A Chemical Heat Pump With an Endothermic and Reversible Chemical System Incorporated
Abstract A conceptual design of chemical heat pump system with reactive ceramics incorporated has been proposed and exemplified by several chemical reactions on activated metal oxides. It functions at temperatures of waste heat. The system involves the following endothermic reactions; (1) activation...
Ausführliche Beschreibung
Autor*in: |
Tsuji, M. [verfasserIn] Wada, Y. [verfasserIn] Kodama, T. [verfasserIn] Hasegawa, N. [verfasserIn] Tamaura, Y. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1994 |
---|
Übergeordnetes Werk: |
Enthalten in: MRS online proceedings library - Warrendale, Pa. : MRS, 1998, 344(1994), 1 vom: Dez., Seite 301-306 |
---|---|
Übergeordnetes Werk: |
volume:344 ; year:1994 ; number:1 ; month:12 ; pages:301-306 |
Links: |
---|
DOI / URN: |
10.1557/PROC-344-301 |
---|
Katalog-ID: |
SPR041477839 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR041477839 | ||
003 | DE-627 | ||
005 | 20220112052041.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201102s1994 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1557/PROC-344-301 |2 doi | |
035 | |a (DE-627)SPR041477839 | ||
035 | |a (SPR)PROC-344-301-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q ASE |
100 | 1 | |a Tsuji, M. |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Chemical Heat Pump With an Endothermic and Reversible Chemical System Incorporated |
264 | 1 | |c 1994 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract A conceptual design of chemical heat pump system with reactive ceramics incorporated has been proposed and exemplified by several chemical reactions on activated metal oxides. It functions at temperatures of waste heat. The system involves the following endothermic reactions; (1) activation of metal oxide ceramics to activated ceramics using an oxygen-free inert gas, (2) $ H_{2} $O decomposition by the activated ceramics to form $ H_{2} $ gas at 300°C, (3) formation of $ CH_{4} $ from $ H_{2} $ and $ CO_{2} $ at 200-300°C, (4) $ CO_{2} $ decomposition to gaseous CO on activated oxide ceramics at 600-700°C. The working materials are typically magnetite, metal-bearing ferrites, transition metal-modified magnetite and other metal oxides. These basic reactions have been demonstrated to occur at temperatures of waste heat. The chemical heat pump will be effectively operated by incorporating their oxide membrane into the system. These findings have facilitated us to exploit a new field of research work. The above integrated chemical system may help the mitigation of $ CO_{2} $ in the global scale. | ||
700 | 1 | |a Wada, Y. |e verfasserin |4 aut | |
700 | 1 | |a Kodama, T. |e verfasserin |4 aut | |
700 | 1 | |a Hasegawa, N. |e verfasserin |4 aut | |
700 | 1 | |a Tamaura, Y. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t MRS online proceedings library |d Warrendale, Pa. : MRS, 1998 |g 344(1994), 1 vom: Dez., Seite 301-306 |w (DE-627)57782046X |w (DE-600)2451008-7 |x 1946-4274 |7 nnns |
773 | 1 | 8 | |g volume:344 |g year:1994 |g number:1 |g month:12 |g pages:301-306 |
856 | 4 | 0 | |u https://dx.doi.org/10.1557/PROC-344-301 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_2005 | ||
951 | |a AR | ||
952 | |d 344 |j 1994 |e 1 |c 12 |h 301-306 |
author_variant |
m t mt y w yw t k tk n h nh y t yt |
---|---|
matchkey_str |
article:19464274:1994----::ceiahapmwtaedtemcnrvrilceia |
hierarchy_sort_str |
1994 |
publishDate |
1994 |
allfields |
10.1557/PROC-344-301 doi (DE-627)SPR041477839 (SPR)PROC-344-301-e DE-627 ger DE-627 rakwb eng 670 ASE Tsuji, M. verfasserin aut A Chemical Heat Pump With an Endothermic and Reversible Chemical System Incorporated 1994 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract A conceptual design of chemical heat pump system with reactive ceramics incorporated has been proposed and exemplified by several chemical reactions on activated metal oxides. It functions at temperatures of waste heat. The system involves the following endothermic reactions; (1) activation of metal oxide ceramics to activated ceramics using an oxygen-free inert