On generalized fractional integral inequalities for the monotone weighted Chebyshev functionals
Abstract In this paper, we establish the generalized Riemann–Liouville (RL) fractional integrals in the sense of another increasing, positive, monotone, and measurable function Ψ. We determine certain new double-weighted type fractional integral inequalities by utilizing the said integrals. We also...
Ausführliche Beschreibung
Autor*in: |
Rahman, Gauhar [verfasserIn] Nisar, Kottakkaran Sooppy [verfasserIn] Ghanbari, Behzad [verfasserIn] Abdeljawad, Thabet [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
The generalized fractional integrals |
---|
Übergeordnetes Werk: |
Enthalten in: Advances in difference equations - [S.l.] : Springer International, 2004, 2020(2020), 1 vom: 18. Juli |
---|---|
Übergeordnetes Werk: |
volume:2020 ; year:2020 ; number:1 ; day:18 ; month:07 |
Links: |
---|
DOI / URN: |
10.1186/s13662-020-02830-7 |
---|
Katalog-ID: |
SPR040393267 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR040393267 | ||
003 | DE-627 | ||
005 | 20230519144628.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s13662-020-02830-7 |2 doi | |
035 | |a (DE-627)SPR040393267 | ||
035 | |a (SPR)s13662-020-02830-7-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |a 610 |q ASE |
084 | |a 31.49 |2 bkl | ||
100 | 1 | |a Rahman, Gauhar |e verfasserin |4 aut | |
245 | 1 | 0 | |a On generalized fractional integral inequalities for the monotone weighted Chebyshev functionals |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract In this paper, we establish the generalized Riemann–Liouville (RL) fractional integrals in the sense of another increasing, positive, monotone, and measurable function Ψ. We determine certain new double-weighted type fractional integral inequalities by utilizing the said integrals. We also give some of the new particular inequalities of the main result. Note that we can form various types of new inequalities of fractional integrals by employing conditions on the function Ψ given in the paper. We present some corollaries as particular cases of the main results. | ||
650 | 4 | |a Fractional integrals |7 (dpeaa)DE-He213 | |
650 | 4 | |a The generalized fractional integrals |7 (dpeaa)DE-He213 | |
650 | 4 | |a Fractional integral inequalities |7 (dpeaa)DE-He213 | |
650 | 4 | |a The Chebyshev functional |7 (dpeaa)DE-He213 | |
700 | 1 | |a Nisar, Kottakkaran Sooppy |e verfasserin |4 aut | |
700 | 1 | |a Ghanbari, Behzad |e verfasserin |4 aut | |
700 | 1 | |a Abdeljawad, Thabet |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Advances in difference equations |d [S.l.] : Springer International, 2004 |g 2020(2020), 1 vom: 18. Juli |w (DE-627)377755699 |w (DE-600)2132815-8 |x 1687-1847 |7 nnns |
773 | 1 | 8 | |g volume:2020 |g year:2020 |g number:1 |g day:18 |g month:07 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s13662-020-02830-7 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OPC-MAT | ||
912 | |a SSG-OPC-ASE | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 31.49 |q ASE |
951 | |a AR | ||
952 | |d 2020 |j 2020 |e 1 |b 18 |c 07 |
author_variant |
g r gr k s n ks ksn b g bg t a ta |
---|---|
matchkey_str |
article:16871847:2020----::neeaiefatoaitgaieultefrhmntnwih |
hierarchy_sort_str |
2020 |
bklnumber |
31.49 |
publishDate |
2020 |
allfields |
10.1186/s13662-020-02830-7 doi (DE-627)SPR040393267 (SPR)s13662-020-02830-7-e DE-627 ger DE-627 rakwb eng 510 610 ASE 31.49 bkl Rahman, Gauhar verfasserin aut On generalized fractional integral inequalities for the monotone weighted Chebyshev functionals 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this paper, we establish the generalized Riemann–Liouville (RL) fractional integrals in the sense of another increasing, positive, monotone, and measurable function Ψ. We determine certain new double-weighted type fractional integral inequalities by utilizing the said integrals. We also give some of the new particular inequalities of the main result. Note that we can form various types of new inequalities of fractional integrals by employing conditions on the function Ψ given in the paper. We present some corollaries as particular cases of the main results. Fractional integrals (dpeaa)DE-He213 The generalized fractional integrals (dpeaa)DE-He213 Fractional integral inequalities (dpeaa)DE-He213 The Chebyshev functional (dpeaa)DE-He213 Nisar, Kottakkaran Sooppy verfasserin aut Ghanbari, Behzad verfasserin aut Abdeljawad, Thabet verfasserin aut Enthalten in Advances in difference equations [S.l.] : Springer International, 2004 2020(2020), 1 vom: 18. Juli (DE-627)377755699 (DE-600)2132815-8 1687-1847 nnns volume:2020 year:2020 number:1 day:18 month:07 https://dx.doi.org/10.1186/s13662-020-02830-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.49 ASE AR 2020 2020 1 18 07 |
