crime reports and selects only the important features required for crime pattern analysis. For this purpose, it develops a purely supervised feature selection model integrating rough set theory and graph theory (spanning tree of a directed weighted graph). The crime reports are preprocessed, and crime features are extracted to represent each report as a feature vector (i.e., a set of distinct crime features). For crime pattern analysis, the main objective of our work, all extracted features are not necessarily essential, rather a minimal subset of relevant features are sufficient. Thus, feature selection is the main contribution in the paper that not only enhances the efficiency of subsequent mining process but also increases its correctness. The rough set theory-based relative indiscernibility relation is defined to measure the similarity between two features relative to the crime type. Based on the similarity score, a weighted and directed graph has been constructed that comprises the features as nodes and the inverse of the similarity score representing the similarity of feature v to u as the weight of the corresponding edge. Then, a minimal spanning tree (termed as rough-spanning tree) is generated using Edmond/Chu–Liu algorithm from the constructed directed graph and the importance of the nodes in the spanning tree is measured using the weights of the edges and the degrees (in-degrees and out-degrees) of the nodes in the spanning tree. Finally, a feature selection algorithm has been proposed that selects the most important node and remove it from the spanning tree iteratively until the modified graph (not necessarily a tree) becomes a null graph. The selected nodes are considered as the important feature subset sufficient for crime pattern analysis. The method is evaluated using various statistical measures and compared with related state-of-the-art methods to express its effectiveness in crime pattern analysis. The Wilcoxon rank-sum test, a popular nonparametric version of the two-sample t test, is done to express that the proposed supervised model is statistically significant. Data mining (dpeaa)DE-He213 Feature selection (dpeaa)DE-He213 Rough set theory (dpeaa)DE-He213 Relative indiscernibility relation (dpeaa)DE-He213 Minimal spanning tree (dpeaa)DE-He213 Classification (dpeaa)DE-He213 Crime pattern analysis (dpeaa)DE-He213 Das, Asit Kumar verfasserin aut Nayak, Janmenjoy verfasserin aut Enthalten in Neural computing & applications London : Springer, 1993 32(2018), 12 vom: 20. Nov., Seite 7623-7639 (DE-627)271595574 (DE-600)1480526-1 1433-3058 nnns volume:32 year:2018 number:12 day:20 month:11 pages:7623-7639 https://dx.doi.org/10.1007/s00521-018-3880-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 54.72 ASE AR 32 2018 12 20 11 7623-7639 |
allfieldsSound |
10.1007/s00521-018-3880-8 doi (DE-627)SPR04003318X (SPR)s00521-018-3880-8-e DE-627 ger DE-627 rakwb eng 004 ASE 004 ASE 54.72 bkl Das, Priyanka verfasserin aut Feature selection generating directed rough-spanning tree for crime pattern analysis 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Nowadays, crime is a major threat to the society that affects the normal life of human beings all over the world. It is very important to make the world free from all aspects of crime activities. The main motivation of this work is to understand various crime patterns for avoiding and preventing the crime events to occur in future and save the world from such curse. Though research is going on for solving such problems, no work is noticed to handle the roughness or ambiguity that exists in the crime reports. The present work extracts all possible crime features from the crime reports and selects only the important features required for crime pattern analysis. For this purpose, it develops a purely supervised feature selection model integrating rough set theory and graph theory (spanning tree of a directed weighted graph). The crime reports are preprocessed, and crime features are extracted to represent each report as a feature vector (i.e., a set of distinct crime features). For crime pattern analysis, the main objective of our work, all extracted features are not necessarily essential, rather a minimal subset of relevant features are sufficient. Thus, feature selection is the main contribution in the paper that not only enhances the efficiency of subsequent mining process but also increases its correctness. The rough set theory-based relative indiscernibility relation is defined to measure the similarity between two features relative to the crime type. Based on the similarity score, a weighted and directed graph has been constructed that comprises the features as nodes and the inverse of the similarity score representing the similarity of feature v to u as the weight of the corresponding edge. Then, a minimal spanning tree (termed as rough-spanning tree) is generated using Edmond/Chu–Liu algorithm from the constructed directed graph and the importance of the nodes in the spanning tree is measured using the weights of the edges and the degrees (in-degrees and out-degrees) of the nodes in the spanning tree. Finally, a feature selection algorithm has been proposed that selects the most important node and remove it from the spanning tree iteratively until the modified graph (not necessarily a tree) becomes a null graph. The selected nodes are considered as the important feature subset sufficient for crime pattern analysis. The method is evaluated using various statistical measures and compared with related state-of-the-art methods to express its effectiveness in crime pattern analysis. The Wilcoxon rank-sum test, a popular nonparametric version of the two-sample t test, is done to express that the proposed supervised model is statistically significant. Data mining (dpeaa)DE-He213 Feature selection (dpeaa)DE-He213 Rough set theory (dpeaa)DE-He213 Relative indiscernibility relation (dpeaa)DE-He213 Minimal spanning tree (dpeaa)DE-He213 Classification (dpeaa)DE-He213 Crime pattern analysis (dpeaa)DE-He213 Das, Asit Kumar verfasserin aut Nayak, Janmenjoy verfasserin aut Enthalten in Neural computing & applications London : Springer, 1993 32(2018), 12 vom: 20. Nov., Seite 7623-7639 (DE-627)271595574 (DE-600)1480526-1 1433-3058 nnns volume:32 year:2018 number:12 day:20 month:11 pages:7623-7639 https://dx.doi.org/10.1007/s00521-018-3880-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 54.72 ASE AR 32 2018 12 20 11 7623-7639 |