gas, (2) $ H_{2} $O decomposition by the activated ceramics to form $ H_{2} $ gas at 300°C, (3) formation of $ CH_{4} $ from $ H_{2} $ and $ CO_{2} $ at 200-300°C, (4) $ CO_{2} $ decomposition to gaseous CO on activated oxide ceramics at 600-700°C. The working materials are typically magnetite, metal-bearing ferrites, transition metal-modified magnetite and other metal oxides. These basic reactions have been demonstrated to occur at temperatures of waste heat. The chemical heat pump will be effectively operated by incorporating their oxide membrane into the system. These findings have facilitated us to exploit a new field of research work. The above integrated chemical system may help the mitigation of $ CO_{2} $ in the global scale. Wada, Y. verfasserin aut Kodama, T. verfasserin aut Hasegawa, N. verfasserin aut Tamaura, Y. verfasserin aut Enthalten in MRS online proceedings library Warrendale, Pa. : MRS, 1998 344(1994), 1 vom: Dez., Seite 301-306 (DE-627)57782046X (DE-600)2451008-7 1946-4274 nnns volume:344 year:1994 number:1 month:12 pages:301-306 https://dx.doi.org/10.1557/PROC-344-301 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_2005 AR 344 1994 1 12 301-306 |
spelling |
10.1557/PROC-344-301 doi (DE-627)SPR041477839 (SPR)PROC-344-301-e DE-627 ger DE-627 rakwb eng 670 ASE Tsuji, M. verfasserin aut A Chemical Heat Pump With an Endothermic and Reversible Chemical System Incorporated 1994 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract A conceptual design of chemical heat pump system with reactive ceramics incorporated has been proposed and exemplified by several chemical reactions on activated metal oxides. It functions at temperatures of waste heat. The system involves the following endothermic reactions; (1) activation of metal oxide ceramics to activated ceramics using an oxygen-free inert gas, (2) $ H_{2} $O decomposition by the activated ceramics to form $ H_{2} $ gas at 300°C, (3) formation of $ CH_{4} $ from $ H_{2} $ and $ CO_{2} $ at 200-300°C, (4) $ CO_{2} $ decomposition to gaseous CO on activated oxide ceramics at 600-700°C. The working materials are typically magnetite, metal-bearing ferrites, transition metal-modified magnetite and other metal oxides. These basic reactions have been demonstrated to occur at temperatures of waste heat. The chemical heat pump will be effectively operated by incorporating their oxide membrane into the system. These findings have facilitated us to exploit a new field of research work. The above integrated chemical system may help the mitigation of $ CO_{2} $ in the global scale. Wada, Y. verfasserin aut Kodama, T. verfasserin aut Hasegawa, N. verfasserin aut Tamaura, Y. verfasserin aut Enthalten in MRS online proceedings library Warrendale, Pa. : MRS, 1998 344(1994), 1 vom: Dez., Seite 301-306 (DE-627)57782046X (DE-600)2451008-7 1946-4274 nnns volume:344 year:1994 number:1 month:12 pages:301-306 https://dx.doi.org/10.1557/PROC-344-301 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_2005 AR 344 1994 1 12 301-306 |
allfields_unstemmed |
10.1557/PROC-344-301 doi (DE-627)SPR041477839 (SPR)PROC-344-301-e DE-627 ger DE-627 rakwb eng 670 ASE Tsuji, M. verfasserin aut A Chemical Heat Pump With an Endothermic and Reversible Chemical System Incorporated 1994 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract A conceptual design of chemical heat pump system with reactive ceramics incorporated has been proposed and exemplified by several chemical reactions on activated metal oxides. It functions at temperatures of waste heat. The system involves the following endothermic reactions; (1) activation of metal oxide ceramics to activated ceramics using an oxygen-free inert gas, (2) $ H_{2} $O decomposition by the activated ceramics to form $ H_{2} $ gas at 300°C, (3) formation of $ CH_{4} $ from $ H_{2} $ and $ CO_{2} $ at 200-300°C, (4) $ CO_{2} $ decomposition to gaseous CO on activated oxide ceramics at 600-700°C. The working materials are typically magnetite, metal-bearing ferrites, transition metal-modified magnetite and other metal oxides. These basic reactions have been demonstrated to occur at temperatures of