Linear Equations Systems of Real and Complex Semi-Quaternions
Abstract In this work firstly real semi-quaternion matrices and their properties are examined. Then, %$2n\times 2n%$ complex adjoint matrix and %$4n\times 4n%$ real matrix representation of a real semi-quaternion matrix are expressed. Further systems of linear real semi-quaternionic equations are in...
Ausführliche Beschreibung
Autor*in: |
Alagöz, Yasemin [verfasserIn] Özyurt, Gözde [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
Complex semi-quaternion matrix |
---|
Übergeordnetes Werk: |
Enthalten in: Iranian journal of science and technology - Cham, Switzerland : Springer International Pubishing, 2004, 44(2020), 5 vom: 01. Sept., Seite 1483-1493 |
---|---|
Übergeordnetes Werk: |
volume:44 ; year:2020 ; number:5 ; day:01 ; month:09 ; pages:1483-1493 |
Links: |
---|
DOI / URN: |
10.1007/s40995-020-00956-7 |
---|
Katalog-ID: |
SPR041079140 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR041079140 | ||
003 | DE-627 | ||
005 | 20220112035033.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s40995-020-00956-7 |2 doi | |
035 | |a (DE-627)SPR041079140 | ||
035 | |a (SPR)s40995-020-00956-7-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 500 |a 600 |q ASE |
082 | 0 | 4 | |a 500 |a 600 |q ASE |
100 | 1 | |a Alagöz, Yasemin |e verfasserin |4 aut | |
245 | 1 | 0 | |a Linear Equations Systems of Real and Complex Semi-Quaternions |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract In this work firstly real semi-quaternion matrices and their properties are examined. Then, %$2n\times 2n%$ complex adjoint matrix and %$4n\times 4n%$ real matrix representation of a real semi-quaternion matrix are expressed. Further systems of linear real semi-quaternionic equations are investigated and in some of them the %$2n\times 2n%$ complex adjoint matrix and the %$4n\times 4n%$ real matrix representation are used. Moreover, matrices which entries are complex semi-quaternions and their %$2n\times 2n%$ real semi-quaternion matrix representation are presented. Additionally system of linear complex semi-quaternionic equations is described with this %$2n\times 2n%$ matrix representation. Finally, for a complex semi-quaternion matrix %$4n\times 4n%$ complex adjoint matrix is introduced. Also, linear complex semi-quaternionic equations systems are examined. | ||
650 | 4 | |a Real semi-quaternion |7 (dpeaa)DE-He213 | |
650 | 4 | |a Complex semi-quaternion |7 (dpeaa)DE-He213 | |
650 | 4 | |a Real semi-quaternion matrix |7 (dpeaa)DE-He213 | |
650 | 4 | |a Complex semi-quaternion matrix |7 (dpeaa)DE-He213 | |
650 | 4 | |a Linear real semi-quaternionic equations system |7 (dpeaa)DE-He213 | |
650 | 4 | |a Linear complex semi-quaternionic equations system |7 (dpeaa)DE-He213 | |
700 | 1 | |a Özyurt, Gözde |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Iranian journal of science and technology |d Cham, Switzerland : Springer International Pubishing, 2004 |g 44(2020), 5 vom: 01. Sept., Seite 1483-1493 |w (DE-627)SPR038034816 |w (DE-600)2843077-3 |x 2364-1819 |7 nnns |
773 | 1 | 8 | |g volume:44 |g year:2020 |g number:5 |g day:01 |g month:09 |g pages:1483-1493 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s40995-020-00956-7 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
951 | |a AR | ||
952 | |d 44 |j 2020 |e 5 |b 01 |c 09 |h 1483-1493 |
author_variant |
y a ya g ö gö |
---|---|
matchkey_str |
article:23641819:2020----::ierqainssesfelncmlx |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.1007/s40995-020-00956-7 doi (DE-627)SPR041079140 (SPR)s40995-020-00956-7-e DE-627 ger DE-627 rakwb eng 500 600 ASE 500 600 ASE Alagöz, Yasemin verfasserin aut Linear Equations Systems of Real and Complex Semi-Quaternions 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this work firstly real semi-quaternion matrices and their properties are examined. Then, %$2n\times 2n%$ complex adjoint matrix and %$4n\times 4n%$ real matrix representation of a real semi-quaternion matrix are expressed. Further systems of linear real semi-quaternionic equations are investigated and in some of them the %$2n\times 2n%$ complex adjoint matrix and the %$4n\times 4n%$ real matrix representation are used. Moreover, matrices which entries are complex semi-quaternions and their %$2n\times 2n%$ real semi-quaternion matrix representation are