Increasingly important role of numerical modeling in oceanic observation design strategy: A review
Abstract Oceanic observation design is of considerable significance and has made remarkable progress during the past several decades. This study addresses the critical role of numerical modeling in oceanic observation design. Following a brief introduction of the characteristics of existing oceanic...
Ausführliche Beschreibung
Autor*in: |
Zhang, Kun [verfasserIn] Mu, Mu [verfasserIn] Wang, Qiang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Science in China - Heidelberg : Springer, 1997, 63(2020), 11 vom: 09. Okt., Seite 1678-1690 |
---|---|
Übergeordnetes Werk: |
volume:63 ; year:2020 ; number:11 ; day:09 ; month:10 ; pages:1678-1690 |
Links: |
---|
DOI / URN: |
10.1007/s11430-020-9674-6 |
---|
Katalog-ID: |
SPR041678362 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR041678362 | ||
003 | DE-627 | ||
005 | 20220111065324.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201102s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11430-020-9674-6 |2 doi | |
035 | |a (DE-627)SPR041678362 | ||
035 | |a (SPR)s11430-020-9674-6-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q ASE |
084 | |a 38.00 |2 bkl | ||
100 | 1 | |a Zhang, Kun |e verfasserin |4 aut | |
245 | 1 | 0 | |a Increasingly important role of numerical modeling in oceanic observation design strategy: A review |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Oceanic observation design is of considerable significance and has made remarkable progress during the past several decades. This study addresses the critical role of numerical modeling in oceanic observation design. Following a brief introduction of the characteristics of existing oceanic observation design studies, we present the advantages of the model-based observation design strategy and further review its decisive contribution. To demonstrate the effectiveness of this strategy, the targeted observation applications using the conditional nonlinear optimal perturbation (CNOP) approach for improving the Kuroshio predictions are introduced. Finally, the authors present their consideration for correcting model errors by targeted observations of sensitive model parameters and mitigating the model-dependency problem by utilizing multiple modeling systems. Suggestions on using observing system simulation experiments to validate the designed observations and extending the model-based observation design strategy into observing oceanic climatological mean states are also discussed. | ||
650 | 4 | |a Observation design |7 (dpeaa)DE-He213 | |
650 | 4 | |a Numerical modeling |7 (dpeaa)DE-He213 | |
650 | 4 | |a Targeted observation |7 (dpeaa)DE-He213 | |
650 | 4 | |a CNOP |7 (dpeaa)DE-He213 | |
700 | 1 | |a Mu, Mu |e verfasserin |4 aut | |
700 | 1 | |a Wang, Qiang |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Science in China |d Heidelberg : Springer, 1997 |g 63(2020), 11 vom: 09. Okt., Seite 1678-1690 |w (DE-627)385614748 |w (DE-600)2142896-7 |x 1862-2801 |7 nnns |
773 | 1 | 8 | |g volume:63 |g year:2020 |g number:11 |g day:09 |g month:10 |g pages:1678-1690 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11430-020-9674-6 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OPC-GGO | ||
912 | |a SSG-OPC-ASE | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
936 | b | k | |a 38.00 |q ASE |
951 | |a AR | ||
952 | |d 63 |j 2020 |e 11 |b 09 |c 10 |h 1678-1690 |
author_variant |
k z kz m m mm q w qw |
---|---|
matchkey_str |
article:18622801:2020----::nraigymotnrlonmrcloeigncaiosrai |
hierarchy_sort_str |
2020 |
bklnumber |
38.00 |
publishDate |
2020 |
allfields |
10.1007/s11430-020-9674-6 doi (DE-627)SPR041678362 (SPR)s11430-020-9674-6-e DE-627 ger DE-627 rakwb eng 550 ASE 38.00 bkl Zhang, Kun verfasserin aut Increasingly important role of numerical modeling in oceanic observation design strategy: A review 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Oceanic observation design is of considerable significance and has made remarkable progress during the past several decades. This study addresses the critical role of numerical modeling in oceanic observation design. Following a brief introduction of the characteristics of existing oceanic observation design studies, we present the advantages of the model-based observation design strategy and further review its decisive contribution. To demonstrate the effectiveness of this strategy, the targeted observation applications using the conditional nonlinear optimal perturbation (CNOP) approach for improving the Kuroshio predictions are introduced. Finally, the authors present their consideration for correcting model errors by targeted observations of sensitive model parameters and mitigating the model-dependency problem by utilizing multiple modeling systems. Suggestions on using observing system simulation experiments to validate the designed observations and extending the model-based observation design strategy into observing oceanic climatological mean states are also discussed. Observation design (dpeaa)DE-He213 Numerical modeling (dpeaa)DE-He213 Targeted observation (dpeaa)DE-He213 CNOP (dpeaa)DE-He213 Mu, Mu verfasserin aut Wang, Qiang verfasserin aut Enthalten in Science in China Heidelberg : Springer, 1997 63(2020), 11 vom: 09. Okt., Seite 1678-1690 (DE-627)385614748 (DE-600)2142896-7 1862-2801 nnns volume:63 year:2020 number:11 day:09 month:10 pages:1678-1690 https://dx.doi.org/10.1007/s11430-020-9674-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-GGO SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 38.00 ASE AR 63 2020 11 09 10 1678-1690 |