spelling |
10.1186/s13662-020-02830-7 doi (DE-627)SPR040393267 (SPR)s13662-020-02830-7-e DE-627 ger DE-627 rakwb eng 510 610 ASE 31.49 bkl Rahman, Gauhar verfasserin aut On generalized fractional integral inequalities for the monotone weighted Chebyshev functionals 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this paper, we establish the generalized Riemann–Liouville (RL) fractional integrals in the sense of another increasing, positive, monotone, and measurable function Ψ. We determine certain new double-weighted type fractional integral inequalities by utilizing the said integrals. We also give some of the new particular inequalities of the main result. Note that we can form various types of new inequalities of fractional integrals by employing conditions on the function Ψ given in the paper. We present some corollaries as particular cases of the main results. Fractional integrals (dpeaa)DE-He213 The generalized fractional integrals (dpeaa)DE-He213 Fractional integral inequalities (dpeaa)DE-He213 The Chebyshev functional (dpeaa)DE-He213 Nisar, Kottakkaran Sooppy verfasserin aut Ghanbari, Behzad verfasserin aut Abdeljawad, Thabet verfasserin aut Enthalten in Advances in difference equations [S.l.] : Springer International, 2004 2020(2020), 1 vom: 18. Juli (DE-627)377755699 (DE-600)2132815-8 1687-1847 nnns volume:2020 year:2020 number:1 day:18 month:07 https://dx.doi.org/10.1186/s13662-020-02830-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.49 ASE AR 2020 2020 1 18 07 |
allfields_unstemmed |
10.1186/s13662-020-02830-7 doi (DE-627)SPR040393267 (SPR)s13662-020-02830-7-e DE-627 ger DE-627 rakwb eng 510 610 ASE 31.49 bkl Rahman, Gauhar verfasserin aut On generalized fractional integral inequalities for the monotone weighted Chebyshev functionals 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this paper, we establish the generalized Riemann–Liouville (RL) fractional integrals in the sense of another increasing, positive, monotone, and measurable function Ψ. We determine certain new double-weighted type fractional integral inequalities by utilizing the said integrals. We also give some of the new particular inequalities of the main result. Note that we can form various types of new inequalities of fractional integrals by employing conditions on the function Ψ given in the paper. We present some corollaries as particular cases of the main results. Fractional integrals (dpeaa)DE-He213 The generalized fractional integrals (dpeaa)DE-He213 Fractional integral inequalities (dpeaa)DE-He213 The Chebyshev functional (dpeaa)DE-He213 Nisar, Kottakkaran Sooppy verfasserin aut Ghanbari, Behzad verfasserin aut Abdeljawad, Thabet verfasserin aut Enthalten in Advances in difference equations [S.l.] : Springer International, 2004 2020(2020), 1 vom: 18. Juli (DE-627)377755699 (DE-600)2132815-8 1687-1847 nnns volume:2020 year:2020 number:1 day:18 month:07 https://dx.doi.org/10.1186/s13662-020-02830-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.49 ASE AR 2020 2020 1 18 07 |
allfieldsGer |
10.1186/s13662-020-02830-7 doi (DE-627)SPR040393267 (SPR)s13662-020-02830-7-e DE-627 ger DE-627 rakwb eng 510 610 ASE 31.49 bkl Rahman, Gauhar verfasserin aut On generalized fractional integral inequalities for the monotone weighted Chebyshev functionals 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this paper, we establish the generalized Riemann–Liouville (RL) fractional integrals in the sense of another increasing, positive, monotone, and measurable function Ψ. We determine certain new double-weighted type fractional integral inequalities by utilizing the said integrals. We also give some of the new particular inequalities of the main result. Note that we can form various types of new inequalities of fractional integrals by employing conditions on the function Ψ given in the paper. We present some corollaries as particular cases of the main results. Fractional integrals (dpeaa)DE-He213 The generalized fractional integrals (dpeaa)DE-He213 Fractional integral inequalities (dpeaa)DE-He213 The Chebyshev functional (dpeaa)DE-He213 Nisar, Kottakkaran Sooppy verfasserin aut Ghanbari, Behzad verfasserin aut Abdeljawad, Thabet verfasserin aut Enthalten in Advances in difference equations [S.l.] : Springer International, 2004 2020(2020), 1 vom: 18. Juli (DE-627)377755699 (DE-600)2132815-8 1687-1847 nnns volume:2020 year:2020 number:1 day:18 month:07 https://dx.doi.org/10.1186/s13662-020-02830-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.49 ASE AR 2020 2020 1 18 07 |
