Plasma circulating tumor DNA assessment reveals KMT2D as a potential poor prognostic factor in extranodal NK/T-cell lymphoma
Background The early detection of tumors upon initial diagnosis or during routine surveillance is important for improving survival outcomes. Here, we investigated the feasibility and clinical significance of circulating tumor DNA (ctDNA) detection for Extranodal NK/T-cell lymphoma, nasal type (ENTKL...
Ausführliche Beschreibung
Autor*in: |
Li, Qiong [verfasserIn] Zhang, Wei [verfasserIn] Li, Jiali [verfasserIn] Xiong, Jingkang [verfasserIn] Liu, Jia [verfasserIn] Chen, Ting [verfasserIn] Wen, Qin [verfasserIn] Zeng, Yunjing [verfasserIn] Gao, Li [verfasserIn] Gao, Lei [verfasserIn] Zhang, Cheng [verfasserIn] Kong, Peiyan [verfasserIn] Peng, Xiangui [verfasserIn] Liu, Yao [verfasserIn] Zhang, Xi [verfasserIn] Rao, Jun [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Biomarker Research - London : Biomed Central, 2013, 8(2020), 1 vom: 17. Juli |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2020 ; number:1 ; day:17 ; month:07 |
Links: |
---|
DOI / URN: |
10.1186/s40364-020-00205-4 |
---|
Katalog-ID: |
SPR040377474 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR040377474 | ||
003 | DE-627 | ||
005 | 20230519193257.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s40364-020-00205-4 |2 doi | |
035 | |a (DE-627)SPR040377474 | ||
035 | |a (SPR)s40364-020-00205-4-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 570 |a 610 |q ASE |
100 | 1 | |a Li, Qiong |e verfasserin |4 aut | |
245 | 1 | 0 | |a Plasma circulating tumor DNA assessment reveals KMT2D as a potential poor prognostic factor in extranodal NK/T-cell lymphoma |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Background The early detection of tumors upon initial diagnosis or during routine surveillance is important for improving survival outcomes. Here, we investigated the feasibility and clinical significance of circulating tumor DNA (ctDNA) detection for Extranodal NK/T-cell lymphoma, nasal type (ENTKL). Methods The plasma ctDNA assessment was based on blood specimens collected from 65 newly diagnosed patients with ENKTL in the hematology medical center of Xinqiao Hospital. Longitudinal samples collected under chemotherapy were also included. The gene mutation spectrum of ENKTL was analyzed via next generation sequencing. Results We found that the most frequently mutated genes were KMT2D (23.1%), APC (12.3%), ATM (10.8%), ASXL3 (9.2%), JAK3 (9.2%), SETD2 (9.2%), TP53 (9.2%) and NOTCH1 (7.7%). The mutation allele frequencies of ATM and JAK3 were significantly correlated with the disease stage, and mutated KMT2D, ASXL3 and JAK3 were positively correlated with the metabolic tumor burden of the patients. Compared with the tumor tissue, ctDNA profiling showed good concordance (93.75%). Serial ctDNA analysis showed that treatment with chemotherapy could decrease the number and mutation allele frequencies of the genes. Compared with PET/CT, ctDNA has more advantages in tracking residual disease in patients. In addition, patients with mutated KMT2D had higher expression compared with those with wild type, and mutated KMT2D predicted poor prognosis. Conclusion Our results unveil the mutation spectrum of ENKTL patients’ plasma, which can be used to monitor the disease status of the patients exactly, and KMT2D is the most frequently mutated gene with prognosis prediction value. The application of ctDNA sequencing can provide precision treatment strategies for patients. Trial registration This study is registered with chictr.org (ChiCTR1800014813, registered 7 February, 2018-Retrospectively registered). | ||
650 | 4 | |a ENKTL |7 (dpeaa)DE-He213 | |
650 | 4 | |a Circulating tumor DNA |7 (dpeaa)DE-He213 | |
650 | 4 | |a Mutation allele frequency |7 (dpeaa)DE-He213 | |
650 | 4 | |a Minimal residual disease |7 (dpeaa)DE-He213 | |
650 | 4 | |a Prognosis |7 (dpeaa)DE-He213 | |
700 | 1 | |a Zhang, Wei |e verfasserin |4 aut | |
700 | 1 | |a Li, Jiali |e verfasserin |4 aut | |
700 | 1 | |a Xiong, Jingkang |e verfasserin |4 aut | |
700 | 1 | |a Liu, Jia |e verfasserin |4 aut | |
700 | 1 | |a Chen, Ting |e verfasserin |4 aut | |
700 | 1 | |a Wen, Qin |e verfasserin |4 aut | |
700 | 1 | |a Zeng, Yunjing |e verfasserin |4 aut | |
700 | 1 | |a Gao, Li |e verfasserin |4 aut | |
700 | 1 | |a Gao, Lei |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Cheng |e verfasserin |4 aut | |
700 | 1 | |a Kong, Peiyan |e verfasserin |4 aut | |
700 | 1 | |a Peng, Xiangui |e verfasserin |4 aut | |
700 | 1 | |a Liu, Yao |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Xi |e verfasserin |4 aut | |
700 | 1 | |a Rao, Jun |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Biomarker Research |d London : Biomed Central, 2013 |g 8(2020), 1 vom: 17. Juli |w (DE-627)735133530 |w (DE-600)2699926-2 |x 2050-7771 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2020 |g number:1 |g day:17 |g month:07 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s40364-020-00205-4 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2020 |e 1 |b 17 |c 07 |
