Performance Evaluation of Homogeneous and Heterogeneous Ensemble Models for Groundwater Salinity Predictions: a Regional-Scale Comparison Study
Abstract Accurate prediction of salinity concentration in the aquifer in response to fluctuating groundwater pumping pattern is an essential component of any coastal groundwater planning and management framework. Data-driven prediction models have been proved efficient in predicting groundwater sali...
Ausführliche Beschreibung
Autor*in: |
Lal, Alvin [verfasserIn] Datta, Bithin [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Water, air & soil pollution - Dordrecht [u.a.] : Springer Science + Business Media B.V, 1971, 231(2020), 6 vom: 16. Juni |
---|---|
Übergeordnetes Werk: |
volume:231 ; year:2020 ; number:6 ; day:16 ; month:06 |
Links: |
---|
DOI / URN: |
10.1007/s11270-020-04693-w |
---|
Katalog-ID: |
SPR040058875 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR040058875 | ||
003 | DE-627 | ||
005 | 20220111061238.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11270-020-04693-w |2 doi | |
035 | |a (DE-627)SPR040058875 | ||
035 | |a (SPR)s11270-020-04693-w-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 333.7 |q ASE |
084 | |a 43.50 |2 bkl | ||
100 | 1 | |a Lal, Alvin |e verfasserin |4 aut | |
245 | 1 | 0 | |a Performance Evaluation of Homogeneous and Heterogeneous Ensemble Models for Groundwater Salinity Predictions: a Regional-Scale Comparison Study |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Accurate prediction of salinity concentration in the aquifer in response to fluctuating groundwater pumping pattern is an essential component of any coastal groundwater planning and management framework. Data-driven prediction models have been proved efficient in predicting groundwater salinity levels in coastal aquifers. The use of ensemble prediction models is known to be more accurate with robust prediction capabilities when compared with standalone prediction models. This study compares the performances of homogeneous and heterogeneous ensemble models for groundwater salinity predictions. A homogeneous ensemble model is composed of several standalone models of the same type (i.e. employs one machine learning tool) whereas a heterogeneous ensemble model is composed of several standalone models of different types (i.e. employs multiple machine learning tools). Specifically, homogeneous and heterogeneous ensemble models of various standalone machine learning tools such as artificial neural network (ANN), genetic programming (GP), support vector regression (SVR), and Gaussian process regression (GPR) are developed to predict groundwater salinity concentrations in a small Pacific island coastal aquifer system. Standalone and ensemble prediction models are trained and validated using identical pumping and resulting salinity concentration datasets obtained by solving numerical 3D transient density-dependent coastal aquifer flow and transport model. After validation, the ensemble models are used to predict salinity concentration at selected monitoring wells in the modelled aquifer under variable groundwater pumping conditions. Prediction capabilities of the developed ensemble models are quantified using standard statistical procedures. The performance evaluation result suggested that the predictive capabilities of the developed standalone prediction models (ANN, GP, SVR, and GPR) were comparable with the numerical groundwater variable density-dependent flow and salt transport model. However, GPR standalone models had better prediction capabilities when compared with the other standalone models. Also, SVR and GPR standalone models were more efficient (i.e. took less computational training time) than other standalone models. In terms of ensemble models, the performance of the homogeneous GPR ensemble model was established to be superior to other homogeneous and heterogeneous ensemble models. The homogeneous GPR ensemble model was favoured both in terms of efficiency. Overall, based on the limited performance evaluation result, GPR homogeneous model was considered to be the best prediction model when compared with all the standalone models, other homogeneous ensemble model, and the heterogeneous ensemble model. Therefore, it can be utilised as a reliable groundwater salinity prediction tool and also used as an approximate simulator in coupled simulation-optimization models needed for prescribing optimal groundwater management strategies. | ||
650 | 4 | |a Ensemble prediction models |7 (dpeaa)DE-He213 | |
650 | 4 | |a Homogeneous ensemble model |7 (dpeaa)DE-He213 | |
650 | 4 | |a Heterogeneous ensemble model |7 (dpeaa)DE-He213 | |
650 | 4 | |a Groundwater salinity |7 (dpeaa)DE-He213 | |
650 | 4 | |a Coastal aquifer management strategies |7 (dpeaa)DE-He213 | |
700 | 1 | |a Datta, Bithin |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Water, air & soil pollution |d Dordrecht [u.a.] : Springer Science + Business Media B.V, 1971 |g 231(2020), 6 vom: 16. Juni |w (DE-627)271349417 |w (DE-600)1479824-4 |x 1573-2932 |7 nnns |
773 | 1 | 8 | |g volume:231 |g year:2020 |g number:6 |g day:16 |g month:06 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11270-020-04693-w |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OPC-GGO | ||
912 | |a SSG-OPC-ASE | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2360 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 43.50 |q ASE |
951 | |a AR | ||
952 | |d 231 |j 2020 |e 6 |b 16 |c 06 |
author_variant |
a l al b d bd |
---|---|
matchkey_str |
article:15732932:2020----::efraceautoohmgnosnhtrgnosnebeoesogonwtraiiyrdc |
hierarchy_sort_str |
2020 |
bklnumber |
43.50 |
publishDate |
2020 |
allfields |
