Magneto-Mechanical Actuators with Reversible Stretching and Torsional Actuation Capabilities
Abstract Composite actuators consisting of magnetic nanoparticles dispersed in a crystallizable multiphase polymer system can be remotely controlled by alternating magnetic fields (AMF). These actuators contain spatially segregated crystalline domains with chemically different compositions. Here, th...
Ausführliche Beschreibung
Autor*in: |
Razzaq, M. Yasar [verfasserIn] Behl, M. [verfasserIn] Lendlein, A. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Übergeordnetes Werk: |
Enthalten in: MRS advances - Cham : Springer Nature Switzerland AG, 2016, 4(2019), 19 vom: 13. Feb., Seite 1057-1065 |
---|---|
Übergeordnetes Werk: |
volume:4 ; year:2019 ; number:19 ; day:13 ; month:02 ; pages:1057-1065 |
Links: |
---|
DOI / URN: |
10.1557/adv.2019.123 |
---|
Katalog-ID: |
SPR041069536 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR041069536 | ||
003 | DE-627 | ||
005 | 20220112050858.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1557/adv.2019.123 |2 doi | |
035 | |a (DE-627)SPR041069536 | ||
035 | |a (SPR)adv.2019.123-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q ASE |
100 | 1 | |a Razzaq, M. Yasar |e verfasserin |4 aut | |
245 | 1 | 0 | |a Magneto-Mechanical Actuators with Reversible Stretching and Torsional Actuation Capabilities |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Composite actuators consisting of magnetic nanoparticles dispersed in a crystallizable multiphase polymer system can be remotely controlled by alternating magnetic fields (AMF). These actuators contain spatially segregated crystalline domains with chemically different compositions. Here, the crystalline domain associated to low melting transition range is responsible for actuation while the crystalline domain associated to the higher melting transition range determines the geometry of the shape change. This paper reports magneto-mechanical actuators which are based on a single crystalline domain of oligo(ω-pentadecalactone) (OPDL) along with covalently integrated iron(III) oxide nanoparticles (ioNPs). Different geometrical modes of actuation such as a reversible change in length or twisting were implemented by a magneto-mechanical programming procedure. For an individual actuation mode, the degree of actuation could be tailored by variation of the magnetic field strengths. This material design can be easily extended to other composites containing other magnetic nanoparticles, e.g. with a high magnetic susceptibility. | ||
700 | 1 | |a Behl, M. |e verfasserin |4 aut | |
700 | 1 | |a Lendlein, A. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t MRS advances |d Cham : Springer Nature Switzerland AG, 2016 |g 4(2019), 19 vom: 13. Feb., Seite 1057-1065 |w (DE-627)860869032 |w (DE-600)2858562-8 |x 2059-8521 |7 nnns |
773 | 1 | 8 | |g volume:4 |g year:2019 |g number:19 |g day:13 |g month:02 |g pages:1057-1065 |
856 | 4 | 0 | |u https://dx.doi.org/10.1557/adv.2019.123 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2190 | ||
951 | |a AR | ||
952 | |d 4 |j 2019 |e 19 |b 13 |c 02 |h 1057-1065 |
author_variant |
m y r my myr m b mb a l al |
---|---|
matchkey_str |
article:20598521:2019----::antmcaiaataosiheesbetecigntrin |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.1557/adv.2019.123 doi (DE-627)SPR041069536 (SPR)adv.2019.123-e DE-627 ger DE-627 rakwb eng 670 ASE Razzaq, M. Yasar verfasserin aut Magneto-Mechanical Actuators with Reversible Stretching and Torsional Actuation Capabilities 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Composite actuators consisting of magnetic nanoparticles dispersed in a crystallizable multiphase polymer system can be remotely controlled by alternating magnetic fields (AMF). These actuators contain spatially segregated crystalline domains with chemically different compositions. Here, the crystalline domain associated to low melting transition range is responsible for actuation while the crystalline domain associated to the higher melting transition range determines the geometry of the shape change. This paper reports magneto-mechanical actuators which are based on a single crystalline domain of oligo(ω-pentadecalactone) (OPDL) along with covalently integrated iron(III) oxide nanoparticles (ioNPs). Different geometrical modes of actuation such as a reversible change in length or twisting were implemented by a magneto-mechanical programming procedure. For an individual actuation mode, the degree of actuation could be tailored by variation of the magnetic field strengths. This material design can be easily extended to other composites containing other magnetic nanoparticles, e.g. with a high magnetic susceptibility. Behl, M. verfasserin aut Lendlein, A. verfasserin aut Enthalten in MRS advances Cham : Springer Nature Switzerland AG, 2016 4(2019), 19 vom: 13. Feb., Seite 1057-1065 (DE-627)860869032 (DE-600)2858562-8 2059-8521 nnns volume:4 year:2019 number:19 day:13 month:02 pages:1057-1065 https://dx.doi.org/10.1557/adv.2019.123 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_602 GBV_ILN_702 GBV_ILN_2190 AR 4 2019 19 13 02 1057-1065 |