allfieldsSound |
10.1186/s13662-020-02830-7 doi (DE-627)SPR040393267 (SPR)s13662-020-02830-7-e DE-627 ger DE-627 rakwb eng 510 610 ASE 31.49 bkl Rahman, Gauhar verfasserin aut On generalized fractional integral inequalities for the monotone weighted Chebyshev functionals 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this paper, we establish the generalized Riemann–Liouville (RL) fractional integrals in the sense of another increasing, positive, monotone, and measurable function Ψ. We determine certain new double-weighted type fractional integral inequalities by utilizing the said integrals. We also give some of the new particular inequalities of the main result. Note that we can form various types of new inequalities of fractional integrals by employing conditions on the function Ψ given in the paper. We present some corollaries as particular cases of the main results. Fractional integrals (dpeaa)DE-He213 The generalized fractional integrals (dpeaa)DE-He213 Fractional integral inequalities (dpeaa)DE-He213 The Chebyshev functional (dpeaa)DE-He213 Nisar, Kottakkaran Sooppy verfasserin aut Ghanbari, Behzad verfasserin aut Abdeljawad, Thabet verfasserin aut Enthalten in Advances in difference equations [S.l.] : Springer International, 2004 2020(2020), 1 vom: 18. Juli (DE-627)377755699 (DE-600)2132815-8 1687-1847 nnns volume:2020 year:2020 number:1 day:18 month:07 https://dx.doi.org/10.1186/s13662-020-02830-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.49 ASE AR 2020 2020 1 18 07 |
language |
English |
source |
Enthalten in Advances in difference equations 2020(2020), 1 vom: 18. Juli volume:2020 year:2020 number:1 day:18 month:07 |
sourceStr |
Enthalten in Advances in difference equations 2020(2020), 1 vom: 18. Juli volume:2020 year:2020 number:1 day:18 month:07 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Fractional integrals The generalized fractional integrals Fractional integral inequalities The Chebyshev functional |
dewey-raw |
510 |
isfreeaccess_bool |
true |
container_title |
Advances in difference equations |
authorswithroles_txt_mv |
Rahman, Gauhar @@aut@@ Nisar, Kottakkaran Sooppy @@aut@@ Ghanbari, Behzad @@aut@@ Abdeljawad, Thabet @@aut@@ |
publishDateDaySort_date |
2020-07-18T00:00:00Z |
hierarchy_top_id |
377755699 |
dewey-sort |
3510 |
id |
SPR040393267 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR040393267</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519144628.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13662-020-02830-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR040393267</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13662-020-02830-7-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">610</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.49</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rahman, Gauhar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On generalized fractional integral inequalities for the monotone weighted Chebyshev functionals</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we establish the generalized Riemann–Liouville (RL) fractional integrals in the sense of another increasing, positive, monotone, and measurable function Ψ. We determine certain new double-weighted type fractional integral inequalities by utilizing the said integrals. We also give some of the new particular inequalities of the main result. Note that we can form various types of new inequalities of fractional integrals by employing conditions on the function Ψ given in the paper. We present some corollaries as particular cases of the main results.