presented. Additionally system of linear complex semi-quaternionic equations is described with this %$2n\times 2n%$ matrix representation. Finally, for a complex semi-quaternion matrix %$4n\times 4n%$ complex adjoint matrix is introduced. Also, linear complex semi-quaternionic equations systems are examined. Real semi-quaternion (dpeaa)DE-He213 Complex semi-quaternion (dpeaa)DE-He213 Real semi-quaternion matrix (dpeaa)DE-He213 Complex semi-quaternion matrix (dpeaa)DE-He213 Linear real semi-quaternionic equations system (dpeaa)DE-He213 Linear complex semi-quaternionic equations system (dpeaa)DE-He213 Özyurt, Gözde verfasserin aut Enthalten in Iranian journal of science and technology Cham, Switzerland : Springer International Pubishing, 2004 44(2020), 5 vom: 01. Sept., Seite 1483-1493 (DE-627)SPR038034816 (DE-600)2843077-3 2364-1819 nnns volume:44 year:2020 number:5 day:01 month:09 pages:1483-1493 https://dx.doi.org/10.1007/s40995-020-00956-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 44 2020 5 01 09 1483-1493 |
spelling |
10.1007/s40995-020-00956-7 doi (DE-627)SPR041079140 (SPR)s40995-020-00956-7-e DE-627 ger DE-627 rakwb eng 500 600 ASE 500 600 ASE Alagöz, Yasemin verfasserin aut Linear Equations Systems of Real and Complex Semi-Quaternions 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this work firstly real semi-quaternion matrices and their properties are examined. Then, %$2n\times 2n%$ complex adjoint matrix and %$4n\times 4n%$ real matrix representation of a real semi-quaternion matrix are expressed. Further systems of linear real semi-quaternionic equations are investigated and in some of them the %$2n\times 2n%$ complex adjoint matrix and the %$4n\times 4n%$ real matrix representation are used. Moreover, matrices which entries are complex semi-quaternions and their %$2n\times 2n%$ real semi-quaternion matrix representation are presented. Additionally system of linear complex semi-quaternionic equations is described with this %$2n\times 2n%$ matrix representation. Finally, for a complex semi-quaternion matrix %$4n\times 4n%$ complex adjoint matrix is introduced. Also, linear complex semi-quaternionic equations systems are examined. Real semi-quaternion (dpeaa)DE-He213 Complex semi-quaternion (dpeaa)DE-He213 Real semi-quaternion matrix (dpeaa)DE-He213 Complex semi-quaternion matrix (dpeaa)DE-He213 Linear real semi-quaternionic equations system (dpeaa)DE-He213 Linear complex semi-quaternionic equations system (dpeaa)DE-He213 Özyurt, Gözde verfasserin aut Enthalten in Iranian journal of science and technology Cham, Switzerland : Springer International Pubishing, 2004 44(2020), 5 vom: 01. Sept., Seite 1483-1493 (DE-627)SPR038034816 (DE-600)2843077-3 2364-1819 nnns volume:44 year:2020 number:5 day:01 month:09 pages:1483-1493 https://dx.doi.org/10.1007/s40995-020-00956-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 44 2020 5 01 09 1483-1493 |
allfields_unstemmed |
10.1007/s40995-020-00956-7 doi (DE-627)SPR041079140 (SPR)s40995-020-00956-7-e DE-627 ger DE-627 rakwb eng 500 600 ASE 500 600 ASE Alagöz, Yasemin verfasserin aut Linear Equations Systems of Real and Complex Semi-Quaternions 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this work firstly real semi-quaternion matrices and their properties are examined. Then, %$2n\times 2n%$ complex adjoint matrix and %$4n\times 4n%$ real matrix representation of a real semi-quaternion matrix are expressed. Further systems of linear real semi-quaternionic equations are investigated and in some of them the %$2n\times 2n%$ complex adjoint matrix and the %$4n\times 4n%$ real matrix representation are used. Moreover, matrices which entries are complex semi-quaternions and their %$2n\times 2n%$ real semi-quaternion matrix representation are presented. Additionally system of linear complex semi-quaternionic equations is described with this %$2n\times 2n%$ matrix representation. Finally, for a complex semi-quaternion matrix %$4n\times 4n%$ complex adjoint matrix is introduced. Also, linear complex semi-quaternionic equations systems are examined. Real semi-quaternion (dpeaa)DE-He213 Complex semi-quaternion (dpeaa)DE-He213 Real semi-quaternion matrix (dpeaa)DE-He213 Complex semi-quaternion matrix (dpeaa)DE-He213 Linear real semi-quaternionic equations system (dpeaa)DE-He213 Linear complex semi-quaternionic equations system (dpeaa)DE-He213 Özyurt, Gözde verfasserin aut Enthalten in Iranian journal of science and technology Cham, Switzerland : Springer International Pubishing, 2004 44(2020), 5 vom: 01. Sept., Seite 1483-1493 (DE-627)SPR038034816 (DE-600)2843077-3 2364-1819 nnns volume:44 year:2020 number:5 day:01 month:09 pages:1483-1493 https://dx.doi.org/10.1007/s40995-020-00956-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 44 2020 5 01 09 1483-1493 |