author_variant |
q l ql w z wz j l jl j x jx j l jl t c tc q w qw y z yz l g lg l g lg c z cz p k pk x p xp y l yl x z xz j r jr |
---|---|
matchkey_str |
article:20507771:2020----::lsaicltntmrnassmnrvasm2aaoetapoponsifco |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.1186/s40364-020-00205-4 doi (DE-627)SPR040377474 (SPR)s40364-020-00205-4-e DE-627 ger DE-627 rakwb eng 570 610 ASE Li, Qiong verfasserin aut Plasma circulating tumor DNA assessment reveals KMT2D as a potential poor prognostic factor in extranodal NK/T-cell lymphoma 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background The early detection of tumors upon initial diagnosis or during routine surveillance is important for improving survival outcomes. Here, we investigated the feasibility and clinical significance of circulating tumor DNA (ctDNA) detection for Extranodal NK/T-cell lymphoma, nasal type (ENTKL). Methods The plasma ctDNA assessment was based on blood specimens collected from 65 newly diagnosed patients with ENKTL in the hematology medical center of Xinqiao Hospital. Longitudinal samples collected under chemotherapy were also included. The gene mutation spectrum of ENKTL was analyzed via next generation sequencing. Results We found that the most frequently mutated genes were KMT2D (23.1%), APC (12.3%), ATM (10.8%), ASXL3 (9.2%), JAK3 (9.2%), SETD2 (9.2%), TP53 (9.2%) and NOTCH1 (7.7%). The mutation allele frequencies of ATM and JAK3 were significantly correlated with the disease stage, and mutated KMT2D, ASXL3 and JAK3 were positively correlated with the metabolic tumor burden of the patients. Compared with the tumor tissue, ctDNA profiling showed good concordance (93.75%). Serial ctDNA analysis showed that treatment with chemotherapy could decrease the number and mutation allele frequencies of the genes. Compared with PET/CT, ctDNA has more advantages in tracking residual disease in patients. In addition, patients with mutated KMT2D had higher expression compared with those with wild type, and mutated KMT2D predicted poor prognosis. Conclusion Our results unveil the mutation spectrum of ENKTL patients’ plasma, which can be used to monitor the disease status of the patients exactly, and KMT2D is the most frequently mutated gene with prognosis prediction value. The application of ctDNA sequencing can provide precision treatment strategies for patients. Trial registration This study is registered with chictr.org (ChiCTR1800014813, registered 7 February, 2018-Retrospectively registered). ENKTL (dpeaa)DE-He213 Circulating tumor DNA (dpeaa)DE-He213 Mutation allele frequency (dpeaa)DE-He213 Minimal residual disease (dpeaa)DE-He213 Prognosis (dpeaa)DE-He213 Zhang, Wei verfasserin aut Li, Jiali verfasserin aut Xiong, Jingkang verfasserin aut Liu, Jia verfasserin aut Chen, Ting verfasserin aut Wen, Qin verfasserin aut Zeng, Yunjing verfasserin aut Gao, Li verfasserin aut Gao, Lei verfasserin aut Zhang, Cheng verfasserin aut Kong, Peiyan verfasserin aut Peng, Xiangui verfasserin aut Liu, Yao verfasserin aut Zhang, Xi verfasserin aut Rao, Jun verfasserin aut Enthalten in Biomarker Research London : Biomed Central, 2013 8(2020), 1 vom: 17. Juli (DE-627)735133530 (DE-600)2699926-2 2050-7771 nnns volume:8 year:2020 number:1 day:17 month:07 https://dx.doi.org/10.1186/s40364-020-00205-4 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 1 17 07 |
spelling |
10.1186/s40364-020-00205-4 doi (DE-627)SPR040377474 (SPR)s40364-020-00205-4-e DE-627 ger DE-627 rakwb eng 570 610 ASE Li, Qiong verfasserin aut Plasma circulating tumor DNA assessment reveals KMT2D as a potential poor prognostic factor in extranodal NK/T-cell lymphoma 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background The early detection of tumors upon initial diagnosis or during routine surveillance is important for improving survival outcomes. Here, we investigated the feasibility and clinical significance of circulating tumor DNA (ctDNA) detection for Extranodal NK/T-cell lymphoma, nasal type (ENTKL). Methods The plasma ctDNA assessment was based on blood specimens collected from 65 newly diagnosed patients with ENKTL in the hematology medical center of Xinqiao Hospital. Longitudinal samples collected under chemotherapy were also included. The gene mutation spectrum of ENKTL was analyzed via next generation sequencing. Results We found that the most frequently mutated genes were KMT2D (23.1%), APC (12.3%), ATM (10.8%), ASXL3 (9.2%), JAK3 (9.2%), SETD2 (9.2%), TP53 (9.2%) and NOTCH1 (7.7%). The mutation allele frequencies of ATM and JAK3 were significantly correlated with the disease stage, and mutated KMT2D, ASXL3 and JAK3 were positively correlated with the metabolic tumor burden of the patients. Compared with the tumor tissue, ctDNA profiling showed good concordance (93.75%). Serial ctDNA analysis showed that treatment with chemotherapy could decrease the number