10.1007/s11270-020-04693-w doi (DE-627)SPR040058875 (SPR)s11270-020-04693-w-e DE-627 ger DE-627 rakwb eng 333.7 ASE 43.50 bkl Lal, Alvin verfasserin aut Performance Evaluation of Homogeneous and Heterogeneous Ensemble Models for Groundwater Salinity Predictions: a Regional-Scale Comparison Study 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Accurate prediction of salinity concentration in the aquifer in response to fluctuating groundwater pumping pattern is an essential component of any coastal groundwater planning and management framework. Data-driven prediction models have been proved efficient in predicting groundwater salinity levels in coastal aquifers. The use of ensemble prediction models is known to be more accurate with robust prediction capabilities when compared with standalone prediction models. This study compares the performances of homogeneous and heterogeneous ensemble models for groundwater salinity predictions. A homogeneous ensemble model is composed of several standalone models of the same type (i.e. employs one machine learning tool) whereas a heterogeneous ensemble model is composed of several standalone models of different types (i.e. employs multiple machine learning tools). Specifically, homogeneous and heterogeneous ensemble models of various standalone machine learning tools such as artificial neural network (ANN), genetic programming (GP), support vector regression (SVR), and Gaussian process regression (GPR) are developed to predict groundwater salinity concentrations in a small Pacific island coastal aquifer system. Standalone and ensemble prediction models are trained and validated using identical pumping and resulting salinity concentration datasets obtained by solving numerical 3D transient density-dependent coastal aquifer flow and transport model. After validation, the ensemble models are used to predict salinity concentration at selected monitoring wells in the modelled aquifer under variable groundwater pumping conditions. Prediction capabilities of the developed ensemble models are quantified using standard statistical procedures. The performance evaluation result suggested that the predictive capabilities of the developed standalone prediction models (ANN, GP, SVR, and GPR) were comparable with the numerical groundwater variable density-dependent flow and salt transport model. However, GPR standalone models had better prediction capabilities when compared with the other standalone models. Also, SVR and GPR standalone models were more efficient (i.e. took less computational training time) than other standalone models. In terms of ensemble models, the performance of the homogeneous GPR ensemble model was established to be superior to other homogeneous and heterogeneous ensemble models. The homogeneous GPR ensemble model was favoured both in terms of efficiency. Overall, based on the limited performance evaluation result, GPR homogeneous model was considered to be the best prediction model when compared with all the standalone models, other homogeneous ensemble model, and the heterogeneous ensemble model. Therefore, it can be utilised as a reliable groundwater salinity prediction tool and also used as an approximate simulator in coupled simulation-optimization models needed for prescribing optimal groundwater management strategies. Ensemble prediction models (dpeaa)DE-He213 Homogeneous ensemble model (dpeaa)DE-He213 Heterogeneous ensemble model (dpeaa)DE-He213 Groundwater salinity (dpeaa)DE-He213 Coastal aquifer management strategies (dpeaa)DE-He213 Datta, Bithin verfasserin aut Enthalten in Water, air & soil pollution Dordrecht [u.a.] : Springer Science + Business Media B.V, 1971 231(2020), 6 vom: 16. Juni (DE-627)271349417 (DE-600)1479824-4 1573-2932 nnns volume:231 year:2020 number:6 day:16 month:06 https://dx.doi.org/10.1007/s11270-020-04693-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-GGO SSG-OPC-ASE GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2360 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 43.50 ASE AR 231 2020 6 16 06 |
spelling |
10.1007/s11270-020-04693-w doi (DE-627)SPR040058875 (SPR)s11270-020-04693-w-e DE-627 ger DE-627 rakwb eng 333.7 ASE 43.50 bkl Lal, Alvin verfasserin aut Performance Evaluation of Homogeneous and Heterogeneous Ensemble Models for Groundwater Salinity Predictions: a Regional-Scale Comparison Study 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Accurate prediction of salinity concentration in the aquifer in response to fluctuating groundwater pumping pattern is an essential component of any coastal groundwater planning and management framework. Data-driven prediction models have been proved efficient in predicting groundwater salinity levels in coastal aquifers. The use of ensemble prediction models is known to be more accurate with robust prediction capabilities when compared with standalone prediction models. This study compares the performances of homogeneous and heterogeneous ensemble models for groundwater salinity predictions. A homogeneous ensemble model is composed of several standalone models of the same type (i.e. employs one machine learning tool) whereas a heterogeneous ensemble model is composed of several standalone models of different types (i.e. employs multiple machine learning tools). Specifically, homogeneous and heterogeneous ensemble models of various standalone machine learning tools such as artificial neural network (ANN), genetic programming (GP), support vector regression (SVR), and Gaussian process regression (GPR) are developed to predict groundwater salinity concentrations in a small Pacific island coastal aquifer system. Standalone and ensemble prediction models are trained and validated using identical pumping and resulting salinity concentration datasets obtained by solving numerical 3D transient density-dependent coastal aquifer flow and transport model. After validation, the ensemble models are used to predict salinity concentration at selected monitoring wells in the modelled aquifer under variable groundwater pumping conditions. Prediction capabilities of the developed ensemble models are quantified using standard statistical procedures. The performance evaluation result suggested that the predictive capabilities of the developed standalone prediction models (ANN, GP, SVR, and GPR) were comparable with the numerical groundwater variable density-dependent flow and salt transport model. However, GPR standalone models had better prediction capabilities when compared with the other standalone models. Also, SVR and GPR standalone models were more efficient (i.e. took less computational training time) than other standalone models. In terms of ensemble models, the performance of