spelling |
10.1007/s11430-020-9674-6 doi (DE-627)SPR041678362 (SPR)s11430-020-9674-6-e DE-627 ger DE-627 rakwb eng 550 ASE 38.00 bkl Zhang, Kun verfasserin aut Increasingly important role of numerical modeling in oceanic observation design strategy: A review 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Oceanic observation design is of considerable significance and has made remarkable progress during the past several decades. This study addresses the critical role of numerical modeling in oceanic observation design. Following a brief introduction of the characteristics of existing oceanic observation design studies, we present the advantages of the model-based observation design strategy and further review its decisive contribution. To demonstrate the effectiveness of this strategy, the targeted observation applications using the conditional nonlinear optimal perturbation (CNOP) approach for improving the Kuroshio predictions are introduced. Finally, the authors present their consideration for correcting model errors by targeted observations of sensitive model parameters and mitigating the model-dependency problem by utilizing multiple modeling systems. Suggestions on using observing system simulation experiments to validate the designed observations and extending the model-based observation design strategy into observing oceanic climatological mean states are also discussed. Observation design (dpeaa)DE-He213 Numerical modeling (dpeaa)DE-He213 Targeted observation (dpeaa)DE-He213 CNOP (dpeaa)DE-He213 Mu, Mu verfasserin aut Wang, Qiang verfasserin aut Enthalten in Science in China Heidelberg : Springer, 1997 63(2020), 11 vom: 09. Okt., Seite 1678-1690 (DE-627)385614748 (DE-600)2142896-7 1862-2801 nnns volume:63 year:2020 number:11 day:09 month:10 pages:1678-1690 https://dx.doi.org/10.1007/s11430-020-9674-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-GGO SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 38.00 ASE AR 63 2020 11 09 10 1678-1690 |
allfields_unstemmed |
10.1007/s11430-020-9674-6 doi (DE-627)SPR041678362 (SPR)s11430-020-9674-6-e DE-627 ger DE-627 rakwb eng 550 ASE 38.00 bkl Zhang, Kun verfasserin aut Increasingly important role of numerical modeling in oceanic observation design strategy: A review 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Oceanic observation design is of considerable significance and has made remarkable progress during the past several decades. This study addresses the critical role of numerical modeling in oceanic observation design. Following a brief introduction of the characteristics of existing oceanic observation design studies, we present the advantages of the model-based observation design strategy and further review its decisive contribution. To demonstrate the effectiveness of this strategy, the targeted observation applications using the conditional nonlinear optimal perturbation (CNOP) approach for improving the Kuroshio predictions are introduced. Finally, the authors present their consideration for correcting model errors by targeted observations of sensitive model parameters and mitigating the model-dependency problem by utilizing multiple modeling systems. Suggestions on using observing system simulation experiments to validate the designed observations and extending the model-based observation design strategy into observing oceanic climatological mean states are also discussed. Observation design (dpeaa)DE-He213 Numerical modeling (dpeaa)DE-He213 Targeted observation (dpeaa)DE-He213 CNOP (dpeaa)DE-He213 Mu, Mu verfasserin aut Wang, Qiang verfasserin aut Enthalten in Science in China Heidelberg : Springer, 1997 63(2020), 11 vom: 09. Okt., Seite 1678-1690 (DE-627)385614748 (DE-600)2142896-7 1862-2801 nnns volume:63 year:2020 number:11 day:09 month:10 pages:1678-1690 https://dx.doi.org/10.1007/s11430-020-9674-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-GGO SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 38.00 ASE AR 63 2020 11 09 10 1678-1690 |
allfieldsGer |
10.1007/s11430-020-9674-6 doi (DE-627)SPR041678362 (SPR)s11430-020-9674-6-e DE-627 ger DE-627 rakwb eng 550 ASE 38.00 bkl Zhang, Kun verfasserin aut Increasingly important role of numerical modeling in oceanic observation design strategy: A review 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Oceanic observation design is of considerable significance and has made remarkable progress during the past several decades. This study addresses the critical role of numerical modeling in oceanic observation design. Following a brief introduction of the characteristics of existing oceanic observation design studies, we present the advantages of the model-based observation design strategy and further review its decisive contribution. To demonstrate the effectiveness of this strategy, the targeted observation applications using the conditional nonlinear optimal perturbation (CNOP) approach for improving the Kuroshio predictions are