waste heat. The chemical heat pump will be effectively operated by incorporating their oxide membrane into the system. These findings have facilitated us to exploit a new field of research work. The above integrated chemical system may help the mitigation of $ CO_{2} $ in the global scale. Wada, Y. verfasserin aut Kodama, T. verfasserin aut Hasegawa, N. verfasserin aut Tamaura, Y. verfasserin aut Enthalten in MRS online proceedings library Warrendale, Pa. : MRS, 1998 344(1994), 1 vom: Dez., Seite 301-306 (DE-627)57782046X (DE-600)2451008-7 1946-4274 nnns volume:344 year:1994 number:1 month:12 pages:301-306 https://dx.doi.org/10.1557/PROC-344-301 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_2005 AR 344 1994 1 12 301-306 |
allfieldsGer |
10.1557/PROC-344-301 doi (DE-627)SPR041477839 (SPR)PROC-344-301-e DE-627 ger DE-627 rakwb eng 670 ASE Tsuji, M. verfasserin aut A Chemical Heat Pump With an Endothermic and Reversible Chemical System Incorporated 1994 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract A conceptual design of chemical heat pump system with reactive ceramics incorporated has been proposed and exemplified by several chemical reactions on activated metal oxides. It functions at temperatures of waste heat. The system involves the following endothermic reactions; (1) activation of metal oxide ceramics to activated ceramics using an oxygen-free inert gas, (2) $ H_{2} $O decomposition by the activated ceramics to form $ H_{2} $ gas at 300°C, (3) formation of $ CH_{4} $ from $ H_{2} $ and $ CO_{2} $ at 200-300°C, (4) $ CO_{2} $ decomposition to gaseous CO on activated oxide ceramics at 600-700°C. The working materials are typically magnetite, metal-bearing ferrites, transition metal-modified magnetite and other metal oxides. These basic reactions have been demonstrated to occur at temperatures of waste heat. The chemical heat pump will be effectively operated by incorporating their oxide membrane into the system. These findings have facilitated us to exploit a new field of research work. The above integrated chemical system may help the mitigation of $ CO_{2} $ in the global scale. Wada, Y. verfasserin aut Kodama, T. verfasserin aut Hasegawa, N. verfasserin aut Tamaura, Y. verfasserin aut Enthalten in MRS online proceedings library Warrendale, Pa. : MRS, 1998 344(1994), 1 vom: Dez., Seite 301-306 (DE-627)57782046X (DE-600)2451008-7 1946-4274 nnns volume:344 year:1994 number:1 month:12 pages:301-306 https://dx.doi.org/10.1557/PROC-344-301 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_2005 AR 344 1994 1 12 301-306 |
allfieldsSound |
10.1557/PROC-344-301 doi (DE-627)SPR041477839 (SPR)PROC-344-301-e DE-627 ger DE-627 rakwb eng 670 ASE Tsuji, M. verfasserin aut A Chemical Heat Pump With an Endothermic and Reversible Chemical System Incorporated 1994 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract A conceptual design of chemical heat pump system with reactive ceramics incorporated has been proposed and exemplified by several chemical reactions on activated metal oxides. It functions at temperatures of waste heat. The system involves the following endothermic reactions; (1) activation of metal oxide ceramics to activated ceramics using an oxygen-free inert gas, (2) $ H_{2} $O decomposition by the activated ceramics to form $ H_{2} $ gas at 300°C, (3) formation of $ CH_{4} $ from $ H_{2} $ and $ CO_{2} $ at 200-300°C, (4) $ CO_{2} $ decomposition to gaseous CO on activated oxide ceramics at 600-700°C. The working materials are typically magnetite, metal-bearing ferrites, transition metal-modified magnetite and other metal oxides. These basic reactions have been demonstrated to occur at temperatures of waste heat. The chemical heat pump will be effectively operated by incorporating their oxide membrane into the system. These findings have facilitated us to exploit a new field of research work. The above integrated chemical system may help the mitigation of $ CO_{2} $ in the global scale. Wada, Y. verfasserin aut Kodama, T. verfasserin aut Hasegawa, N. verfasserin aut Tamaura, Y. verfasserin aut Enthalten in MRS online proceedings library Warrendale, Pa. : MRS, 1998 344(1994), 1 vom: Dez., Seite 301-306 (DE-627)57782046X (DE-600)2451008-7 1946-4274 nnns volume:344 year:1994 number:1 month:12 pages:301-306 https://dx.doi.org/10.1557/PROC-344-301 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_2005 AR 344 1994 1 12 301-306 |