the homogeneous GPR ensemble model was established to be superior to other homogeneous and heterogeneous ensemble models. The homogeneous GPR ensemble model was favoured both in terms of efficiency. Overall, based on the limited performance evaluation result, GPR homogeneous model was considered to be the best prediction model when compared with all the standalone models, other homogeneous ensemble model, and the heterogeneous ensemble model. Therefore, it can be utilised as a reliable groundwater salinity prediction tool and also used as an approximate simulator in coupled simulation-optimization models needed for prescribing optimal groundwater management strategies. Ensemble prediction models (dpeaa)DE-He213 Homogeneous ensemble model (dpeaa)DE-He213 Heterogeneous ensemble model (dpeaa)DE-He213 Groundwater salinity (dpeaa)DE-He213 Coastal aquifer management strategies (dpeaa)DE-He213 Datta, Bithin verfasserin aut Enthalten in Water, air & soil pollution Dordrecht [u.a.] : Springer Science + Business Media B.V, 1971 231(2020), 6 vom: 16. Juni (DE-627)271349417 (DE-600)1479824-4 1573-2932 nnns volume:231 year:2020 number:6 day:16 month:06 https://dx.doi.org/10.1007/s11270-020-04693-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-GGO SSG-OPC-ASE GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2360 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 43.50 ASE AR 231 2020 6 16 06 |
allfields_unstemmed |
10.1007/s11270-020-04693-w doi (DE-627)SPR040058875 (SPR)s11270-020-04693-w-e DE-627 ger DE-627 rakwb eng 333.7 ASE 43.50 bkl Lal, Alvin verfasserin aut Performance Evaluation of Homogeneous and Heterogeneous Ensemble Models for Groundwater Salinity Predictions: a Regional-Scale Comparison Study 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Accurate prediction of salinity concentration in the aquifer in response to fluctuating groundwater pumping pattern is an essential component of any coastal groundwater planning and management framework. Data-driven prediction models have been proved efficient in predicting groundwater salinity levels in coastal aquifers. The use of ensemble prediction models is known to be more accurate with robust prediction capabilities when compared with standalone prediction models. This study compares the performances of homogeneous and heterogeneous ensemble models for groundwater salinity predictions. A homogeneous ensemble model is composed of several standalone models of the same type (i.e. employs one machine learning tool) whereas a heterogeneous ensemble model is composed of several standalone models of different types (i.e. employs multiple machine learning tools). Specifically, homogeneous and heterogeneous ensemble models of various standalone machine learning tools such as artificial neural network (ANN), genetic programming (GP), support vector regression (SVR), and Gaussian process regression (GPR) are developed to predict groundwater salinity concentrations in a small Pacific island coastal aquifer system. Standalone and ensemble prediction models are trained and validated using identical pumping and resulting salinity concentration datasets obtained by solving numerical 3D transient density-dependent coastal aquifer flow and transport model. After validation, the ensemble models are used to predict salinity concentration at selected monitoring wells in the modelled aquifer under variable groundwater pumping conditions. Prediction capabilities of the developed ensemble models are quantified using standard statistical procedures. The performance evaluation result suggested that the predictive capabilities of the developed standalone prediction models (ANN, GP, SVR, and GPR) were comparable with the numerical groundwater variable density-dependent flow and salt transport model. However, GPR standalone models had better prediction capabilities when compared with the other standalone models. Also, SVR and GPR standalone models were more efficient (i.e. took less computational training time) than other standalone models. In terms of ensemble models, the performance of the homogeneous GPR ensemble model was established to be superior to other homogeneous and heterogeneous ensemble models. The homogeneous GPR ensemble model was favoured both in terms of efficiency. Overall, based on the limited performance evaluation result, GPR homogeneous model was considered to be the best prediction model when compared with all the standalone models, other homogeneous ensemble model, and the heterogeneous ensemble model. Therefore, it can be utilised as a reliable groundwater salinity prediction tool and also used as an approximate simulator in coupled simulation-optimization models needed for prescribing optimal groundwater management strategies. Ensemble prediction models (dpeaa)DE-He213 Homogeneous ensemble model (dpeaa)DE-He213 Heterogeneous ensemble model (dpeaa)DE-He213 Groundwater salinity (dpeaa)DE-He213 Coastal aquifer management strategies (dpeaa)DE-He213 Datta, Bithin verfasserin aut Enthalten in Water, air & soil pollution Dordrecht [u.a.] : Springer Science + Business Media B.V, 1971 231(2020), 6 vom: 16. Juni (DE-627)271349417 (DE-600)1479824-4 1573-2932 nnns volume:231 year:2020 number:6 day:16 month:06 https://dx.doi.org/10.1007/s11270-020-04693-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-GGO SSG-OPC-ASE GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2360 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 43.50 ASE AR 231 2020 6 16 06 |
allfieldsGer |