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fractional integrals</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">The generalized fractional integrals</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fractional integral inequalities</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">The Chebyshev functional</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nisar, Kottakkaran Sooppy</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ghanbari, Behzad</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Abdeljawad, Thabet</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Advances in difference equations</subfield><subfield code="d">[S.l.] : Springer International, 2004</subfield><subfield code="g">2020(2020), 1 vom: 18. Juli</subfield><subfield code="w">(DE-627)377755699</subfield><subfield code="w">(DE-600)2132815-8</subfield><subfield code="x">1687-1847</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2020</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:1</subfield><subfield code="g">day:18</subfield><subfield code="g">month:07</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13662-020-02830-7</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.49</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2020</subfield><subfield code="j">2020</subfield><subfield code="e">1</subfield><subfield code="b">18</subfield><subfield code="c">07</subfield></datafield></record></collection>
|
author |
Rahman, Gauhar |
spellingShingle |
Rahman, Gauhar ddc 510 bkl 31.49 misc Fractional integrals misc The generalized fractional integrals misc Fractional integral inequalities misc The Chebyshev functional On generalized fractional integral inequalities for the monotone weighted Chebyshev functionals |
authorStr |
Rahman, Gauhar |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)377755699 |
format |
electronic Article |
dewey-ones |
510 - Mathematics 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1687-1847 |
topic_title |
510 610 ASE 31.49 bkl On generalized fractional integral inequalities for the monotone weighted Chebyshev functionals Fractional integrals (dpeaa)DE-He213 The generalized fractional integrals (dpeaa)DE-He213 Fractional integral inequalities (dpeaa)DE-He213 The Chebyshev functional (dpeaa)DE-He213 |
topic |
ddc 510 bkl 31.49 misc Fractional integrals misc The generalized fractional integrals misc Fractional integral inequalities misc The Chebyshev functional |
topic_unstemmed |
ddc 510 bkl 31.49 misc Fractional integrals misc The generalized fractional integrals misc Fractional integral inequalities misc The Chebyshev functional |
topic_browse |
ddc 510 bkl 31.49 misc Fractional integrals misc The generalized fractional integrals misc Fractional integral inequalities misc The Chebyshev functional |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Advances in difference equations |
hierarchy_parent_id |
377755699 |
dewey-tens |
510 - Mathematics 610 - Medicine & health |
hierarchy_top_title |
Advances in difference equations |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)377755699 (DE-600)2132815-8 |
title |
On generalized fractional integral inequalities for the monotone weighted Chebyshev functionals |
ctrlnum |
(DE-627)SPR040393267 (SPR)s13662-020-02830-7-e |
title_full |
On generalized fractional integral inequalities for the monotone weighted Chebyshev functionals |
author_sort |
Rahman, Gauhar |
journal |
Advances in difference equations |
journalStr |
Advances in difference equations |
lang_code |
eng |
isOA_bool |
true |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Rahman, Gauhar Nisar, Kottakkaran Sooppy Ghanbari, Behzad Abdeljawad, Thabet |
container_volume |
2020 |
class |
510 610 ASE 31.49 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Rahman, Gauhar |
doi_str_mv |
10.1186/s13662-020-02830-7 |
dewey-full |
510 610 |
author2-role |
verfasserin |
title_sort |
on generalized fractional integral inequalities for the monotone weighted chebyshev functionals |
title_auth |
On generalized fractional integral inequalities for the monotone weighted Chebyshev functionals |
abstract |
Abstract In this paper, we establish the generalized Riemann–Liouville (RL) fractional integrals in the sense of another increasing, positive, monotone, and measurable function Ψ. We determine certain new double-weighted type fractional integral inequalities by utilizing the said integrals. We also give some of the new particular inequalities of the main result. Note that we can form various types of new inequalities of fractional integrals by employing conditions on the function Ψ given in the paper. We present some corollaries as particular cases of the main results. |
abstractGer |