and mutation allele frequencies of the genes. Compared with PET/CT, ctDNA has more advantages in tracking residual disease in patients. In addition, patients with mutated KMT2D had higher expression compared with those with wild type, and mutated KMT2D predicted poor prognosis. Conclusion Our results unveil the mutation spectrum of ENKTL patients’ plasma, which can be used to monitor the disease status of the patients exactly, and KMT2D is the most frequently mutated gene with prognosis prediction value. The application of ctDNA sequencing can provide precision treatment strategies for patients. Trial registration This study is registered with chictr.org (ChiCTR1800014813, registered 7 February, 2018-Retrospectively registered). ENKTL (dpeaa)DE-He213 Circulating tumor DNA (dpeaa)DE-He213 Mutation allele frequency (dpeaa)DE-He213 Minimal residual disease (dpeaa)DE-He213 Prognosis (dpeaa)DE-He213 Zhang, Wei verfasserin aut Li, Jiali verfasserin aut Xiong, Jingkang verfasserin aut Liu, Jia verfasserin aut Chen, Ting verfasserin aut Wen, Qin verfasserin aut Zeng, Yunjing verfasserin aut Gao, Li verfasserin aut Gao, Lei verfasserin aut Zhang, Cheng verfasserin aut Kong, Peiyan verfasserin aut Peng, Xiangui verfasserin aut Liu, Yao verfasserin aut Zhang, Xi verfasserin aut Rao, Jun verfasserin aut Enthalten in Biomarker Research London : Biomed Central, 2013 8(2020), 1 vom: 17. Juli (DE-627)735133530 (DE-600)2699926-2 2050-7771 nnns volume:8 year:2020 number:1 day:17 month:07 https://dx.doi.org/10.1186/s40364-020-00205-4 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 1 17 07 |
allfields_unstemmed |
10.1186/s40364-020-00205-4 doi (DE-627)SPR040377474 (SPR)s40364-020-00205-4-e DE-627 ger DE-627 rakwb eng 570 610 ASE Li, Qiong verfasserin aut Plasma circulating tumor DNA assessment reveals KMT2D as a potential poor prognostic factor in extranodal NK/T-cell lymphoma 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background The early detection of tumors upon initial diagnosis or during routine surveillance is important for improving survival outcomes. Here, we investigated the feasibility and clinical significance of circulating tumor DNA (ctDNA) detection for Extranodal NK/T-cell lymphoma, nasal type (ENTKL). Methods The plasma ctDNA assessment was based on blood specimens collected from 65 newly diagnosed patients with ENKTL in the hematology medical center of Xinqiao Hospital. Longitudinal samples collected under chemotherapy were also included. The gene mutation spectrum of ENKTL was analyzed via next generation sequencing. Results We found that the most frequently mutated genes were KMT2D (23.1%), APC (12.3%), ATM (10.8%), ASXL3 (9.2%), JAK3 (9.2%), SETD2 (9.2%), TP53 (9.2%) and NOTCH1 (7.7%). The mutation allele frequencies of ATM and JAK3 were significantly correlated with the disease stage, and mutated KMT2D, ASXL3 and JAK3 were positively correlated with the metabolic tumor burden of the patients. Compared with the tumor tissue, ctDNA profiling showed good concordance (93.75%). Serial ctDNA analysis showed that treatment with chemotherapy could decrease the number and mutation allele frequencies of the genes. Compared with PET/CT, ctDNA has more advantages in tracking residual disease in patients. In addition, patients with mutated KMT2D had higher expression compared with those with wild type, and mutated KMT2D predicted poor prognosis. Conclusion Our results unveil the mutation spectrum of ENKTL patients’ plasma, which can be used to monitor the disease status of the patients exactly, and KMT2D is the most frequently mutated gene with prognosis prediction value. The application of ctDNA sequencing can provide precision treatment strategies for patients. Trial registration This study is registered with chictr.org (ChiCTR1800014813, registered 7 February, 2018-Retrospectively registered). ENKTL (dpeaa)DE-He213 Circulating tumor DNA (dpeaa)DE-He213 Mutation allele frequency (dpeaa)DE-He213 Minimal residual disease (dpeaa)DE-He213 Prognosis (dpeaa)DE-He213 Zhang, Wei verfasserin aut Li, Jiali verfasserin aut Xiong, Jingkang verfasserin aut Liu, Jia verfasserin aut Chen, Ting verfasserin aut Wen, Qin verfasserin aut Zeng, Yunjing verfasserin aut Gao, Li verfasserin aut Gao, Lei verfasserin aut Zhang, Cheng verfasserin aut Kong, Peiyan verfasserin aut Peng, Xiangui verfasserin aut Liu, Yao verfasserin aut Zhang, Xi verfasserin aut Rao, Jun verfasserin aut Enthalten in Biomarker Research London : Biomed Central, 2013 8(2020), 1 vom: 17. Juli (DE-627)735133530 (DE-600)2699926-2 2050-7771 nnns volume:8 year:2020 number:1 day:17 month:07 https://dx.doi.org/10.1186/s40364-020-00205-4 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 1 17 07 |
allfieldsGer |