language |
English |
source |
Enthalten in Neural computing & applications 32(2018), 12 vom: 20. Nov., Seite 7623-7639 volume:32 year:2018 number:12 day:20 month:11 pages:7623-7639 |
sourceStr |
Enthalten in Neural computing & applications 32(2018), 12 vom: 20. Nov., Seite 7623-7639 volume:32 year:2018 number:12 day:20 month:11 pages:7623-7639 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Data mining Feature selection Rough set theory Relative indiscernibility relation Minimal spanning tree Classification Crime pattern analysis |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Neural computing & applications |
authorswithroles_txt_mv |
Das, Priyanka @@aut@@ Das, Asit Kumar @@aut@@ Nayak, Janmenjoy @@aut@@ |
publishDateDaySort_date |
2018-11-20T00:00:00Z |
hierarchy_top_id |
271595574 |
dewey-sort |
14 |
id |
SPR04003318X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR04003318X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220110191238.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00521-018-3880-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR04003318X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00521-018-3880-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.72</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Das, Priyanka</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Feature selection generating directed rough-spanning tree for crime pattern analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Nowadays, crime is a major threat to the society that affects the normal life of human beings all over the world. It is very important to make the world free from all aspects of crime activities. The main motivation of this work is to understand various crime patterns for avoiding and preventing the crime events to occur in future and save the world from such curse. Though research is going on for solving such problems, no work is noticed to handle the roughness or ambiguity that exists in the crime reports. The present work extracts all possible crime features from the crime reports and selects only the important features required for crime pattern analysis. For this purpose, it develops a purely supervised feature selection model integrating rough set theory and graph theory (spanning tree of a directed weighted graph). The crime reports are preprocessed, and crime features are extracted to represent each report as a feature vector (i.e., a set of distinct crime features). For crime pattern analysis, the main objective of our work, all extracted features are not necessarily essential, rather a minimal subset of relevant features are sufficient. Thus, feature selection is the main contribution in the paper that not only enhances the efficiency of subsequent mining process but also increases its correctness. The rough set theory-based relative indiscernibility relation is defined to measure the similarity between two features relative to the crime type. Based on the similarity score, a weighted and directed graph has been constructed that comprises the features as nodes and the inverse of the similarity score representing the similarity of feature v to u as the weight of the corresponding edge. Then, a minimal spanning tree (termed as rough-spanning tree) is generated using Edmond/Chu–Liu algorithm from the constructed directed graph and the importance of the nodes in the spanning tree is measured using the weights of the edges and the degrees (in-degrees and out-degrees) of the nodes in the spanning tree. Finally, a feature selection algorithm has been proposed that selects the most important node and remove it from the spanning tree iteratively until the modified graph (not necessarily a tree) becomes a null graph. The selected nodes are considered as the important feature subset sufficient for crime pattern analysis. The method is evaluated using various statistical measures and compared with related state-of-the-art methods to express its effectiveness in crime pattern analysis. The Wilcoxon rank-sum test, a popular nonparametric version of the two-sample t test, is done to express that the proposed supervised model is statistically significant.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data mining</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Feature selection</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rough set theory</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Relative indiscernibility relation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Minimal spanning tree</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Classification</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crime pattern analysis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Das, Asit Kumar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nayak, Janmenjoy</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Neural computing & applications</subfield><subfield code="d">London : Springer, 1993</subfield><subfield code="g">32(2018), 12 vom: 20. Nov., Seite 7623-7639</subfield><subfield code="w">(DE-627)271595574</subfield><subfield code="w">(DE-600)1480526-1</subfield><subfield code="x">1433-3058</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:32</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:12</subfield><subfield code="g">day:20</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:7623-7639</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00521-018-3880-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.72</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">32</subfield><subfield code="j">2018</subfield><subfield code="e">12</subfield><subfield code="b">20</subfield><subfield code="c">11</subfield><subfield code="h">7623-7639</subfield></datafield></record></collection>