allfieldsGer |
10.1007/s40995-020-00956-7 doi (DE-627)SPR041079140 (SPR)s40995-020-00956-7-e DE-627 ger DE-627 rakwb eng 500 600 ASE 500 600 ASE Alagöz, Yasemin verfasserin aut Linear Equations Systems of Real and Complex Semi-Quaternions 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this work firstly real semi-quaternion matrices and their properties are examined. Then, %$2n\times 2n%$ complex adjoint matrix and %$4n\times 4n%$ real matrix representation of a real semi-quaternion matrix are expressed. Further systems of linear real semi-quaternionic equations are investigated and in some of them the %$2n\times 2n%$ complex adjoint matrix and the %$4n\times 4n%$ real matrix representation are used. Moreover, matrices which entries are complex semi-quaternions and their %$2n\times 2n%$ real semi-quaternion matrix representation are presented. Additionally system of linear complex semi-quaternionic equations is described with this %$2n\times 2n%$ matrix representation. Finally, for a complex semi-quaternion matrix %$4n\times 4n%$ complex adjoint matrix is introduced. Also, linear complex semi-quaternionic equations systems are examined. Real semi-quaternion (dpeaa)DE-He213 Complex semi-quaternion (dpeaa)DE-He213 Real semi-quaternion matrix (dpeaa)DE-He213 Complex semi-quaternion matrix (dpeaa)DE-He213 Linear real semi-quaternionic equations system (dpeaa)DE-He213 Linear complex semi-quaternionic equations system (dpeaa)DE-He213 Özyurt, Gözde verfasserin aut Enthalten in Iranian journal of science and technology Cham, Switzerland : Springer International Pubishing, 2004 44(2020), 5 vom: 01. Sept., Seite 1483-1493 (DE-627)SPR038034816 (DE-600)2843077-3 2364-1819 nnns volume:44 year:2020 number:5 day:01 month:09 pages:1483-1493 https://dx.doi.org/10.1007/s40995-020-00956-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 44 2020 5 01 09 1483-1493 |
allfieldsSound |
10.1007/s40995-020-00956-7 doi (DE-627)SPR041079140 (SPR)s40995-020-00956-7-e DE-627 ger DE-627 rakwb eng 500 600 ASE 500 600 ASE Alagöz, Yasemin verfasserin aut Linear Equations Systems of Real and Complex Semi-Quaternions 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this work firstly real semi-quaternion matrices and their properties are examined. Then, %$2n\times 2n%$ complex adjoint matrix and %$4n\times 4n%$ real matrix representation of a real semi-quaternion matrix are expressed. Further systems of linear real semi-quaternionic equations are investigated and in some of them the %$2n\times 2n%$ complex adjoint matrix and the %$4n\times 4n%$ real matrix representation are used. Moreover, matrices which entries are complex semi-quaternions and their %$2n\times 2n%$ real semi-quaternion matrix representation are presented. Additionally system of linear complex semi-quaternionic equations is described with this %$2n\times 2n%$ matrix representation. Finally, for a complex semi-quaternion matrix %$4n\times 4n%$ complex adjoint matrix is introduced. Also, linear complex semi-quaternionic equations systems are examined. Real semi-quaternion (dpeaa)DE-He213 Complex semi-quaternion (dpeaa)DE-He213 Real semi-quaternion matrix (dpeaa)DE-He213 Complex semi-quaternion matrix (dpeaa)DE-He213 Linear real semi-quaternionic equations system (dpeaa)DE-He213 Linear complex semi-quaternionic equations system (dpeaa)DE-He213 Özyurt, Gözde verfasserin aut Enthalten in Iranian journal of science and technology Cham, Switzerland : Springer International Pubishing, 2004 44(2020), 5 vom: 01. Sept., Seite 1483-1493 (DE-627)SPR038034816 (DE-600)2843077-3 2364-1819 nnns volume:44 year:2020 number:5 day:01 month:09 pages:1483-1493 https://dx.doi.org/10.1007/s40995-020-00956-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 44 2020 5 01 09 1483-1493 |
language |
English |
source |
Enthalten in Iranian journal of science and technology 44(2020), 5 vom: 01. Sept., Seite 1483-1493 volume:44 year:2020 number:5 day:01 month:09 pages:1483-1493 |
