Interpretable policy derivation for reinforcement learning based on evolutionary feature synthesis

Abstract Reinforcement learning based on the deep neural network has attracted much attention and has been widely used in real-world applications. However, the black-box property limits its usage from applying in high-stake areas, such as manufacture and healthcare. To deal with this problem, some r...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Zhang, Hengzhe [verfasserIn]

Zhou, Aimin [verfasserIn]

Lin, Xin [verfasserIn]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2020

Schlagwörter:

Reinforcement learning

Genetic programming

Policy derivation

Explainable machine learning

Übergeordnetes Werk:

Enthalten in: Complex & intelligent systems - Berlin : SpringerOpen, 2015, 6(2020), 3 vom: 25. Juli, Seite 741-753

Übergeordnetes Werk:

volume:6 ; year:2020 ; number:3 ; day:25 ; month:07 ; pages:741-753

Links:

Volltext

DOI / URN:

10.1007/s40747-020-00175-y

Katalog-ID:

SPR040868060

Nicht das Richtige dabei?

Schreiben Sie uns!