|
author |
Das, Priyanka |
spellingShingle |
Das, Priyanka ddc 004 bkl 54.72 misc Data mining misc Feature selection misc Rough set theory misc Relative indiscernibility relation misc Minimal spanning tree misc Classification misc Crime pattern analysis Feature selection generating directed rough-spanning tree for crime pattern analysis |
authorStr |
Das, Priyanka |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)271595574 |
format |
electronic Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1433-3058 |
topic_title |
004 ASE 54.72 bkl Feature selection generating directed rough-spanning tree for crime pattern analysis Data mining (dpeaa)DE-He213 Feature selection (dpeaa)DE-He213 Rough set theory (dpeaa)DE-He213 Relative indiscernibility relation (dpeaa)DE-He213 Minimal spanning tree (dpeaa)DE-He213 Classification (dpeaa)DE-He213 Crime pattern analysis (dpeaa)DE-He213 |
topic |
ddc 004 bkl 54.72 misc Data mining misc Feature selection misc Rough set theory misc Relative indiscernibility relation misc Minimal spanning tree misc Classification misc Crime pattern analysis |
topic_unstemmed |
ddc 004 bkl 54.72 misc Data mining misc Feature selection misc Rough set theory misc Relative indiscernibility relation misc Minimal spanning tree misc Classification misc Crime pattern analysis |
topic_browse |
ddc 004 bkl 54.72 misc Data mining misc Feature selection misc Rough set theory misc Relative indiscernibility relation misc Minimal spanning tree misc Classification misc Crime pattern analysis |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Neural computing & applications |
hierarchy_parent_id |
271595574 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Neural computing & applications |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)271595574 (DE-600)1480526-1 |
title |
Feature selection generating directed rough-spanning tree for crime pattern analysis |
ctrlnum |
(DE-627)SPR04003318X (SPR)s00521-018-3880-8-e |
title_full |
Feature selection generating directed rough-spanning tree for crime pattern analysis |
author_sort |
Das, Priyanka |
journal |
Neural computing & applications |
journalStr |
Neural computing & applications |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
7623 |
author_browse |
Das, Priyanka Das, Asit Kumar Nayak, Janmenjoy |
container_volume |
32 |
class |
004 ASE 54.72 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Das, Priyanka |
doi_str_mv |
10.1007/s00521-018-3880-8 |
dewey-full |
004 |
author2-role |
verfasserin |
title_sort |
feature selection generating directed rough-spanning tree for crime pattern analysis |
title_auth |
Feature selection generating directed rough-spanning tree for crime pattern analysis |
abstract |
Abstract Nowadays, crime is a major threat to the society that affects the normal life of human beings all over the world. It is very important to make the world free from all aspects of crime activities. The main motivation of this work is to understand various crime patterns for avoiding and preventing the crime events to occur in future and save the world from such curse. Though research is going on for solving such problems, no work is noticed to handle the roughness or ambiguity that exists in the crime reports. The present work extracts all possible crime features from the crime reports and selects only the important features required for crime pattern analysis. For this purpose, it develops a purely supervised feature selection model integrating rough set theory and graph theory (spanning tree of a directed weighted graph). The crime reports are preprocessed, and crime features are extracted to represent each report as a feature vector (i.e., a set of distinct crime features). For crime pattern analysis, the main objective of our work, all extracted features are not necessarily essential, rather a minimal subset of relevant features are sufficient. Thus, feature selection is the main contribution in the paper that not only enhances the efficiency of subsequent mining process but also increases its correctness. The rough set theory-based relative indiscernibility relation is defined to measure the similarity between two features relative to the crime type. Based on the similarity score, a weighted and directed graph has been constructed that comprises the features as nodes and the inverse of the similarity score representing the similarity of feature v to u as the weight of the corresponding edge. Then, a minimal spanning tree (termed as rough-spanning tree) is generated using Edmond/Chu–Liu algorithm from the constructed directed graph and the importance of the nodes in the spanning tree is measured using the weights of the edges and the degrees (in-degrees and out-degrees) of the nodes in the spanning tree. Finally, a feature selection algorithm has been proposed that selects the most important node and remove it from the spanning tree iteratively until the modified graph (not necessarily a tree) becomes a null graph. The selected nodes are considered as the important feature subset sufficient for crime pattern analysis. The method is evaluated using various statistical measures and compared with related state-of-the-art methods to express its effectiveness in crime pattern analysis. The Wilcoxon rank-sum test, a popular nonparametric version of the two-sample t test, is done to express that the proposed supervised model is statistically significant. |