language |
English |
source |
Enthalten in MRS online proceedings library 344(1994), 1 vom: Dez., Seite 301-306 volume:344 year:1994 number:1 month:12 pages:301-306 |
sourceStr |
Enthalten in MRS online proceedings library 344(1994), 1 vom: Dez., Seite 301-306 volume:344 year:1994 number:1 month:12 pages:301-306 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
MRS online proceedings library |
authorswithroles_txt_mv |
Tsuji, M. @@aut@@ Wada, Y. @@aut@@ Kodama, T. @@aut@@ Hasegawa, N. @@aut@@ Tamaura, Y. @@aut@@ |
publishDateDaySort_date |
1994-12-01T00:00:00Z |
hierarchy_top_id |
57782046X |
dewey-sort |
3670 |
id |
SPR041477839 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR041477839</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220112052041.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201102s1994 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1557/PROC-344-301</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR041477839</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)PROC-344-301-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tsuji, M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Chemical Heat Pump With an Endothermic and Reversible Chemical System Incorporated</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1994</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A conceptual design of chemical heat pump system with reactive ceramics incorporated has been proposed and exemplified by several chemical reactions on activated metal oxides. It functions at temperatures of waste heat. The system involves the following endothermic reactions; (1) activation of metal oxide ceramics to activated ceramics using an oxygen-free inert gas, (2) $ H_{2} $O decomposition by the activated ceramics to form $ H_{2} $ gas at 300°C, (3) formation of $ CH_{4} $ from $ H_{2} $ and $ CO_{2} $ at 200-300°C, (4) $ CO_{2} $ decomposition to gaseous CO on activated oxide ceramics at 600-700°C. The working materials are typically magnetite, metal-bearing ferrites, transition metal-modified magnetite and other metal oxides. These basic reactions have been demonstrated to occur at temperatures of waste heat. The chemical heat pump will be effectively operated by incorporating their oxide membrane into the system. These findings have facilitated us to exploit a new field of research work. The above integrated chemical system may help the mitigation of $ CO_{2} $ in the global scale.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wada, Y.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kodama, T.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hasegawa, N.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tamaura, Y.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">MRS online proceedings library</subfield><subfield code="d">Warrendale, Pa. : MRS, 1998</subfield><subfield code="g">344(1994), 1 vom: Dez., Seite 301-306</subfield><subfield code="w">(DE-627)57782046X</subfield><subfield code="w">(DE-600)2451008-7</subfield><subfield code="x">1946-4274</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:344</subfield><subfield code="g">year:1994</subfield><subfield code="g">number:1</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:301-306</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1557/PROC-344-301</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">344</subfield><subfield code="j">1994</subfield><subfield code="e">1</subfield><subfield code="c">12</subfield><subfield code="h">301-306</subfield></datafield></record></collection>
|
author |
Tsuji, M. |
spellingShingle |
Tsuji, M. ddc 670 A Chemical Heat Pump With an Endothermic and Reversible Chemical System Incorporated |
authorStr |
Tsuji, M. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)57782046X |
format |
electronic Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1946-4274 |