sourceStr |
Enthalten in Iranian journal of science and technology 44(2020), 5 vom: 01. Sept., Seite 1483-1493 volume:44 year:2020 number:5 day:01 month:09 pages:1483-1493 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Real semi-quaternion Complex semi-quaternion Real semi-quaternion matrix Complex semi-quaternion matrix Linear real semi-quaternionic equations system Linear complex semi-quaternionic equations system |
dewey-raw |
500 |
isfreeaccess_bool |
false |
container_title |
Iranian journal of science and technology |
authorswithroles_txt_mv |
Alagöz, Yasemin @@aut@@ Özyurt, Gözde @@aut@@ |
publishDateDaySort_date |
2020-09-01T00:00:00Z |
hierarchy_top_id |
SPR038034816 |
dewey-sort |
3500 |
id |
SPR041079140 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR041079140</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220112035033.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40995-020-00956-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR041079140</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40995-020-00956-7-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="a">600</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="a">600</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Alagöz, Yasemin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Linear Equations Systems of Real and Complex Semi-Quaternions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this work firstly real semi-quaternion matrices and their properties are examined. Then, %$2n\times 2n%$ complex adjoint matrix and %$4n\times 4n%$ real matrix representation of a real semi-quaternion matrix are expressed. Further systems of linear real semi-quaternionic equations are investigated and in some of them the %$2n\times 2n%$ complex adjoint matrix and the %$4n\times 4n%$ real matrix representation are used. Moreover, matrices which entries are complex semi-quaternions and their %$2n\times 2n%$ real semi-quaternion matrix representation are presented. Additionally system of linear complex semi-quaternionic equations is described with this %$2n\times 2n%$ matrix representation. Finally, for a complex semi-quaternion matrix %$4n\times 4n%$ complex adjoint matrix is introduced. Also, linear complex semi-quaternionic equations systems are examined.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Real semi-quaternion</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complex semi-quaternion</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Real semi-quaternion matrix</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complex semi-quaternion matrix</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear real semi-quaternionic equations system</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear complex semi-quaternionic equations system</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Özyurt, Gözde</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Iranian journal of science and technology</subfield><subfield code="d">Cham, Switzerland : Springer International Pubishing, 2004</subfield><subfield code="g">44(2020), 5 vom: 01. Sept., Seite 1483-1493</subfield><subfield code="w">(DE-627)SPR038034816</subfield><subfield code="w">(DE-600)2843077-3</subfield><subfield code="x">2364-1819</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:44</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:5</subfield><subfield code="g">day:01</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:1483-1493</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40995-020-00956-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">44</subfield><subfield code="j">2020</subfield><subfield code="e">5</subfield><subfield code="b">01</subfield><subfield code="c">09</subfield><subfield code="h">1483-1493</subfield></datafield></record></collection>
|
author |
Alagöz, Yasemin |
spellingShingle |
Alagöz, Yasemin ddc 500 misc Real semi-quaternion misc Complex semi-quaternion misc Real semi-quaternion matrix misc Complex semi-quaternion matrix misc Linear real semi-quaternionic equations system misc Linear complex semi-quaternionic equations system Linear Equations Systems of Real and Complex Semi-Quaternions |
authorStr |
Alagöz, Yasemin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)SPR038034816 |
format |