10.1186/s40364-020-00205-4 doi (DE-627)SPR040377474 (SPR)s40364-020-00205-4-e DE-627 ger DE-627 rakwb eng 570 610 ASE Li, Qiong verfasserin aut Plasma circulating tumor DNA assessment reveals KMT2D as a potential poor prognostic factor in extranodal NK/T-cell lymphoma 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background The early detection of tumors upon initial diagnosis or during routine surveillance is important for improving survival outcomes. Here, we investigated the feasibility and clinical significance of circulating tumor DNA (ctDNA) detection for Extranodal NK/T-cell lymphoma, nasal type (ENTKL). Methods The plasma ctDNA assessment was based on blood specimens collected from 65 newly diagnosed patients with ENKTL in the hematology medical center of Xinqiao Hospital. Longitudinal samples collected under chemotherapy were also included. The gene mutation spectrum of ENKTL was analyzed via next generation sequencing. Results We found that the most frequently mutated genes were KMT2D (23.1%), APC (12.3%), ATM (10.8%), ASXL3 (9.2%), JAK3 (9.2%), SETD2 (9.2%), TP53 (9.2%) and NOTCH1 (7.7%). The mutation allele frequencies of ATM and JAK3 were significantly correlated with the disease stage, and mutated KMT2D, ASXL3 and JAK3 were positively correlated with the metabolic tumor burden of the patients. Compared with the tumor tissue, ctDNA profiling showed good concordance (93.75%). Serial ctDNA analysis showed that treatment with chemotherapy could decrease the number and mutation allele frequencies of the genes. Compared with PET/CT, ctDNA has more advantages in tracking residual disease in patients. In addition, patients with mutated KMT2D had higher expression compared with those with wild type, and mutated KMT2D predicted poor prognosis. Conclusion Our results unveil the mutation spectrum of ENKTL patients’ plasma, which can be used to monitor the disease status of the patients exactly, and KMT2D is the most frequently mutated gene with prognosis prediction value. The application of ctDNA sequencing can provide precision treatment strategies for patients. Trial registration This study is registered with chictr.org (ChiCTR1800014813, registered 7 February, 2018-Retrospectively registered). ENKTL (dpeaa)DE-He213 Circulating tumor DNA (dpeaa)DE-He213 Mutation allele frequency (dpeaa)DE-He213 Minimal residual disease (dpeaa)DE-He213 Prognosis (dpeaa)DE-He213 Zhang, Wei verfasserin aut Li, Jiali verfasserin aut Xiong, Jingkang verfasserin aut Liu, Jia verfasserin aut Chen, Ting verfasserin aut Wen, Qin verfasserin aut Zeng, Yunjing verfasserin aut Gao, Li verfasserin aut Gao, Lei verfasserin aut Zhang, Cheng verfasserin aut Kong, Peiyan verfasserin aut Peng, Xiangui verfasserin aut Liu, Yao verfasserin aut Zhang, Xi verfasserin aut Rao, Jun verfasserin aut Enthalten in Biomarker Research London : Biomed Central, 2013 8(2020), 1 vom: 17. Juli (DE-627)735133530 (DE-600)2699926-2 2050-7771 nnns volume:8 year:2020 number:1 day:17 month:07 https://dx.doi.org/10.1186/s40364-020-00205-4 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 1 17 07 |
allfieldsSound |
10.1186/s40364-020-00205-4 doi (DE-627)SPR040377474 (SPR)s40364-020-00205-4-e DE-627 ger DE-627 rakwb eng 570 610 ASE Li, Qiong verfasserin aut Plasma circulating tumor DNA assessment reveals KMT2D as a potential poor prognostic factor in extranodal NK/T-cell lymphoma 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background The early detection of tumors upon initial diagnosis or during routine surveillance is important for improving survival outcomes. Here, we investigated the feasibility and clinical significance of circulating tumor DNA (ctDNA) detection for Extranodal NK/T-cell lymphoma, nasal type (ENTKL). Methods The plasma ctDNA assessment was based on blood specimens collected from 65 newly diagnosed patients with ENKTL in the hematology medical center of Xinqiao Hospital. Longitudinal samples collected under chemotherapy were also included. The gene mutation spectrum of ENKTL was analyzed via next generation sequencing. Results We found that the most frequently mutated genes were KMT2D (23.1%), APC (12.3%), ATM (10.8%), ASXL3 (9.2%), JAK3 (9.2%), SETD2 (9.2%), TP53 (9.2%) and NOTCH1 (7.7%). The mutation allele frequencies of ATM and JAK3 were significantly correlated with the disease stage, and mutated KMT2D, ASXL3 and JAK3 were positively correlated with the metabolic tumor burden of the patients. Compared with the tumor tissue, ctDNA profiling showed good concordance (93.75%). Serial ctDNA analysis showed that treatment with chemotherapy could decrease the number and mutation allele frequencies of the genes. Compared with PET/CT, ctDNA has more advantages in tracking residual disease in patients. In addition, patients with mutated KMT2D had higher expression compared with those with wild type, and mutated KMT2D predicted poor prognosis. Conclusion Our results unveil the mutation spectrum of ENKTL patients’ plasma, which can be used to monitor the disease status of the patients exactly, and KMT2D is the most frequently mutated gene with prognosis prediction value. The application of ctDNA sequencing can provide precision treatment strategies for patients. Trial registration This