topic_title |
670 ASE A Chemical Heat Pump With an Endothermic and Reversible Chemical System Incorporated |
topic |
ddc 670 |
topic_unstemmed |
ddc 670 |
topic_browse |
ddc 670 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
MRS online proceedings library |
hierarchy_parent_id |
57782046X |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
MRS online proceedings library |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)57782046X (DE-600)2451008-7 |
title |
A Chemical Heat Pump With an Endothermic and Reversible Chemical System Incorporated |
ctrlnum |
(DE-627)SPR041477839 (SPR)PROC-344-301-e |
title_full |
A Chemical Heat Pump With an Endothermic and Reversible Chemical System Incorporated |
author_sort |
Tsuji, M. |
journal |
MRS online proceedings library |
journalStr |
MRS online proceedings library |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
1994 |
contenttype_str_mv |
txt |
container_start_page |
301 |
author_browse |
Tsuji, M. Wada, Y. Kodama, T. Hasegawa, N. Tamaura, Y. |
container_volume |
344 |
class |
670 ASE |
format_se |
Elektronische Aufsätze |
author-letter |
Tsuji, M. |
doi_str_mv |
10.1557/PROC-344-301 |
dewey-full |
670 |
author2-role |
verfasserin |
title_sort |
chemical heat pump with an endothermic and reversible chemical system incorporated |
title_auth |
A Chemical Heat Pump With an Endothermic and Reversible Chemical System Incorporated |
abstract |
Abstract A conceptual design of chemical heat pump system with reactive ceramics incorporated has been proposed and exemplified by several chemical reactions on activated metal oxides. It functions at temperatures of waste heat. The system involves the following endothermic reactions; (1) activation of metal oxide ceramics to activated ceramics using an oxygen-free inert gas, (2) $ H_{2} $O decomposition by the activated ceramics to form $ H_{2} $ gas at 300°C, (3) formation of $ CH_{4} $ from $ H_{2} $ and $ CO_{2} $ at 200-300°C, (4) $ CO_{2} $ decomposition to gaseous CO on activated oxide ceramics at 600-700°C. The working materials are typically magnetite, metal-bearing ferrites, transition metal-modified magnetite and other metal oxides. These basic reactions have been demonstrated to occur at temperatures of waste heat. The chemical heat pump will be effectively operated by incorporating their oxide membrane into the system. These findings have facilitated us to exploit a new field of research work. The above integrated chemical system may help the mitigation of $ CO_{2} $ in the global scale. |
abstractGer |
Abstract A conceptual design of chemical heat pump system with reactive ceramics incorporated has been proposed and exemplified by several chemical reactions on activated metal oxides. It functions at temperatures of waste heat. The system involves the following endothermic reactions; (1) activation of metal oxide ceramics to activated ceramics using an oxygen-free inert gas, (2) $ H_{2} $O decomposition by the activated ceramics to form $ H_{2} $ gas at 300°C, (3) formation of $ CH_{4} $ from $ H_{2} $ and $ CO_{2} $ at 200-300°C, (4) $ CO_{2} $ decomposition to gaseous CO on activated oxide ceramics at 600-700°C. The working materials are typically magnetite, metal-bearing ferrites, transition metal-modified magnetite and other metal oxides. These basic reactions have been demonstrated to occur at temperatures of waste heat. The chemical heat pump will be effectively operated by incorporating their oxide membrane into the system. These findings have facilitated us to exploit a new field of research work. The above integrated chemical system may help the mitigation of $ CO_{2} $ in the global scale. |
abstract_unstemmed |