10.1007/s11270-020-04693-w doi (DE-627)SPR040058875 (SPR)s11270-020-04693-w-e DE-627 ger DE-627 rakwb eng 333.7 ASE 43.50 bkl Lal, Alvin verfasserin aut Performance Evaluation of Homogeneous and Heterogeneous Ensemble Models for Groundwater Salinity Predictions: a Regional-Scale Comparison Study 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Accurate prediction of salinity concentration in the aquifer in response to fluctuating groundwater pumping pattern is an essential component of any coastal groundwater planning and management framework. Data-driven prediction models have been proved efficient in predicting groundwater salinity levels in coastal aquifers. The use of ensemble prediction models is known to be more accurate with robust prediction capabilities when compared with standalone prediction models. This study compares the performances of homogeneous and heterogeneous ensemble models for groundwater salinity predictions. A homogeneous ensemble model is composed of several standalone models of the same type (i.e. employs one machine learning tool) whereas a heterogeneous ensemble model is composed of several standalone models of different types (i.e. employs multiple machine learning tools). Specifically, homogeneous and heterogeneous ensemble models of various standalone machine learning tools such as artificial neural network (ANN), genetic programming (GP), support vector regression (SVR), and Gaussian process regression (GPR) are developed to predict groundwater salinity concentrations in a small Pacific island coastal aquifer system. Standalone and ensemble prediction models are trained and validated using identical pumping and resulting salinity concentration datasets obtained by solving numerical 3D transient density-dependent coastal aquifer flow and transport model. After validation, the ensemble models are used to predict salinity concentration at selected monitoring wells in the modelled aquifer under variable groundwater pumping conditions. Prediction capabilities of the developed ensemble models are quantified using standard statistical procedures. The performance evaluation result suggested that the predictive capabilities of the developed standalone prediction models (ANN, GP, SVR, and GPR) were comparable with the numerical groundwater variable density-dependent flow and salt transport model. However, GPR standalone models had better prediction capabilities when compared with the other standalone models. Also, SVR and GPR standalone models were more efficient (i.e. took less computational training time) than other standalone models. In terms of ensemble models, the performance of the homogeneous GPR ensemble model was established to be superior to other homogeneous and heterogeneous ensemble models. The homogeneous GPR ensemble model was favoured both in terms of efficiency. Overall, based on the limited performance evaluation result, GPR homogeneous model was considered to be the best prediction model when compared with all the standalone models, other homogeneous ensemble model, and the heterogeneous ensemble model. Therefore, it can be utilised as a reliable groundwater salinity prediction tool and also used as an approximate simulator in coupled simulation-optimization models needed for prescribing optimal groundwater management strategies. Ensemble prediction models (dpeaa)DE-He213 Homogeneous ensemble model (dpeaa)DE-He213 Heterogeneous ensemble model (dpeaa)DE-He213 Groundwater salinity (dpeaa)DE-He213 Coastal aquifer management strategies (dpeaa)DE-He213 Datta, Bithin verfasserin aut Enthalten in Water, air & soil pollution Dordrecht [u.a.] : Springer Science + Business Media B.V, 1971 231(2020), 6 vom: 16. Juni (DE-627)271349417 (DE-600)1479824-4 1573-2932 nnns volume:231 year:2020 number:6 day:16 month:06 https://dx.doi.org/10.1007/s11270-020-04693-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-GGO SSG-OPC-ASE GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2360 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 43.50 ASE AR 231 2020 6 16 06 |
allfieldsSound |
10.1007/s11270-020-04693-w doi (DE-627)SPR040058875 (SPR)s11270-020-04693-w-e DE-627 ger DE-627 rakwb eng 333.7 ASE 43.50 bkl Lal, Alvin verfasserin aut Performance Evaluation of Homogeneous and Heterogeneous Ensemble Models for Groundwater Salinity Predictions: a Regional-Scale Comparison Study 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Accurate prediction of salinity concentration in the aquifer in response to fluctuating groundwater pumping pattern is an essential component of any coastal groundwater planning and management framework. Data-driven prediction models have been proved efficient in predicting groundwater salinity levels in coastal aquifers. The use of ensemble prediction models is known to be more accurate with robust prediction capabilities when compared with standalone prediction models. This study compares the performances of homogeneous and heterogeneous ensemble models for groundwater salinity predictions. A homogeneous ensemble model is composed of several standalone models of the same type (i.e. employs one machine learning tool) whereas a heterogeneous ensemble model is composed of several standalone models of different types (i.e. employs multiple machine learning tools). Specifically, homogeneous and heterogeneous ensemble models of various standalone machine learning tools such as artificial neural network (ANN), genetic programming (GP), support vector regression (SVR), and Gaussian process regression (GPR) are developed to predict groundwater salinity concentrations in a small Pacific island coastal aquifer system. Standalone and ensemble prediction models are trained and validated using identical pumping and resulting salinity concentration datasets obtained by solving numerical 3D transient density-dependent coastal aquifer flow and transport model. After validation, the ensemble models are used to predict salinity concentration at selected monitoring wells in the modelled aquifer under variable groundwater pumping conditions. Prediction capabilities of the developed ensemble models are quantified using standard statistical procedures. The performance evaluation result suggested that the predictive capabilities of the developed standalone prediction models (ANN, GP, SVR, and GPR) were comparable with the numerical groundwater variable density-dependent flow and salt transport model. However, GPR standalone models had better prediction capabilities when compared with the other standalone models. Also, SVR and GPR standalone models were more efficient (i.e. took less computational training time) than other standalone models. In terms of ensemble models, the performance of the homogeneous GPR ensemble model was established to be superior to other homogeneous and heterogeneous ensemble models. The homogeneous GPR ensemble model was favoured both in