study is registered with chictr.org (ChiCTR1800014813, registered 7 February, 2018-Retrospectively registered). ENKTL (dpeaa)DE-He213 Circulating tumor DNA (dpeaa)DE-He213 Mutation allele frequency (dpeaa)DE-He213 Minimal residual disease (dpeaa)DE-He213 Prognosis (dpeaa)DE-He213 Zhang, Wei verfasserin aut Li, Jiali verfasserin aut Xiong, Jingkang verfasserin aut Liu, Jia verfasserin aut Chen, Ting verfasserin aut Wen, Qin verfasserin aut Zeng, Yunjing verfasserin aut Gao, Li verfasserin aut Gao, Lei verfasserin aut Zhang, Cheng verfasserin aut Kong, Peiyan verfasserin aut Peng, Xiangui verfasserin aut Liu, Yao verfasserin aut Zhang, Xi verfasserin aut Rao, Jun verfasserin aut Enthalten in Biomarker Research London : Biomed Central, 2013 8(2020), 1 vom: 17. Juli (DE-627)735133530 (DE-600)2699926-2 2050-7771 nnns volume:8 year:2020 number:1 day:17 month:07 https://dx.doi.org/10.1186/s40364-020-00205-4 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 1 17 07 |
language |
English |
source |
Enthalten in Biomarker Research 8(2020), 1 vom: 17. Juli volume:8 year:2020 number:1 day:17 month:07 |
sourceStr |
Enthalten in Biomarker Research 8(2020), 1 vom: 17. Juli volume:8 year:2020 number:1 day:17 month:07 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
ENKTL Circulating tumor DNA Mutation allele frequency Minimal residual disease Prognosis |
dewey-raw |
570 |
isfreeaccess_bool |
true |
container_title |
Biomarker Research |
authorswithroles_txt_mv |
Li, Qiong @@aut@@ Zhang, Wei @@aut@@ Li, Jiali @@aut@@ Xiong, Jingkang @@aut@@ Liu, Jia @@aut@@ Chen, Ting @@aut@@ Wen, Qin @@aut@@ Zeng, Yunjing @@aut@@ Gao, Li @@aut@@ Gao, Lei @@aut@@ Zhang, Cheng @@aut@@ Kong, Peiyan @@aut@@ Peng, Xiangui @@aut@@ Liu, Yao @@aut@@ Zhang, Xi @@aut@@ Rao, Jun @@aut@@ |
publishDateDaySort_date |
2020-07-17T00:00:00Z |
hierarchy_top_id |
735133530 |
dewey-sort |
3570 |
id |
SPR040377474 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR040377474</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519193257.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40364-020-00205-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR040377474</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40364-020-00205-4-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">610</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Qiong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Plasma circulating tumor DNA assessment reveals KMT2D as a potential poor prognostic factor in extranodal NK/T-cell lymphoma</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background The early detection of tumors upon initial diagnosis or during routine surveillance is important for improving survival outcomes. Here, we investigated the feasibility and clinical significance of circulating tumor DNA (ctDNA) detection for Extranodal NK/T-cell lymphoma, nasal type (ENTKL). Methods The plasma ctDNA assessment was based on blood specimens collected from 65 newly diagnosed patients with ENKTL in the hematology medical center of Xinqiao Hospital. Longitudinal samples collected under chemotherapy were also included. The gene mutation spectrum of ENKTL was analyzed via next generation sequencing. Results We found that the most frequently mutated genes were KMT2D (23.1%), APC (12.3%), ATM (10.8%), ASXL3 (9.2%), JAK3 (9.2%), SETD2 (9.2%), TP53 (9.2%) and NOTCH1 (7.7%). The mutation allele frequencies of ATM and JAK3 were significantly correlated with the disease stage, and mutated KMT2D, ASXL3 and JAK3 were positively correlated with the metabolic tumor burden of the patients. Compared with the tumor tissue, ctDNA profiling showed good concordance (93.75%). Serial ctDNA analysis showed that treatment with chemotherapy could decrease the number and mutation allele frequencies of the genes. Compared with PET/CT, ctDNA has more advantages in tracking residual disease in patients. In addition, patients with mutated KMT2D had higher expression compared with those with wild type, and mutated KMT2D predicted poor prognosis. Conclusion Our results unveil the mutation spectrum of ENKTL patients’ plasma, which can be used to monitor the disease status of the patients exactly, and KMT2D is the most frequently mutated gene with prognosis prediction value. The application of ctDNA sequencing can provide precision treatment strategies for patients. Trial registration This study is registered with chictr.org (ChiCTR1800014813, registered 7 February, 2018-Retrospectively registered).