introduced. Finally, the authors present their consideration for correcting model errors by targeted observations of sensitive model parameters and mitigating the model-dependency problem by utilizing multiple modeling systems. Suggestions on using observing system simulation experiments to validate the designed observations and extending the model-based observation design strategy into observing oceanic climatological mean states are also discussed. Observation design (dpeaa)DE-He213 Numerical modeling (dpeaa)DE-He213 Targeted observation (dpeaa)DE-He213 CNOP (dpeaa)DE-He213 Mu, Mu verfasserin aut Wang, Qiang verfasserin aut Enthalten in Science in China Heidelberg : Springer, 1997 63(2020), 11 vom: 09. Okt., Seite 1678-1690 (DE-627)385614748 (DE-600)2142896-7 1862-2801 nnns volume:63 year:2020 number:11 day:09 month:10 pages:1678-1690 https://dx.doi.org/10.1007/s11430-020-9674-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-GGO SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 38.00 ASE AR 63 2020 11 09 10 1678-1690 |
allfieldsSound |
10.1007/s11430-020-9674-6 doi (DE-627)SPR041678362 (SPR)s11430-020-9674-6-e DE-627 ger DE-627 rakwb eng 550 ASE 38.00 bkl Zhang, Kun verfasserin aut Increasingly important role of numerical modeling in oceanic observation design strategy: A review 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Oceanic observation design is of considerable significance and has made remarkable progress during the past several decades. This study addresses the critical role of numerical modeling in oceanic observation design. Following a brief introduction of the characteristics of existing oceanic observation design studies, we present the advantages of the model-based observation design strategy and further review its decisive contribution. To demonstrate the effectiveness of this strategy, the targeted observation applications using the conditional nonlinear optimal perturbation (CNOP) approach for improving the Kuroshio predictions are introduced. Finally, the authors present their consideration for correcting model errors by targeted observations of sensitive model parameters and mitigating the model-dependency problem by utilizing multiple modeling systems. Suggestions on using observing system simulation experiments to validate the designed observations and extending the model-based observation design strategy into observing oceanic climatological mean states are also discussed. Observation design (dpeaa)DE-He213 Numerical modeling (dpeaa)DE-He213 Targeted observation (dpeaa)DE-He213 CNOP (dpeaa)DE-He213 Mu, Mu verfasserin aut Wang, Qiang verfasserin aut Enthalten in Science in China Heidelberg : Springer, 1997 63(2020), 11 vom: 09. Okt., Seite 1678-1690 (DE-627)385614748 (DE-600)2142896-7 1862-2801 nnns volume:63 year:2020 number:11 day:09 month:10 pages:1678-1690 https://dx.doi.org/10.1007/s11430-020-9674-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-GGO SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 38.00 ASE AR 63 2020 11 09 10 1678-1690 |
language |
English |
source |
Enthalten in Science in China 63(2020), 11 vom: 09. Okt., Seite 1678-1690 volume:63 year:2020 number:11 day:09 month:10 pages:1678-1690 |
sourceStr |
Enthalten in Science in China 63(2020), 11 vom: 09. Okt., Seite 1678-1690 volume:63 year:2020 number:11 day:09 month:10 pages:1678-1690 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Observation design Numerical modeling Targeted observation CNOP |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Science in China |
authorswithroles_txt_mv |
Zhang, Kun @@aut@@ Mu, Mu @@aut@@ Wang, Qiang @@aut@@ |
publishDateDaySort_date |
2020-10-09T00:00:00Z |
hierarchy_top_id |
385614748 |
dewey-sort |
3550 |
id |
SPR041678362 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR041678362</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111065324.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201102s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11430-020-9674-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR041678362</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11430-020-9674-6-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Kun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Increasingly important role of numerical modeling in oceanic observation design strategy: A review</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Oceanic observation design is of considerable significance and has made remarkable progress during the past several decades. This study addresses the critical role of numerical modeling in oceanic observation design. Following a brief introduction of the characteristics of existing oceanic observation design studies, we present the advantages of the model-based observation design strategy and further review its decisive contribution. To demonstrate the effectiveness of this strategy, the targeted observation applications using the conditional nonlinear optimal perturbation (CNOP) approach for improving the Kuroshio predictions are introduced. Finally, the authors present their consideration for correcting model errors by targeted observations of sensitive model parameters and mitigating the model-dependency problem by utilizing multiple modeling systems. Suggestions on using observing system