Abstract In this paper, we establish the generalized Riemann–Liouville (RL) fractional integrals in the sense of another increasing, positive, monotone, and measurable function Ψ. We determine certain new double-weighted type fractional integral inequalities by utilizing the said integrals. We also give some of the new particular inequalities of the main result. Note that we can form various types of new inequalities of fractional integrals by employing conditions on the function Ψ given in the paper. We present some corollaries as particular cases of the main results. |
abstract_unstemmed |
Abstract In this paper, we establish the generalized Riemann–Liouville (RL) fractional integrals in the sense of another increasing, positive, monotone, and measurable function Ψ. We determine certain new double-weighted type fractional integral inequalities by utilizing the said integrals. We also give some of the new particular inequalities of the main result. Note that we can form various types of new inequalities of fractional integrals by employing conditions on the function Ψ given in the paper. We present some corollaries as particular cases of the main results. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
On generalized fractional integral inequalities for the monotone weighted Chebyshev functionals |
url |
https://dx.doi.org/10.1186/s13662-020-02830-7 |
remote_bool |
true |
author2 |
Nisar, Kottakkaran Sooppy Ghanbari, Behzad Abdeljawad, Thabet |
author2Str |
Nisar, Kottakkaran Sooppy Ghanbari, Behzad Abdeljawad, Thabet |
ppnlink |
377755699 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s13662-020-02830-7 |
up_date |
2024-07-03T15:42:23.118Z |
_version_ |
1803573099883397120 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR040393267</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519144628.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13662-020-02830-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR040393267</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13662-020-02830-7-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">610</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.49</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rahman, Gauhar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On generalized fractional integral inequalities for the monotone weighted Chebyshev functionals</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we establish the generalized Riemann–Liouville (RL) fractional integrals in the sense of another increasing, positive, monotone, and measurable function Ψ. We determine certain new double-weighted type fractional integral inequalities by utilizing the said integrals. We also give some of the new particular inequalities of the main result. Note that we can form various types of new inequalities of fractional integrals by employing conditions on the function Ψ given in the paper. We present some corollaries as particular cases of the main results.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fractional integrals</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">The generalized fractional integrals</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fractional integral inequalities</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">The Chebyshev functional</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nisar, Kottakkaran Sooppy</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ghanbari, Behzad</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Abdeljawad, Thabet</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Advances in difference equations</subfield><subfield code="d">[S.l.] : Springer International, 2004</subfield><subfield code="g">2020(2020), 1 vom: 18. Juli</subfield><subfield code="w">(DE-627)377755699</subfield><subfield code="w">(DE-600)2132815-8</subfield><subfield code="x">1687-1847</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2020</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:1</subfield><subfield code="g">day:18</subfield><subfield code="g">month:07</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13662-020-02830-7</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.49</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2020</subfield><subfield code="j">2020</subfield><subfield code="e">1</subfield><subfield code="b">18</subfield><subfield code="c">07</subfield></datafield></record></collection>
|
score |
7.399087 |