spelling |
10.1557/adv.2019.123 doi (DE-627)SPR041069536 (SPR)adv.2019.123-e DE-627 ger DE-627 rakwb eng 670 ASE Razzaq, M. Yasar verfasserin aut Magneto-Mechanical Actuators with Reversible Stretching and Torsional Actuation Capabilities 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Composite actuators consisting of magnetic nanoparticles dispersed in a crystallizable multiphase polymer system can be remotely controlled by alternating magnetic fields (AMF). These actuators contain spatially segregated crystalline domains with chemically different compositions. Here, the crystalline domain associated to low melting transition range is responsible for actuation while the crystalline domain associated to the higher melting transition range determines the geometry of the shape change. This paper reports magneto-mechanical actuators which are based on a single crystalline domain of oligo(ω-pentadecalactone) (OPDL) along with covalently integrated iron(III) oxide nanoparticles (ioNPs). Different geometrical modes of actuation such as a reversible change in length or twisting were implemented by a magneto-mechanical programming procedure. For an individual actuation mode, the degree of actuation could be tailored by variation of the magnetic field strengths. This material design can be easily extended to other composites containing other magnetic nanoparticles, e.g. with a high magnetic susceptibility. Behl, M. verfasserin aut Lendlein, A. verfasserin aut Enthalten in MRS advances Cham : Springer Nature Switzerland AG, 2016 4(2019), 19 vom: 13. Feb., Seite 1057-1065 (DE-627)860869032 (DE-600)2858562-8 2059-8521 nnns volume:4 year:2019 number:19 day:13 month:02 pages:1057-1065 https://dx.doi.org/10.1557/adv.2019.123 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_602 GBV_ILN_702 GBV_ILN_2190 AR 4 2019 19 13 02 1057-1065 |
allfields_unstemmed |
10.1557/adv.2019.123 doi (DE-627)SPR041069536 (SPR)adv.2019.123-e DE-627 ger DE-627 rakwb eng 670 ASE Razzaq, M. Yasar verfasserin aut Magneto-Mechanical Actuators with Reversible Stretching and Torsional Actuation Capabilities 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Composite actuators consisting of magnetic nanoparticles dispersed in a crystallizable multiphase polymer system can be remotely controlled by alternating magnetic fields (AMF). These actuators contain spatially segregated crystalline domains with chemically different compositions. Here, the crystalline domain associated to low melting transition range is responsible for actuation while the crystalline domain associated to the higher melting transition range determines the geometry of the shape change. This paper reports magneto-mechanical actuators which are based on a single crystalline domain of oligo(ω-pentadecalactone) (OPDL) along with covalently integrated iron(III) oxide nanoparticles (ioNPs). Different geometrical modes of actuation such as a reversible change in length or twisting were implemented by a magneto-mechanical programming procedure. For an individual actuation mode, the degree of actuation could be tailored by variation of the magnetic field strengths. This material design can be easily extended to other composites containing other magnetic nanoparticles, e.g. with a high magnetic susceptibility. Behl, M. verfasserin aut Lendlein, A. verfasserin aut Enthalten in MRS advances Cham : Springer Nature Switzerland AG, 2016 4(2019), 19 vom: 13. Feb., Seite 1057-1065 (DE-627)860869032 (DE-600)2858562-8 2059-8521 nnns volume:4 year:2019 number:19 day:13 month:02 pages:1057-1065 https://dx.doi.org/10.1557/adv.2019.123 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_602 GBV_ILN_702 GBV_ILN_2190 AR 4 2019 19 13 02 1057-1065 |
allfieldsGer |
10.1557/adv.2019.123 doi (DE-627)SPR041069536 (SPR)adv.2019.123-e DE-627 ger DE-627 rakwb eng 670 ASE Razzaq, M. Yasar verfasserin aut Magneto-Mechanical Actuators with Reversible Stretching and Torsional Actuation Capabilities 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Composite actuators consisting of magnetic nanoparticles dispersed in a crystallizable multiphase polymer system can be remotely controlled by alternating magnetic fields (AMF). These actuators contain spatially segregated crystalline domains with chemically different compositions. Here, the crystalline domain associated to low melting transition range is responsible for actuation while the crystalline domain associated to the higher melting transition range determines the geometry of the shape change. This paper reports magneto-mechanical actuators which are based on a