electronic Article |
dewey-ones |
500 - Natural sciences & mathematics 600 - Technology |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2364-1819 |
topic_title |
500 600 ASE Linear Equations Systems of Real and Complex Semi-Quaternions Real semi-quaternion (dpeaa)DE-He213 Complex semi-quaternion (dpeaa)DE-He213 Real semi-quaternion matrix (dpeaa)DE-He213 Complex semi-quaternion matrix (dpeaa)DE-He213 Linear real semi-quaternionic equations system (dpeaa)DE-He213 Linear complex semi-quaternionic equations system (dpeaa)DE-He213 |
topic |
ddc 500 misc Real semi-quaternion misc Complex semi-quaternion misc Real semi-quaternion matrix misc Complex semi-quaternion matrix misc Linear real semi-quaternionic equations system misc Linear complex semi-quaternionic equations system |
topic_unstemmed |
ddc 500 misc Real semi-quaternion misc Complex semi-quaternion misc Real semi-quaternion matrix misc Complex semi-quaternion matrix misc Linear real semi-quaternionic equations system misc Linear complex semi-quaternionic equations system |
topic_browse |
ddc 500 misc Real semi-quaternion misc Complex semi-quaternion misc Real semi-quaternion matrix misc Complex semi-quaternion matrix misc Linear real semi-quaternionic equations system misc Linear complex semi-quaternionic equations system |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Iranian journal of science and technology |
hierarchy_parent_id |
SPR038034816 |
dewey-tens |
500 - Science 600 - Technology |
hierarchy_top_title |
Iranian journal of science and technology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)SPR038034816 (DE-600)2843077-3 |
title |
Linear Equations Systems of Real and Complex Semi-Quaternions |
ctrlnum |
(DE-627)SPR041079140 (SPR)s40995-020-00956-7-e |
title_full |
Linear Equations Systems of Real and Complex Semi-Quaternions |
author_sort |
Alagöz, Yasemin |
journal |
Iranian journal of science and technology |
journalStr |
Iranian journal of science and technology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
1483 |
author_browse |
Alagöz, Yasemin Özyurt, Gözde |
container_volume |
44 |
class |
500 600 ASE |
format_se |
Elektronische Aufsätze |
author-letter |
Alagöz, Yasemin |
doi_str_mv |
10.1007/s40995-020-00956-7 |
dewey-full |
500 600 |
author2-role |
verfasserin |
title_sort |
linear equations systems of real and complex semi-quaternions |
title_auth |
Linear Equations Systems of Real and Complex Semi-Quaternions |
abstract |
Abstract In this work firstly real semi-quaternion matrices and their properties are examined. Then, %$2n\times 2n%$ complex adjoint matrix and %$4n\times 4n%$ real matrix representation of a real semi-quaternion matrix are expressed. Further systems of linear real semi-quaternionic equations are investigated and in some of them the %$2n\times 2n%$ complex adjoint matrix and the %$4n\times 4n%$ real matrix representation are used. Moreover, matrices which entries are complex semi-quaternions and their %$2n\times 2n%$ real semi-quaternion matrix representation are presented. Additionally system of linear complex semi-quaternionic equations is described with this %$2n\times 2n%$ matrix representation. Finally, for a complex semi-quaternion matrix %$4n\times 4n%$ complex adjoint matrix is introduced. Also, linear complex semi-quaternionic equations systems are examined. |
abstractGer |
Abstract In this work firstly real semi-quaternion matrices and their properties are examined. Then, %$2n\times 2n%$ complex adjoint matrix and %$4n\times 4n%$ real matrix representation of a real semi-quaternion matrix are expressed. Further systems of linear real semi-quaternionic equations are investigated and in some of them the %$2n\times 2n%$ complex adjoint matrix and the %$4n\times 4n%$ real matrix representation are used. Moreover, matrices which entries are complex semi-quaternions and their %$2n\times 2n%$ real semi-quaternion matrix representation are presented. Additionally system of linear complex semi-quaternionic equations is described with this %$2n\times 2n%$ matrix representation. Finally, for a complex semi-quaternion matrix %$4n\times 4n%$ complex adjoint matrix is introduced. Also, linear complex semi-quaternionic equations systems are examined. |
abstract_unstemmed |