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ENKTL</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Circulating tumor DNA</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mutation allele frequency</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Minimal residual disease</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prognosis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Jiali</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xiong, Jingkang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Jia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Ting</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wen, Qin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zeng, Yunjing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Lei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Cheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kong, Peiyan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peng, Xiangui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Xi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rao, Jun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Biomarker Research</subfield><subfield code="d">London : Biomed Central, 2013</subfield><subfield code="g">8(2020), 1 vom: 17. Juli</subfield><subfield code="w">(DE-627)735133530</subfield><subfield code="w">(DE-600)2699926-2</subfield><subfield code="x">2050-7771</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:1</subfield><subfield code="g">day:17</subfield><subfield code="g">month:07</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s40364-020-00205-4</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="e">1</subfield><subfield code="b">17</subfield><subfield code="c">07</subfield></datafield></record></collection>
|
author |
Li, Qiong |
spellingShingle |
Li, Qiong ddc 570 misc ENKTL misc Circulating tumor DNA misc Mutation allele frequency misc Minimal residual disease misc Prognosis Plasma circulating tumor DNA assessment reveals KMT2D as a potential poor prognostic factor in extranodal NK/T-cell lymphoma |
authorStr |
Li, Qiong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)735133530 |
format |
electronic Article |
dewey-ones |
570 - Life sciences; biology 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2050-7771 |
topic_title |
570 610 ASE Plasma circulating tumor DNA assessment reveals KMT2D as a potential poor prognostic factor in extranodal NK/T-cell lymphoma ENKTL (dpeaa)DE-He213 Circulating tumor DNA (dpeaa)DE-He213 Mutation allele frequency (dpeaa)DE-He213 Minimal residual disease (dpeaa)DE-He213 Prognosis (dpeaa)DE-He213 |
topic |
ddc 570 misc ENKTL misc Circulating tumor DNA misc Mutation allele frequency misc Minimal residual disease misc Prognosis |
topic_unstemmed |
ddc 570 misc ENKTL misc Circulating tumor DNA misc Mutation allele frequency misc Minimal residual disease misc Prognosis |
topic_browse |
ddc 570 misc ENKTL misc Circulating tumor DNA misc Mutation allele frequency misc Minimal residual disease misc Prognosis |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Biomarker Research |
hierarchy_parent_id |
735133530 |
dewey-tens |
570 - Life sciences; biology 610 - Medicine & health |
hierarchy_top_title |
Biomarker Research |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)735133530 (DE-600)2699926-2 |
title |
Plasma circulating tumor DNA assessment reveals KMT2D as a potential poor prognostic factor in extranodal NK/T-cell lymphoma |
ctrlnum |
(DE-627)SPR040377474 (SPR)s40364-020-00205-4-e |
title_full |
Plasma circulating tumor DNA assessment reveals KMT2D as a potential poor prognostic factor in extranodal NK/T-cell lymphoma |
author_sort |
Li, Qiong |
journal |
Biomarker Research |
journalStr |
Biomarker Research |
lang_code |
eng |
isOA_bool |
true |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Li, Qiong Zhang, Wei Li, Jiali Xiong, Jingkang Liu, Jia Chen, Ting Wen, Qin Zeng, Yunjing Gao, Li Gao, Lei Zhang, Cheng Kong, Peiyan Peng, Xiangui Liu, Yao Zhang, Xi Rao, Jun |
container_volume |
8 |
class |
570 610 ASE |
format_se |
Elektronische Aufsätze |
author-letter |
Li, Qiong |
doi_str_mv |
10.1186/s40364-020-00205-4 |
dewey-full |
570 610 |
author2-role |
verfasserin |
title_sort |
plasma circulating tumor dna assessment reveals kmt2d as a potential poor prognostic factor in extranodal nk/t-cell lymphoma |
title_auth |
Plasma circulating tumor DNA assessment reveals KMT2D as a potential poor prognostic factor in extranodal NK/T-cell lymphoma |
abstract |
Background The early detection of tumors upon initial diagnosis or during routine surveillance is important for improving survival outcomes. Here, we investigated the feasibility and clinical significance of circulating tumor DNA (ctDNA) detection for Extranodal NK/T-cell lymphoma, nasal type (ENTKL). Methods The plasma ctDNA assessment was based on blood specimens collected from 65 newly diagnosed patients with ENKTL in the hematology medical center of Xinqiao Hospital. Longitudinal samples collected under chemotherapy were also included. The gene mutation spectrum of ENKTL was analyzed via next generation sequencing. Results We found that the most frequently mutated genes were KMT2D (23.1%), APC (12.3%), ATM (10.8%), ASXL3 (9.2%), JAK3 (9.2%), SETD2 (9.2%), TP53 (9.2%) and NOTCH1 (7.7%). The mutation allele frequencies of ATM and JAK3 were significantly correlated with the disease stage, and mutated KMT2D, ASXL3 and JAK3 were positively correlated with the