terms of efficiency. Overall, based on the limited performance evaluation result, GPR homogeneous model was considered to be the best prediction model when compared with all the standalone models, other homogeneous ensemble model, and the heterogeneous ensemble model. Therefore, it can be utilised as a reliable groundwater salinity prediction tool and also used as an approximate simulator in coupled simulation-optimization models needed for prescribing optimal groundwater management strategies. Ensemble prediction models (dpeaa)DE-He213 Homogeneous ensemble model (dpeaa)DE-He213 Heterogeneous ensemble model (dpeaa)DE-He213 Groundwater salinity (dpeaa)DE-He213 Coastal aquifer management strategies (dpeaa)DE-He213 Datta, Bithin verfasserin aut Enthalten in Water, air & soil pollution Dordrecht [u.a.] : Springer Science + Business Media B.V, 1971 231(2020), 6 vom: 16. Juni (DE-627)271349417 (DE-600)1479824-4 1573-2932 nnns volume:231 year:2020 number:6 day:16 month:06 https://dx.doi.org/10.1007/s11270-020-04693-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-GGO SSG-OPC-ASE GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2360 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 43.50 ASE AR 231 2020 6 16 06 |
language |
English |
source |
Enthalten in Water, air & soil pollution 231(2020), 6 vom: 16. Juni volume:231 year:2020 number:6 day:16 month:06 |
sourceStr |
Enthalten in Water, air & soil pollution 231(2020), 6 vom: 16. Juni volume:231 year:2020 number:6 day:16 month:06 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Ensemble prediction models Homogeneous ensemble model Heterogeneous ensemble model Groundwater salinity Coastal aquifer management strategies |
dewey-raw |
333.7 |
isfreeaccess_bool |
false |
container_title |
Water, air & soil pollution |
authorswithroles_txt_mv |
Lal, Alvin @@aut@@ Datta, Bithin @@aut@@ |
publishDateDaySort_date |
2020-06-16T00:00:00Z |
hierarchy_top_id |
271349417 |
dewey-sort |
3333.7 |
id |
SPR040058875 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR040058875</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111061238.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11270-020-04693-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR040058875</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11270-020-04693-w-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.50</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lal, Alvin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Performance Evaluation of Homogeneous and Heterogeneous Ensemble Models for Groundwater Salinity Predictions: a Regional-Scale Comparison Study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Accurate prediction of salinity concentration in the aquifer in response to fluctuating groundwater pumping pattern is an essential component of any coastal groundwater planning and management framework. Data-driven prediction models have been proved efficient in predicting groundwater salinity levels in coastal aquifers. The use of ensemble prediction models is known to be more accurate with robust prediction capabilities when compared with standalone prediction models. This study compares the performances of homogeneous and heterogeneous ensemble models for groundwater salinity predictions. A homogeneous ensemble model is composed of several standalone models of the same type (i.e. employs one machine learning tool) whereas a heterogeneous ensemble model is composed of several standalone models of different types (i.e. employs multiple machine learning tools). Specifically, homogeneous and heterogeneous ensemble models of various standalone machine learning tools such as artificial neural network (ANN), genetic programming (GP), support vector regression (SVR), and Gaussian process regression (GPR) are developed to predict groundwater salinity concentrations in a small Pacific island coastal aquifer system. Standalone and ensemble prediction models are trained and validated using identical pumping and resulting salinity concentration datasets obtained by solving numerical 3D transient density-dependent coastal aquifer flow and transport model. After validation, the ensemble models are used to predict salinity concentration at selected monitoring wells in the modelled aquifer under variable groundwater pumping conditions. Prediction capabilities of the developed ensemble models are quantified using standard statistical procedures. The performance evaluation result suggested that the predictive capabilities of the developed standalone prediction models (ANN, GP, SVR, and GPR) were comparable with the numerical groundwater variable density-dependent flow and salt transport model. However, GPR standalone models had better prediction capabilities when compared with the other standalone models. Also, SVR and GPR standalone models were more efficient (i.e. took less computational training time) than other standalone models. In terms of ensemble models, the performance of the homogeneous GPR ensemble model was established to be superior to other homogeneous and heterogeneous ensemble models. The homogeneous GPR ensemble model was favoured both in terms of efficiency. Overall, based on the limited performance evaluation result, GPR homogeneous model was considered to be the best prediction model when compared with all the standalone models, other homogeneous ensemble model, and the heterogeneous ensemble model. Therefore, it can be utilised as a reliable groundwater salinity prediction tool and also used as an approximate simulator in coupled simulation-optimization models needed for prescribing optimal groundwater management strategies.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ensemble prediction models</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homogeneous ensemble model</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heterogeneous ensemble model</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Groundwater salinity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coastal aquifer management strategies</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Datta, Bithin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Water, air & soil pollution</subfield><subfield code="d">Dordrecht [u.a.] : Springer Science + Business Media B.V, 1971</subfield><subfield code="g">231(2020), 6 vom: 16. Juni</subfield><subfield code="w">(DE-627)271349417</subfield><subfield code="w">(DE-600)1479824-4</subfield><subfield code="x">1573-2932</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:231</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:6</subfield><subfield code="g">day:16</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11270-020-04693-w</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2360</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.50</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">231</subfield><subfield code="j">2020</subfield><subfield code="e">6</subfield><subfield code="b">16</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