single crystalline domain of oligo(ω-pentadecalactone) (OPDL) along with covalently integrated iron(III) oxide nanoparticles (ioNPs). Different geometrical modes of actuation such as a reversible change in length or twisting were implemented by a magneto-mechanical programming procedure. For an individual actuation mode, the degree of actuation could be tailored by variation of the magnetic field strengths. This material design can be easily extended to other composites containing other magnetic nanoparticles, e.g. with a high magnetic susceptibility. Behl, M. verfasserin aut Lendlein, A. verfasserin aut Enthalten in MRS advances Cham : Springer Nature Switzerland AG, 2016 4(2019), 19 vom: 13. Feb., Seite 1057-1065 (DE-627)860869032 (DE-600)2858562-8 2059-8521 nnns volume:4 year:2019 number:19 day:13 month:02 pages:1057-1065 https://dx.doi.org/10.1557/adv.2019.123 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_602 GBV_ILN_702 GBV_ILN_2190 AR 4 2019 19 13 02 1057-1065 |
allfieldsSound |
10.1557/adv.2019.123 doi (DE-627)SPR041069536 (SPR)adv.2019.123-e DE-627 ger DE-627 rakwb eng 670 ASE Razzaq, M. Yasar verfasserin aut Magneto-Mechanical Actuators with Reversible Stretching and Torsional Actuation Capabilities 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Composite actuators consisting of magnetic nanoparticles dispersed in a crystallizable multiphase polymer system can be remotely controlled by alternating magnetic fields (AMF). These actuators contain spatially segregated crystalline domains with chemically different compositions. Here, the crystalline domain associated to low melting transition range is responsible for actuation while the crystalline domain associated to the higher melting transition range determines the geometry of the shape change. This paper reports magneto-mechanical actuators which are based on a single crystalline domain of oligo(ω-pentadecalactone) (OPDL) along with covalently integrated iron(III) oxide nanoparticles (ioNPs). Different geometrical modes of actuation such as a reversible change in length or twisting were implemented by a magneto-mechanical programming procedure. For an individual actuation mode, the degree of actuation could be tailored by variation of the magnetic field strengths. This material design can be easily extended to other composites containing other magnetic nanoparticles, e.g. with a high magnetic susceptibility. Behl, M. verfasserin aut Lendlein, A. verfasserin aut Enthalten in MRS advances Cham : Springer Nature Switzerland AG, 2016 4(2019), 19 vom: 13. Feb., Seite 1057-1065 (DE-627)860869032 (DE-600)2858562-8 2059-8521 nnns volume:4 year:2019 number:19 day:13 month:02 pages:1057-1065 https://dx.doi.org/10.1557/adv.2019.123 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_602 GBV_ILN_702 GBV_ILN_2190 AR 4 2019 19 13 02 1057-1065 |
language |
English |
source |
Enthalten in MRS advances 4(2019), 19 vom: 13. Feb., Seite 1057-1065 volume:4 year:2019 number:19 day:13 month:02 pages:1057-1065 |
sourceStr |
Enthalten in MRS advances 4(2019), 19 vom: 13. Feb., Seite 1057-1065 volume:4 year:2019 number:19 day:13 month:02 pages:1057-1065 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
MRS advances |
authorswithroles_txt_mv |
Razzaq, M. Yasar @@aut@@ Behl, M. @@aut@@ Lendlein, A. @@aut@@ |
publishDateDaySort_date |
2019-02-13T00:00:00Z |
hierarchy_top_id |
860869032 |
dewey-sort |
3670 |
id |
SPR041069536 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR041069536</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220112050858.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1557/adv.2019.123</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR041069536</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)adv.2019.123-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Razzaq, M. Yasar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Magneto-Mechanical Actuators with Reversible Stretching and Torsional Actuation Capabilities</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Composite actuators consisting of magnetic nanoparticles dispersed in a crystallizable multiphase polymer system can be remotely controlled by alternating magnetic fields (AMF). These actuators contain spatially segregated crystalline domains with chemically different compositions. Here, the crystalline domain associated to low melting transition range is responsible for actuation while the crystalline domain associated to the higher melting transition range determines the geometry of the shape change. This paper reports magneto-mechanical actuators which are based on a single crystalline domain of oligo(ω-pentadecalactone) (OPDL) along with covalently integrated iron(III) oxide nanoparticles (ioNPs). Different geometrical modes of actuation such as a reversible change in length or twisting were implemented by a magneto-mechanical programming procedure. For an individual actuation mode, the degree of actuation could be tailored by variation of the magnetic field strengths. This material design can be easily extended to other composites containing other magnetic nanoparticles, e.g. with a high magnetic susceptibility.