metabolic tumor burden of the patients. Compared with the tumor tissue, ctDNA profiling showed good concordance (93.75%). Serial ctDNA analysis showed that treatment with chemotherapy could decrease the number and mutation allele frequencies of the genes. Compared with PET/CT, ctDNA has more advantages in tracking residual disease in patients. In addition, patients with mutated KMT2D had higher expression compared with those with wild type, and mutated KMT2D predicted poor prognosis. Conclusion Our results unveil the mutation spectrum of ENKTL patients’ plasma, which can be used to monitor the disease status of the patients exactly, and KMT2D is the most frequently mutated gene with prognosis prediction value. The application of ctDNA sequencing can provide precision treatment strategies for patients. Trial registration This study is registered with chictr.org (ChiCTR1800014813, registered 7 February, 2018-Retrospectively registered). |
abstractGer |
Background The early detection of tumors upon initial diagnosis or during routine surveillance is important for improving survival outcomes. Here, we investigated the feasibility and clinical significance of circulating tumor DNA (ctDNA) detection for Extranodal NK/T-cell lymphoma, nasal type (ENTKL). Methods The plasma ctDNA assessment was based on blood specimens collected from 65 newly diagnosed patients with ENKTL in the hematology medical center of Xinqiao Hospital. Longitudinal samples collected under chemotherapy were also included. The gene mutation spectrum of ENKTL was analyzed via next generation sequencing. Results We found that the most frequently mutated genes were KMT2D (23.1%), APC (12.3%), ATM (10.8%), ASXL3 (9.2%), JAK3 (9.2%), SETD2 (9.2%), TP53 (9.2%) and NOTCH1 (7.7%). The mutation allele frequencies of ATM and JAK3 were significantly correlated with the disease stage, and mutated KMT2D, ASXL3 and JAK3 were positively correlated with the metabolic tumor burden of the patients. Compared with the tumor tissue, ctDNA profiling showed good concordance (93.75%). Serial ctDNA analysis showed that treatment with chemotherapy could decrease the number and mutation allele frequencies of the genes. Compared with PET/CT, ctDNA has more advantages in tracking residual disease in patients. In addition, patients with mutated KMT2D had higher expression compared with those with wild type, and mutated KMT2D predicted poor prognosis. Conclusion Our results unveil the mutation spectrum of ENKTL patients’ plasma, which can be used to monitor the disease status of the patients exactly, and KMT2D is the most frequently mutated gene with prognosis prediction value. The application of ctDNA sequencing can provide precision treatment strategies for patients. Trial registration This study is registered with chictr.org (ChiCTR1800014813, registered 7 February, 2018-Retrospectively registered). |
abstract_unstemmed |
Background The early detection of tumors upon initial diagnosis or during routine surveillance is important for improving survival outcomes. Here, we investigated the feasibility and clinical significance of circulating tumor DNA (ctDNA) detection for Extranodal NK/T-cell lymphoma, nasal type (ENTKL). Methods The plasma ctDNA assessment was based on blood specimens collected from 65 newly diagnosed patients with ENKTL in the hematology medical center of Xinqiao Hospital. Longitudinal samples collected under chemotherapy were also included. The gene mutation spectrum of ENKTL was analyzed via next generation sequencing. Results We found that the most frequently mutated genes were KMT2D (23.1%), APC (12.3%), ATM (10.8%), ASXL3 (9.2%), JAK3 (9.2%), SETD2 (9.2%), TP53 (9.2%) and NOTCH1 (7.7%). The mutation allele frequencies of ATM and JAK3 were significantly correlated with the disease stage, and mutated KMT2D, ASXL3 and JAK3 were positively correlated with the metabolic tumor burden of the patients. Compared with the tumor tissue, ctDNA profiling showed good concordance (93.75%). Serial ctDNA analysis showed that treatment with chemotherapy could decrease the number and mutation allele frequencies of the genes. Compared with PET/CT, ctDNA has more advantages in tracking residual disease in patients. In addition, patients with mutated KMT2D had higher expression compared with those with wild type, and mutated KMT2D predicted poor prognosis. Conclusion Our results unveil the mutation spectrum of ENKTL patients’ plasma, which can be used to monitor the disease status of the patients exactly, and KMT2D is the most frequently mutated gene with prognosis prediction value. The application of ctDNA sequencing can provide precision treatment strategies for patients. Trial registration This study is registered with chictr.org (ChiCTR1800014813, registered 7 February, 2018-Retrospectively registered). |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Plasma circulating tumor DNA assessment reveals KMT2D as a potential poor prognostic factor in extranodal NK/T-cell lymphoma |