author |
Lal, Alvin |
spellingShingle |
Lal, Alvin ddc 333.7 bkl 43.50 misc Ensemble prediction models misc Homogeneous ensemble model misc Heterogeneous ensemble model misc Groundwater salinity misc Coastal aquifer management strategies Performance Evaluation of Homogeneous and Heterogeneous Ensemble Models for Groundwater Salinity Predictions: a Regional-Scale Comparison Study |
authorStr |
Lal, Alvin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)271349417 |
format |
electronic Article |
dewey-ones |
333 - Economics of land & energy |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1573-2932 |
topic_title |
333.7 ASE 43.50 bkl Performance Evaluation of Homogeneous and Heterogeneous Ensemble Models for Groundwater Salinity Predictions: a Regional-Scale Comparison Study Ensemble prediction models (dpeaa)DE-He213 Homogeneous ensemble model (dpeaa)DE-He213 Heterogeneous ensemble model (dpeaa)DE-He213 Groundwater salinity (dpeaa)DE-He213 Coastal aquifer management strategies (dpeaa)DE-He213 |
topic |
ddc 333.7 bkl 43.50 misc Ensemble prediction models misc Homogeneous ensemble model misc Heterogeneous ensemble model misc Groundwater salinity misc Coastal aquifer management strategies |
topic_unstemmed |
ddc 333.7 bkl 43.50 misc Ensemble prediction models misc Homogeneous ensemble model misc Heterogeneous ensemble model misc Groundwater salinity misc Coastal aquifer management strategies |
topic_browse |
ddc 333.7 bkl 43.50 misc Ensemble prediction models misc Homogeneous ensemble model misc Heterogeneous ensemble model misc Groundwater salinity misc Coastal aquifer management strategies |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Water, air & soil pollution |
hierarchy_parent_id |
271349417 |
dewey-tens |
330 - Economics |
hierarchy_top_title |
Water, air & soil pollution |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)271349417 (DE-600)1479824-4 |
title |
Performance Evaluation of Homogeneous and Heterogeneous Ensemble Models for Groundwater Salinity Predictions: a Regional-Scale Comparison Study |
ctrlnum |
(DE-627)SPR040058875 (SPR)s11270-020-04693-w-e |
title_full |
Performance Evaluation of Homogeneous and Heterogeneous Ensemble Models for Groundwater Salinity Predictions: a Regional-Scale Comparison Study |
author_sort |
Lal, Alvin |
journal |
Water, air & soil pollution |
journalStr |
Water, air & soil pollution |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
300 - Social sciences |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Lal, Alvin Datta, Bithin |
container_volume |
231 |
class |
333.7 ASE 43.50 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Lal, Alvin |
doi_str_mv |
10.1007/s11270-020-04693-w |
dewey-full |
333.7 |
author2-role |
verfasserin |
title_sort |
performance evaluation of homogeneous and heterogeneous ensemble models for groundwater salinity predictions: a regional-scale comparison study |
title_auth |
Performance Evaluation of Homogeneous and Heterogeneous Ensemble Models for Groundwater Salinity Predictions: a Regional-Scale Comparison Study |
abstract |
Abstract Accurate prediction of salinity concentration in the aquifer in response to fluctuating groundwater pumping pattern is an essential component of any coastal groundwater planning and management framework. Data-driven prediction models have been proved efficient in predicting groundwater salinity levels in coastal aquifers. The use of ensemble prediction models is known to be more accurate with robust prediction capabilities when compared with standalone prediction models. This study compares the performances of homogeneous and heterogeneous ensemble models for groundwater salinity predictions. A homogeneous ensemble model is composed of several standalone models of the same type (i.e. employs one machine learning tool) whereas a heterogeneous ensemble model is composed of several standalone models of different types (i.e. employs multiple machine learning tools). Specifically, homogeneous and heterogeneous ensemble models of various standalone machine learning tools such as artificial neural network (ANN), genetic programming (GP), support vector regression (SVR), and Gaussian process regression (GPR) are developed to predict groundwater salinity concentrations in a small Pacific island coastal aquifer system. Standalone and ensemble prediction models are trained and validated using identical pumping and resulting salinity concentration datasets obtained by solving numerical 3D transient density-dependent coastal aquifer flow and transport model. After validation, the ensemble models are used to predict salinity concentration at selected monitoring wells in the modelled aquifer under variable groundwater pumping conditions. Prediction capabilities of the developed ensemble models are quantified using standard statistical procedures. The performance evaluation result suggested that the predictive capabilities of the developed standalone prediction models (ANN, GP, SVR, and GPR) were comparable with the numerical groundwater variable density-dependent flow and salt transport model. However, GPR standalone models had better prediction capabilities when compared with the other standalone models. Also, SVR and GPR standalone models were more efficient (i.e. took less computational training time) than other standalone models. In terms of ensemble models, the performance of the homogeneous GPR ensemble model was established to be superior to other homogeneous and heterogeneous ensemble models. The homogeneous GPR ensemble model was favoured both in terms of efficiency. Overall, based on the limited performance evaluation result, GPR homogeneous model was considered to be the best prediction model when compared with all the standalone models, other homogeneous ensemble model, and the heterogeneous ensemble model. Therefore, it can be utilised as a reliable groundwater salinity prediction tool and also used as an approximate simulator in coupled simulation-optimization models needed for prescribing optimal groundwater management strategies. |