abstractGer |
Abstract Nowadays, crime is a major threat to the society that affects the normal life of human beings all over the world. It is very important to make the world free from all aspects of crime activities. The main motivation of this work is to understand various crime patterns for avoiding and preventing the crime events to occur in future and save the world from such curse. Though research is going on for solving such problems, no work is noticed to handle the roughness or ambiguity that exists in the crime reports. The present work extracts all possible crime features from the crime reports and selects only the important features required for crime pattern analysis. For this purpose, it develops a purely supervised feature selection model integrating rough set theory and graph theory (spanning tree of a directed weighted graph). The crime reports are preprocessed, and crime features are extracted to represent each report as a feature vector (i.e., a set of distinct crime features). For crime pattern analysis, the main objective of our work, all extracted features are not necessarily essential, rather a minimal subset of relevant features are sufficient. Thus, feature selection is the main contribution in the paper that not only enhances the efficiency of subsequent mining process but also increases its correctness. The rough set theory-based relative indiscernibility relation is defined to measure the similarity between two features relative to the crime type. Based on the similarity score, a weighted and directed graph has been constructed that comprises the features as nodes and the inverse of the similarity score representing the similarity of feature v to u as the weight of the corresponding edge. Then, a minimal spanning tree (termed as rough-spanning tree) is generated using Edmond/Chu–Liu algorithm from the constructed directed graph and the importance of the nodes in the spanning tree is measured using the weights of the edges and the degrees (in-degrees and out-degrees) of the nodes in the spanning tree. Finally, a feature selection algorithm has been proposed that selects the most important node and remove it from the spanning tree iteratively until the modified graph (not necessarily a tree) becomes a null graph. The selected nodes are considered as the important feature subset sufficient for crime pattern analysis. The method is evaluated using various statistical measures and compared with related state-of-the-art methods to express its effectiveness in crime pattern analysis. The Wilcoxon rank-sum test, a popular nonparametric version of the two-sample t test, is done to express that the proposed supervised model is statistically significant. |
abstract_unstemmed |
Abstract Nowadays, crime is a major threat to the society that affects the normal life of human beings all over the world. It is very important to make the world free from all aspects of crime activities. The main motivation of this work is to understand various crime patterns for avoiding and preventing the crime events to occur in future and save the world from such curse. Though research is going on for solving such problems, no work is noticed to handle the roughness or ambiguity that exists in the crime reports. The present work extracts all possible crime features from the crime reports and selects only the important features required for crime pattern analysis. For this purpose, it develops a purely supervised feature selection model integrating rough set theory and graph theory (spanning tree of a directed weighted graph). The crime reports are preprocessed, and crime features are extracted to represent each report as a feature vector (i.e., a set of distinct crime features). For crime pattern analysis, the main objective of our work, all extracted features are not necessarily essential, rather a minimal subset of relevant features are sufficient. Thus, feature selection is the main contribution in the paper that not only enhances the efficiency of subsequent mining process but also increases its correctness. The rough set theory-based relative indiscernibility relation is defined to measure the similarity between two features relative to the crime type. Based on the similarity score, a weighted and directed graph has been constructed that comprises the features as nodes and the inverse of the similarity score representing the similarity of feature v to u as the weight of the corresponding edge. Then, a minimal spanning tree (termed as rough-spanning tree) is generated using Edmond/Chu–Liu algorithm from the constructed directed graph and the importance of the nodes in the spanning tree is measured using the weights of the edges and the degrees (in-degrees and out-degrees) of the nodes in the spanning tree. Finally, a feature selection algorithm has been proposed that selects the most important node and remove it from the spanning tree iteratively until the modified graph (not necessarily a tree) becomes a null graph. The selected nodes are considered as the important feature subset sufficient for crime pattern analysis. The method is evaluated using various statistical measures and compared with related state-of-the-art methods to express its effectiveness in crime pattern analysis. The Wilcoxon rank-sum test, a popular nonparametric version of the two-sample t test, is done to express that the proposed supervised model is statistically significant. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