simulation experiments to validate the designed observations and extending the model-based observation design strategy into observing oceanic climatological mean states are also discussed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Observation design</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical modeling</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Targeted observation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CNOP</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mu, Mu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Qiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Science in China</subfield><subfield code="d">Heidelberg : Springer, 1997</subfield><subfield code="g">63(2020), 11 vom: 09. Okt., Seite 1678-1690</subfield><subfield code="w">(DE-627)385614748</subfield><subfield code="w">(DE-600)2142896-7</subfield><subfield code="x">1862-2801</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:63</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:11</subfield><subfield code="g">day:09</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:1678-1690</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11430-020-9674-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">63</subfield><subfield code="j">2020</subfield><subfield code="e">11</subfield><subfield code="b">09</subfield><subfield code="c">10</subfield><subfield code="h">1678-1690</subfield></datafield></record></collection>
|
author |
Zhang, Kun |
spellingShingle |
Zhang, Kun ddc 550 bkl 38.00 misc Observation design misc Numerical modeling misc Targeted observation misc CNOP Increasingly important role of numerical modeling in oceanic observation design strategy: A review |
authorStr |
Zhang, Kun |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)385614748 |
format |
electronic Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1862-2801 |
topic_title |
550 ASE 38.00 bkl Increasingly important role of numerical modeling in oceanic observation design strategy: A review Observation design (dpeaa)DE-He213 Numerical modeling (dpeaa)DE-He213 Targeted observation (dpeaa)DE-He213 CNOP (dpeaa)DE-He213 |
topic |
ddc 550 bkl 38.00 misc Observation design misc Numerical modeling misc Targeted observation misc CNOP |
topic_unstemmed |
ddc 550 bkl 38.00 misc Observation design misc Numerical modeling misc Targeted observation misc CNOP |
topic_browse |
ddc 550 bkl 38.00 misc Observation design misc Numerical modeling misc Targeted observation misc CNOP |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Science in China |
hierarchy_parent_id |
385614748 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Science in China |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)385614748 (DE-600)2142896-7 |
title |
Increasingly important role of numerical modeling in oceanic observation design strategy: A review |
ctrlnum |
(DE-627)SPR041678362 (SPR)s11430-020-9674-6-e |
title_full |
Increasingly important role of numerical modeling in oceanic observation design strategy: A review |
author_sort |
Zhang, Kun |
journal |
Science in China |
journalStr |
Science in China |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
1678 |
author_browse |
Zhang, Kun Mu, Mu Wang, Qiang |
container_volume |
63 |
class |
550 ASE 38.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zhang, Kun |
doi_str_mv |
10.1007/s11430-020-9674-6 |
dewey-full |
550 |
author2-role |
verfasserin |
title_sort |
increasingly important role of numerical modeling in oceanic observation design strategy: a review |
title_auth |
Increasingly important role of numerical modeling in oceanic observation design strategy: A review |
abstract |
Abstract Oceanic observation design is of considerable significance and has made remarkable progress during the past several decades. This study addresses the critical role of numerical modeling in oceanic observation design. Following a brief introduction of the characteristics of existing oceanic observation design studies, we present the advantages of the model-based observation design strategy and further review its decisive contribution. To demonstrate the effectiveness of this strategy, the targeted observation applications using the conditional nonlinear optimal perturbation (CNOP) approach for improving the Kuroshio predictions are introduced. Finally, the authors present their consideration for correcting model errors by targeted observations of sensitive model parameters and mitigating the model-dependency problem by utilizing multiple modeling systems. Suggestions on using observing system simulation experiments to validate the designed observations and extending the model-based observation design strategy into observing oceanic climatological mean states are also discussed. |
abstractGer |
