Deep soccer analytics: learning an action-value function for evaluating soccer players

Abstract Given the large pitch, numerous players, limited player turnovers, and sparse scoring, soccer is arguably the most challenging to analyze of all the major team sports. In this work, we develop a new approach to evaluating all types of soccer actions from play-by-play event data. Our approac...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Liu, Guiliang [verfasserIn]

Luo, Yudong [verfasserIn]

Schulte, Oliver [verfasserIn]

Kharrat, Tarak [verfasserIn]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2020

Schlagwörter:

Deep reinforcement learning

Action-value Q-function

Goal impact metric

Fine-tuning

Player ranking

Übergeordnetes Werk:

Enthalten in: Data mining and knowledge discovery - Dordrecht [u.a.] : Springer Science + Business Media B.V, 1997, 34(2020), 5 vom: 21. Juli, Seite 1531-1559

Übergeordnetes Werk:

volume:34 ; year:2020 ; number:5 ; day:21 ; month:07 ; pages:1531-1559

Links:

Volltext

DOI / URN:

10.1007/s10618-020-00705-9

Katalog-ID:

SPR040954242

Nicht das Richtige dabei?

Schreiben Sie uns!