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Behl, M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lendlein, A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">MRS advances</subfield><subfield code="d">Cham : Springer Nature Switzerland AG, 2016</subfield><subfield code="g">4(2019), 19 vom: 13. Feb., Seite 1057-1065</subfield><subfield code="w">(DE-627)860869032</subfield><subfield code="w">(DE-600)2858562-8</subfield><subfield code="x">2059-8521</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:4</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:19</subfield><subfield code="g">day:13</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:1057-1065</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1557/adv.2019.123</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">4</subfield><subfield code="j">2019</subfield><subfield code="e">19</subfield><subfield code="b">13</subfield><subfield code="c">02</subfield><subfield code="h">1057-1065</subfield></datafield></record></collection>
|
author |
Razzaq, M. Yasar |
spellingShingle |
Razzaq, M. Yasar ddc 670 Magneto-Mechanical Actuators with Reversible Stretching and Torsional Actuation Capabilities |
authorStr |
Razzaq, M. Yasar |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)860869032 |
format |
electronic Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2059-8521 |
topic_title |
670 ASE Magneto-Mechanical Actuators with Reversible Stretching and Torsional Actuation Capabilities |
topic |
ddc 670 |
topic_unstemmed |
ddc 670 |
topic_browse |
ddc 670 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
MRS advances |
hierarchy_parent_id |
860869032 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
MRS advances |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)860869032 (DE-600)2858562-8 |
title |
Magneto-Mechanical Actuators with Reversible Stretching and Torsional Actuation Capabilities |
ctrlnum |
(DE-627)SPR041069536 (SPR)adv.2019.123-e |
title_full |
Magneto-Mechanical Actuators with Reversible Stretching and Torsional Actuation Capabilities |
author_sort |
Razzaq, M. Yasar |
journal |
MRS advances |
journalStr |
MRS advances |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
1057 |
author_browse |
Razzaq, M. Yasar Behl, M. Lendlein, A. |
container_volume |
4 |
class |
670 ASE |
format_se |
Elektronische Aufsätze |
author-letter |
Razzaq, M. Yasar |
doi_str_mv |
10.1557/adv.2019.123 |
dewey-full |
670 |
author2-role |
verfasserin |
title_sort |
magneto-mechanical actuators with reversible stretching and torsional actuation capabilities |
title_auth |
Magneto-Mechanical Actuators with Reversible Stretching and Torsional Actuation Capabilities |
abstract |
Abstract Composite actuators consisting of magnetic nanoparticles dispersed in a crystallizable multiphase polymer system can be remotely controlled by alternating magnetic fields (AMF). These actuators contain spatially segregated crystalline domains with chemically different compositions. Here, the crystalline domain associated to low melting transition range is responsible for actuation while the crystalline domain associated to the higher melting transition range determines the geometry of the shape change. This paper reports magneto-mechanical actuators which are based on a single crystalline domain of oligo(ω-pentadecalactone) (OPDL) along with covalently integrated iron(III) oxide nanoparticles (ioNPs). Different geometrical modes of actuation such as a reversible change in length or twisting were implemented by a magneto-mechanical programming procedure. For an individual actuation mode, the degree of actuation could be tailored by variation of the magnetic field strengths. This material design can be easily extended to other composites containing other magnetic nanoparticles, e.g. with a high magnetic susceptibility. |
abstractGer |
Abstract Composite actuators consisting of magnetic nanoparticles dispersed in a crystallizable multiphase polymer system can be remotely controlled by alternating magnetic fields (AMF). These actuators contain spatially segregated crystalline domains with chemically different compositions. Here, the crystalline domain associated to low melting transition range is responsible for actuation while the crystalline domain associated to the higher melting transition range determines the geometry of the shape change. This paper reports magneto-mechanical actuators which are based on a single crystalline domain of oligo(ω-pentadecalactone) (OPDL) along with covalently integrated iron(III) oxide nanoparticles (ioNPs). Different geometrical modes of actuation such as a reversible change in length or twisting were implemented by a magneto-mechanical programming procedure. For an individual actuation mode, the degree of actuation could be tailored by variation of the magnetic field strengths. This material design can be easily extended to other composites containing other magnetic nanoparticles, e.g. with a high magnetic susceptibility. |