Abstract A conceptual design of chemical heat pump system with reactive ceramics incorporated has been proposed and exemplified by several chemical reactions on activated metal oxides. It functions at temperatures of waste heat. The system involves the following endothermic reactions; (1) activation of metal oxide ceramics to activated ceramics using an oxygen-free inert gas, (2) $ H_{2} $O decomposition by the activated ceramics to form $ H_{2} $ gas at 300°C, (3) formation of $ CH_{4} $ from $ H_{2} $ and $ CO_{2} $ at 200-300°C, (4) $ CO_{2} $ decomposition to gaseous CO on activated oxide ceramics at 600-700°C. The working materials are typically magnetite, metal-bearing ferrites, transition metal-modified magnetite and other metal oxides. These basic reactions have been demonstrated to occur at temperatures of waste heat. The chemical heat pump will be effectively operated by incorporating their oxide membrane into the system. These findings have facilitated us to exploit a new field of research work. The above integrated chemical system may help the mitigation of $ CO_{2} $ in the global scale. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_2005 |
container_issue |
1 |
title_short |
A Chemical Heat Pump With an Endothermic and Reversible Chemical System Incorporated |
url |
https://dx.doi.org/10.1557/PROC-344-301 |
remote_bool |
true |
author2 |
Wada, Y. Kodama, T. Hasegawa, N. Tamaura, Y. |
author2Str |
Wada, Y. Kodama, T. Hasegawa, N. Tamaura, Y. |
ppnlink |
57782046X |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1557/PROC-344-301 |
up_date |
2024-07-03T22:16:36.187Z |
_version_ |
1803597901930168320 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR041477839</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220112052041.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201102s1994 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1557/PROC-344-301</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR041477839</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)PROC-344-301-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tsuji, M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Chemical Heat Pump With an Endothermic and Reversible Chemical System Incorporated</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1994</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A conceptual design of chemical heat pump system with reactive ceramics incorporated has been proposed and exemplified by several chemical reactions on activated metal oxides. It functions at temperatures of waste heat. The system involves the following endothermic reactions; (1) activation of metal oxide ceramics to activated ceramics using an oxygen-free inert gas, (2) $ H_{2} $O decomposition by the activated ceramics to form $ H_{2} $ gas at 300°C, (3) formation of $ CH_{4} $ from $ H_{2} $ and $ CO_{2} $ at 200-300°C, (4) $ CO_{2} $ decomposition to gaseous CO on activated oxide ceramics at 600-700°C. The working materials are typically magnetite, metal-bearing ferrites, transition metal-modified magnetite and other metal oxides. These basic reactions have been demonstrated to occur at temperatures of waste heat. The chemical heat pump will be effectively operated by incorporating their oxide membrane into the system. These findings have facilitated us to exploit a new field of research work. The above integrated chemical system may help the mitigation of $ CO_{2} $ in the global scale.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wada, Y.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kodama, T.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hasegawa, N.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tamaura, Y.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">MRS online proceedings library</subfield><subfield code="d">Warrendale, Pa. : MRS, 1998</subfield><subfield code="g">344(1994), 1 vom: Dez., Seite 301-306</subfield><subfield code="w">(DE-627)57782046X</subfield><subfield code="w">(DE-600)2451008-7</subfield><subfield code="x">1946-4274</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:344</subfield><subfield code="g">year:1994</subfield><subfield code="g">number:1</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:301-306</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1557/PROC-344-301</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">344</subfield><subfield code="j">1994</subfield><subfield code="e">1</subfield><subfield code="c">12</subfield><subfield code="h">301-306</subfield></datafield></record></collection>
|
score |
7.401087 |