Abstract In this work firstly real semi-quaternion matrices and their properties are examined. Then, %$2n\times 2n%$ complex adjoint matrix and %$4n\times 4n%$ real matrix representation of a real semi-quaternion matrix are expressed. Further systems of linear real semi-quaternionic equations are investigated and in some of them the %$2n\times 2n%$ complex adjoint matrix and the %$4n\times 4n%$ real matrix representation are used. Moreover, matrices which entries are complex semi-quaternions and their %$2n\times 2n%$ real semi-quaternion matrix representation are presented. Additionally system of linear complex semi-quaternionic equations is described with this %$2n\times 2n%$ matrix representation. Finally, for a complex semi-quaternion matrix %$4n\times 4n%$ complex adjoint matrix is introduced. Also, linear complex semi-quaternionic equations systems are examined. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER |
container_issue |
5 |
title_short |
Linear Equations Systems of Real and Complex Semi-Quaternions |
url |
https://dx.doi.org/10.1007/s40995-020-00956-7 |
remote_bool |
true |
author2 |
Özyurt, Gözde |
author2Str |
Özyurt, Gözde |
ppnlink |
SPR038034816 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s40995-020-00956-7 |
up_date |
2024-07-03T20:06:23.134Z |
_version_ |
1803589709341917184 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR041079140</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220112035033.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40995-020-00956-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR041079140</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40995-020-00956-7-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="a">600</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="a">600</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Alagöz, Yasemin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Linear Equations Systems of Real and Complex Semi-Quaternions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this work firstly real semi-quaternion matrices and their properties are examined. Then, %$2n\times 2n%$ complex adjoint matrix and %$4n\times 4n%$ real matrix representation of a real semi-quaternion matrix are expressed. Further systems of linear real semi-quaternionic equations are investigated and in some of them the %$2n\times 2n%$ complex adjoint matrix and the %$4n\times 4n%$ real matrix representation are used. Moreover, matrices which entries are complex semi-quaternions and their %$2n\times 2n%$ real semi-quaternion matrix representation are presented. Additionally system of linear complex semi-quaternionic equations is described with this %$2n\times 2n%$ matrix representation. Finally, for a complex semi-quaternion matrix %$4n\times 4n%$ complex adjoint matrix is introduced. Also, linear complex semi-quaternionic equations systems are examined.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Real semi-quaternion</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complex semi-quaternion</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Real semi-quaternion matrix</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complex semi-quaternion matrix</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear real semi-quaternionic equations system</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear complex semi-quaternionic equations system</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Özyurt, Gözde</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Iranian journal of science and technology</subfield><subfield code="d">Cham, Switzerland : Springer International Pubishing, 2004</subfield><subfield code="g">44(2020), 5 vom: 01. Sept., Seite 1483-1493</subfield><subfield code="w">(DE-627)SPR038034816</subfield><subfield code="w">(DE-600)2843077-3</subfield><subfield code="x">2364-1819</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:44</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:5</subfield><subfield code="g">day:01</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:1483-1493</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40995-020-00956-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">44</subfield><subfield code="j">2020</subfield><subfield code="e">5</subfield><subfield code="b">01</subfield><subfield code="c">09</subfield><subfield code="h">1483-1493</subfield></datafield></record></collection>
|
score |
7.400666 |