abstract_unstemmed |
Abstract Composite actuators consisting of magnetic nanoparticles dispersed in a crystallizable multiphase polymer system can be remotely controlled by alternating magnetic fields (AMF). These actuators contain spatially segregated crystalline domains with chemically different compositions. Here, the crystalline domain associated to low melting transition range is responsible for actuation while the crystalline domain associated to the higher melting transition range determines the geometry of the shape change. This paper reports magneto-mechanical actuators which are based on a single crystalline domain of oligo(ω-pentadecalactone) (OPDL) along with covalently integrated iron(III) oxide nanoparticles (ioNPs). Different geometrical modes of actuation such as a reversible change in length or twisting were implemented by a magneto-mechanical programming procedure. For an individual actuation mode, the degree of actuation could be tailored by variation of the magnetic field strengths. This material design can be easily extended to other composites containing other magnetic nanoparticles, e.g. with a high magnetic susceptibility. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_602 GBV_ILN_702 GBV_ILN_2190 |
container_issue |
19 |
title_short |
Magneto-Mechanical Actuators with Reversible Stretching and Torsional Actuation Capabilities |
url |
https://dx.doi.org/10.1557/adv.2019.123 |
remote_bool |
true |
author2 |
Behl, M. Lendlein, A. |
author2Str |
Behl, M. Lendlein, A. |
ppnlink |
860869032 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1557/adv.2019.123 |
up_date |
2024-07-03T20:02:30.889Z |
_version_ |
1803589465819578368 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR041069536</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220112050858.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1557/adv.2019.123</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR041069536</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)adv.2019.123-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Razzaq, M. Yasar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Magneto-Mechanical Actuators with Reversible Stretching and Torsional Actuation Capabilities</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Composite actuators consisting of magnetic nanoparticles dispersed in a crystallizable multiphase polymer system can be remotely controlled by alternating magnetic fields (AMF). These actuators contain spatially segregated crystalline domains with chemically different compositions. Here, the crystalline domain associated to low melting transition range is responsible for actuation while the crystalline domain associated to the higher melting transition range determines the geometry of the shape change. This paper reports magneto-mechanical actuators which are based on a single crystalline domain of oligo(ω-pentadecalactone) (OPDL) along with covalently integrated iron(III) oxide nanoparticles (ioNPs). Different geometrical modes of actuation such as a reversible change in length or twisting were implemented by a magneto-mechanical programming procedure. For an individual actuation mode, the degree of actuation could be tailored by variation of the magnetic field strengths. This material design can be easily extended to other composites containing other magnetic nanoparticles, e.g. with a high magnetic susceptibility.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Behl, M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lendlein, A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">MRS advances</subfield><subfield code="d">Cham : Springer Nature Switzerland AG, 2016</subfield><subfield code="g">4(2019), 19 vom: 13. Feb., Seite 1057-1065</subfield><subfield code="w">(DE-627)860869032</subfield><subfield code="w">(DE-600)2858562-8</subfield><subfield code="x">2059-8521</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:4</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:19</subfield><subfield code="g">day:13</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:1057-1065</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1557/adv.2019.123</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">4</subfield><subfield code="j">2019</subfield><subfield code="e">19</subfield><subfield code="b">13</subfield><subfield code="c">02</subfield><subfield code="h">1057-1065</subfield></datafield></record></collection>
|
score |
7.399419 |