url |
https://dx.doi.org/10.1186/s40364-020-00205-4 |
remote_bool |
true |
author2 |
Zhang, Wei Li, Jiali Xiong, Jingkang Liu, Jia Chen, Ting Wen, Qin Zeng, Yunjing Gao, Li Gao, Lei Zhang, Cheng Kong, Peiyan Peng, Xiangui Liu, Yao Zhang, Xi Rao, Jun |
author2Str |
Zhang, Wei Li, Jiali Xiong, Jingkang Liu, Jia Chen, Ting Wen, Qin Zeng, Yunjing Gao, Li Gao, Lei Zhang, Cheng Kong, Peiyan Peng, Xiangui Liu, Yao Zhang, Xi Rao, Jun |
ppnlink |
735133530 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s40364-020-00205-4 |
up_date |
2024-07-03T15:35:53.602Z |
_version_ |
1803572691446267904 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR040377474</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519193257.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40364-020-00205-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR040377474</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40364-020-00205-4-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">610</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Qiong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Plasma circulating tumor DNA assessment reveals KMT2D as a potential poor prognostic factor in extranodal NK/T-cell lymphoma</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background The early detection of tumors upon initial diagnosis or during routine surveillance is important for improving survival outcomes. Here, we investigated the feasibility and clinical significance of circulating tumor DNA (ctDNA) detection for Extranodal NK/T-cell lymphoma, nasal type (ENTKL). Methods The plasma ctDNA assessment was based on blood specimens collected from 65 newly diagnosed patients with ENKTL in the hematology medical center of Xinqiao Hospital. Longitudinal samples collected under chemotherapy were also included. The gene mutation spectrum of ENKTL was analyzed via next generation sequencing. Results We found that the most frequently mutated genes were KMT2D (23.1%), APC (12.3%), ATM (10.8%), ASXL3 (9.2%), JAK3 (9.2%), SETD2 (9.2%), TP53 (9.2%) and NOTCH1 (7.7%). The mutation allele frequencies of ATM and JAK3 were significantly correlated with the disease stage, and mutated KMT2D, ASXL3 and JAK3 were positively correlated with the metabolic tumor burden of the patients. Compared with the tumor tissue, ctDNA profiling showed good concordance (93.75%). Serial ctDNA analysis showed that treatment with chemotherapy could decrease the number and mutation allele frequencies of the genes. Compared with PET/CT, ctDNA has more advantages in tracking residual disease in patients. In addition, patients with mutated KMT2D had higher expression compared with those with wild type, and mutated KMT2D predicted poor prognosis. Conclusion Our results unveil the mutation spectrum of ENKTL patients’ plasma, which can be used to monitor the disease status of the patients exactly, and KMT2D is the most frequently mutated gene with prognosis prediction value. The application of ctDNA sequencing can provide precision treatment strategies for patients. Trial registration This study is registered with chictr.org (ChiCTR1800014813, registered 7 February, 2018-Retrospectively registered).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ENKTL</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Circulating tumor DNA</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mutation allele frequency</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Minimal residual disease</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prognosis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Jiali</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xiong, Jingkang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Jia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Ting</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wen, Qin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zeng, Yunjing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Lei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Cheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kong, Peiyan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peng, Xiangui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Xi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rao, Jun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Biomarker Research</subfield><subfield code="d">London : Biomed Central, 2013</subfield><subfield code="g">8(2020), 1 vom: 17. Juli</subfield><subfield code="w">(DE-627)735133530</subfield><subfield code="w">(DE-600)2699926-2</subfield><subfield code="x">2050-7771</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:1</subfield><subfield code="g">day:17</subfield><subfield code="g">month:07</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s40364-020-00205-4</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="e">1</subfield><subfield code="b">17</subfield><subfield code="c">07</subfield></datafield></record></collection>
|
score |
7.4031916 |