Abstract Oceanic observation design is of considerable significance and has made remarkable progress during the past several decades. This study addresses the critical role of numerical modeling in oceanic observation design. Following a brief introduction of the characteristics of existing oceanic observation design studies, we present the advantages of the model-based observation design strategy and further review its decisive contribution. To demonstrate the effectiveness of this strategy, the targeted observation applications using the conditional nonlinear optimal perturbation (CNOP) approach for improving the Kuroshio predictions are introduced. Finally, the authors present their consideration for correcting model errors by targeted observations of sensitive model parameters and mitigating the model-dependency problem by utilizing multiple modeling systems. Suggestions on using observing system simulation experiments to validate the designed observations and extending the model-based observation design strategy into observing oceanic climatological mean states are also discussed. |
abstract_unstemmed |
Abstract Oceanic observation design is of considerable significance and has made remarkable progress during the past several decades. This study addresses the critical role of numerical modeling in oceanic observation design. Following a brief introduction of the characteristics of existing oceanic observation design studies, we present the advantages of the model-based observation design strategy and further review its decisive contribution. To demonstrate the effectiveness of this strategy, the targeted observation applications using the conditional nonlinear optimal perturbation (CNOP) approach for improving the Kuroshio predictions are introduced. Finally, the authors present their consideration for correcting model errors by targeted observations of sensitive model parameters and mitigating the model-dependency problem by utilizing multiple modeling systems. Suggestions on using observing system simulation experiments to validate the designed observations and extending the model-based observation design strategy into observing oceanic climatological mean states are also discussed. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-GGO SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 |
container_issue |
11 |
title_short |
Increasingly important role of numerical modeling in oceanic observation design strategy: A review |
url |
https://dx.doi.org/10.1007/s11430-020-9674-6 |
remote_bool |
true |
author2 |
Mu, Mu Wang, Qiang |
author2Str |
Mu, Mu Wang, Qiang |
ppnlink |
385614748 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11430-020-9674-6 |
up_date |
2024-07-03T23:09:56.627Z |
_version_ |
1803601257827401728 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR041678362</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111065324.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201102s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11430-020-9674-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR041678362</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11430-020-9674-6-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Kun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Increasingly important role of numerical modeling in oceanic observation design strategy: A review</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Oceanic observation design is of considerable significance and has made remarkable progress during the past several decades. This study addresses the critical role of numerical modeling in oceanic observation design. Following a brief introduction of the characteristics of existing oceanic observation design studies, we present the advantages of the model-based observation design strategy and further review its decisive contribution. To demonstrate the effectiveness of this strategy, the targeted observation applications using the conditional nonlinear optimal perturbation (CNOP) approach for improving the Kuroshio predictions are introduced. Finally, the authors present their consideration for correcting model errors by targeted observations of sensitive model parameters and mitigating the model-dependency problem by utilizing multiple modeling systems. Suggestions on using observing system simulation experiments to validate the designed observations and extending the model-based observation design strategy into observing oceanic climatological mean states are also discussed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Observation design</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical modeling</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Targeted observation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CNOP</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mu, Mu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Qiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Science in China</subfield><subfield code="d">Heidelberg : Springer, 1997</subfield><subfield code="g">63(2020), 11 vom: 09. Okt., Seite 1678-1690</subfield><subfield code="w">(DE-627)385614748</subfield><subfield code="w">(DE-600)2142896-7</subfield><subfield code="x">1862-2801</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:63</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:11</subfield><subfield code="g">day:09</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:1678-1690</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11430-020-9674-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">63</subfield><subfield code="j">2020</subfield><subfield code="e">11</subfield><subfield code="b">09</subfield><subfield code="c">10</subfield><subfield code="h">1678-1690</subfield></datafield></record></collection>
|
score |
7.3992615 |