abstractGer |
Abstract Accurate prediction of salinity concentration in the aquifer in response to fluctuating groundwater pumping pattern is an essential component of any coastal groundwater planning and management framework. Data-driven prediction models have been proved efficient in predicting groundwater salinity levels in coastal aquifers. The use of ensemble prediction models is known to be more accurate with robust prediction capabilities when compared with standalone prediction models. This study compares the performances of homogeneous and heterogeneous ensemble models for groundwater salinity predictions. A homogeneous ensemble model is composed of several standalone models of the same type (i.e. employs one machine learning tool) whereas a heterogeneous ensemble model is composed of several standalone models of different types (i.e. employs multiple machine learning tools). Specifically, homogeneous and heterogeneous ensemble models of various standalone machine learning tools such as artificial neural network (ANN), genetic programming (GP), support vector regression (SVR), and Gaussian process regression (GPR) are developed to predict groundwater salinity concentrations in a small Pacific island coastal aquifer system. Standalone and ensemble prediction models are trained and validated using identical pumping and resulting salinity concentration datasets obtained by solving numerical 3D transient density-dependent coastal aquifer flow and transport model. After validation, the ensemble models are used to predict salinity concentration at selected monitoring wells in the modelled aquifer under variable groundwater pumping conditions. Prediction capabilities of the developed ensemble models are quantified using standard statistical procedures. The performance evaluation result suggested that the predictive capabilities of the developed standalone prediction models (ANN, GP, SVR, and GPR) were comparable with the numerical groundwater variable density-dependent flow and salt transport model. However, GPR standalone models had better prediction capabilities when compared with the other standalone models. Also, SVR and GPR standalone models were more efficient (i.e. took less computational training time) than other standalone models. In terms of ensemble models, the performance of the homogeneous GPR ensemble model was established to be superior to other homogeneous and heterogeneous ensemble models. The homogeneous GPR ensemble model was favoured both in terms of efficiency. Overall, based on the limited performance evaluation result, GPR homogeneous model was considered to be the best prediction model when compared with all the standalone models, other homogeneous ensemble model, and the heterogeneous ensemble model. Therefore, it can be utilised as a reliable groundwater salinity prediction tool and also used as an approximate simulator in coupled simulation-optimization models needed for prescribing optimal groundwater management strategies. |
abstract_unstemmed |
Abstract Accurate prediction of salinity concentration in the aquifer in response to fluctuating groundwater pumping pattern is an essential component of any coastal groundwater planning and management framework. Data-driven prediction models have been proved efficient in predicting groundwater salinity levels in coastal aquifers. The use of ensemble prediction models is known to be more accurate with robust prediction capabilities when compared with standalone prediction models. This study compares the performances of homogeneous and heterogeneous ensemble models for groundwater salinity predictions. A homogeneous ensemble model is composed of several standalone models of the same type (i.e. employs one machine learning tool) whereas a heterogeneous ensemble model is composed of several standalone models of different types (i.e. employs multiple machine learning tools). Specifically, homogeneous and heterogeneous ensemble models of various standalone machine learning tools such as artificial neural network (ANN), genetic programming (GP), support vector regression (SVR), and Gaussian process regression (GPR) are developed to predict groundwater salinity concentrations in a small Pacific island coastal aquifer system. Standalone and ensemble prediction models are trained and validated using identical pumping and resulting salinity concentration datasets obtained by solving numerical 3D transient density-dependent coastal aquifer flow and transport model. After validation, the ensemble models are used to predict salinity concentration at selected monitoring wells in the modelled aquifer under variable groundwater pumping conditions. Prediction capabilities of the developed ensemble models are quantified using standard statistical procedures. The performance evaluation result suggested that the predictive capabilities of the developed standalone prediction models (ANN, GP, SVR, and GPR) were comparable with the numerical groundwater variable density-dependent flow and salt transport model. However, GPR standalone models had better prediction capabilities when compared with the other standalone models. Also, SVR and GPR standalone models were more efficient (i.e. took less computational training time) than other standalone models. In terms of ensemble models, the performance of the homogeneous GPR ensemble model was established to be superior to other homogeneous and heterogeneous ensemble models. The homogeneous GPR ensemble model was favoured both in terms of efficiency. Overall, based on the limited performance evaluation result, GPR homogeneous model was considered to be the best prediction model when compared with all the standalone models, other homogeneous ensemble model, and the heterogeneous ensemble model. Therefore, it can be utilised as a reliable groundwater salinity prediction tool and also used as an approximate simulator in coupled simulation-optimization models needed for prescribing optimal groundwater management strategies. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-GGO SSG-OPC-ASE GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2360 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