12 |
title_short |
Feature selection generating directed rough-spanning tree for crime pattern analysis |
url |
https://dx.doi.org/10.1007/s00521-018-3880-8 |
remote_bool |
true |
author2 |
Das, Asit Kumar Nayak, Janmenjoy |
author2Str |
Das, Asit Kumar Nayak, Janmenjoy |
ppnlink |
271595574 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00521-018-3880-8 |
up_date |
2024-07-04T02:34:52.500Z |
_version_ |
1803614150984728576 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR04003318X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220110191238.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00521-018-3880-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR04003318X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00521-018-3880-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.72</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Das, Priyanka</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Feature selection generating directed rough-spanning tree for crime pattern analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Nowadays, crime is a major threat to the society that affects the normal life of human beings all over the world. It is very important to make the world free from all aspects of crime activities. The main motivation of this work is to understand various crime patterns for avoiding and preventing the crime events to occur in future and save the world from such curse. Though research is going on for solving such problems, no work is noticed to handle the roughness or ambiguity that exists in the crime reports. The present work extracts all possible crime features from the crime reports and selects only the important features required for crime pattern analysis. For this purpose, it develops a purely supervised feature selection model integrating rough set theory and graph theory (spanning tree of a directed weighted graph). The crime reports are preprocessed, and crime features are extracted to represent each report as a feature vector (i.e., a set of distinct crime features). For crime pattern analysis, the main objective of our work, all extracted features are not necessarily essential, rather a minimal subset of relevant features are sufficient. Thus, feature selection is the main contribution in the paper that not only enhances the efficiency of subsequent mining process but also increases its correctness. The rough set theory-based relative indiscernibility relation is defined to measure the similarity between two features relative to the crime type. Based on the similarity score, a weighted and directed graph has been constructed that comprises the features as nodes and the inverse of the similarity score representing the similarity of feature v to u as the weight of the corresponding edge. Then, a minimal spanning tree (termed as rough-spanning tree) is generated using Edmond/Chu–Liu algorithm from the constructed directed graph and the importance of the nodes in the spanning tree is measured using the weights of the edges and the degrees (in-degrees and out-degrees) of the nodes in the spanning tree. Finally, a feature selection algorithm has been proposed that selects the most important node and remove it from the spanning tree iteratively until the modified graph (not necessarily a tree) becomes a null graph. The selected nodes are considered as the important feature subset sufficient for crime pattern analysis. The method is evaluated using various statistical measures and compared with related state-of-the-art methods to express its effectiveness in crime pattern analysis. The Wilcoxon rank-sum test, a popular nonparametric version of the two-sample t test, is done to express that the proposed supervised model is statistically significant.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data mining</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Feature selection</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rough set theory</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Relative indiscernibility relation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Minimal spanning tree</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Classification</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crime pattern analysis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Das, Asit Kumar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nayak, Janmenjoy</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Neural computing & applications</subfield><subfield code="d">London : Springer, 1993</subfield><subfield code="g">32(2018), 12 vom: 20. Nov., Seite 7623-7639</subfield><subfield code="w">(DE-627)271595574</subfield><subfield code="w">(DE-600)1480526-1</subfield><subfield code="x">1433-3058</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:32</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:12</subfield><subfield code="g">day:20</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:7623-7639</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00521-018-3880-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.72</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">32</subfield><subfield code="j">2018</subfield><subfield code="e">12</subfield><subfield code="b">20</subfield><subfield code="c">11</subfield><subfield code="h">7623-7639</subfield></datafield></record></collection>
|
score |
7.400757 |