6 |
title_short |
Performance Evaluation of Homogeneous and Heterogeneous Ensemble Models for Groundwater Salinity Predictions: a Regional-Scale Comparison Study |
url |
https://dx.doi.org/10.1007/s11270-020-04693-w |
remote_bool |
true |
author2 |
Datta, Bithin |
author2Str |
Datta, Bithin |
ppnlink |
271349417 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11270-020-04693-w |
up_date |
2024-07-03T13:31:50.003Z |
_version_ |
1803564886273294336 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR040058875</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111061238.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11270-020-04693-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR040058875</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11270-020-04693-w-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.50</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lal, Alvin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Performance Evaluation of Homogeneous and Heterogeneous Ensemble Models for Groundwater Salinity Predictions: a Regional-Scale Comparison Study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Accurate prediction of salinity concentration in the aquifer in response to fluctuating groundwater pumping pattern is an essential component of any coastal groundwater planning and management framework. Data-driven prediction models have been proved efficient in predicting groundwater salinity levels in coastal aquifers. The use of ensemble prediction models is known to be more accurate with robust prediction capabilities when compared with standalone prediction models. This study compares the performances of homogeneous and heterogeneous ensemble models for groundwater salinity predictions. A homogeneous ensemble model is composed of several standalone models of the same type (i.e. employs one machine learning tool) whereas a heterogeneous ensemble model is composed of several standalone models of different types (i.e. employs multiple machine learning tools). Specifically, homogeneous and heterogeneous ensemble models of various standalone machine learning tools such as artificial neural network (ANN), genetic programming (GP), support vector regression (SVR), and Gaussian process regression (GPR) are developed to predict groundwater salinity concentrations in a small Pacific island coastal aquifer system. Standalone and ensemble prediction models are trained and validated using identical pumping and resulting salinity concentration datasets obtained by solving numerical 3D transient density-dependent coastal aquifer flow and transport model. After validation, the ensemble models are used to predict salinity concentration at selected monitoring wells in the modelled aquifer under variable groundwater pumping conditions. Prediction capabilities of the developed ensemble models are quantified using standard statistical procedures. The performance evaluation result suggested that the predictive capabilities of the developed standalone prediction models (ANN, GP, SVR, and GPR) were comparable with the numerical groundwater variable density-dependent flow and salt transport model. However, GPR standalone models had better prediction capabilities when compared with the other standalone models. Also, SVR and GPR standalone models were more efficient (i.e. took less computational training time) than other standalone models. In terms of ensemble models, the performance of the homogeneous GPR ensemble model was established to be superior to other homogeneous and heterogeneous ensemble models. The homogeneous GPR ensemble model was favoured both in terms of efficiency. Overall, based on the limited performance evaluation result, GPR homogeneous model was considered to be the best prediction model when compared with all the standalone models, other homogeneous ensemble model, and the heterogeneous ensemble model. Therefore, it can be utilised as a reliable groundwater salinity prediction tool and also used as an approximate simulator in coupled simulation-optimization models needed for prescribing optimal groundwater management strategies.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ensemble prediction models</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homogeneous ensemble model</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heterogeneous ensemble model</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Groundwater salinity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coastal aquifer management strategies</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Datta, Bithin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Water, air & soil pollution</subfield><subfield code="d">Dordrecht [u.a.] : Springer Science + Business Media B.V, 1971</subfield><subfield code="g">231(2020), 6 vom: 16. Juni</subfield><subfield code="w">(DE-627)271349417</subfield><subfield code="w">(DE-600)1479824-4</subfield><subfield code="x">1573-2932</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:231</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:6</subfield><subfield code="g">day:16</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11270-020-04693-w</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2360</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.50</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">231</subfield><subfield code="j">2020</subfield><subfield code="e">6</subfield><subfield code="b">16</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
score |
7.402648 |