Two- and Three-Dimensional Ultrananocrystalline Diamond (UNCD) Structures for a High Resolution Diamond-Based MEMS Technology
Abstract Silicon is currently the most commonly used material for the fabrication of microelectromechanical systems (MEMS). However, silicon-based MEMS will not be suitable for long-endurance devices involving components rotating at high speed, where friction and wear need to be minimized, component...
Ausführliche Beschreibung
Autor*in: |
Auciello, O. [verfasserIn] Krauss, A. R. [verfasserIn] Gruen, D. M. [verfasserIn] Meyer, E. M. [verfasserIn] Busmann, H. G. [verfasserIn] Tucek, J. [verfasserIn] Sumant, A. [verfasserIn] Jayatissa, A. [verfasserIn] Moldovan, N. [verfasserIn] Mancini, D. C. [verfasserIn] Gardos, M. N. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1999 |
---|
Übergeordnetes Werk: |
Enthalten in: MRS online proceedings library - Warrendale, Pa. : MRS, 1998, 605(1999), 1 vom: Dez., Seite 73-78 |
---|---|
Übergeordnetes Werk: |
volume:605 ; year:1999 ; number:1 ; month:12 ; pages:73-78 |
Links: |
---|
DOI / URN: |
10.1557/PROC-605-73 |
---|
Katalog-ID: |
SPR041972724 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR041972724 | ||
003 | DE-627 | ||
005 | 20220112052745.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201114s1999 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1557/PROC-605-73 |2 doi | |
035 | |a (DE-627)SPR041972724 | ||
035 | |a (SPR)PROC-605-73-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q ASE |
100 | 1 | |a Auciello, O. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Two- and Three-Dimensional Ultrananocrystalline Diamond (UNCD) Structures for a High Resolution Diamond-Based MEMS Technology |
264 | 1 | |c 1999 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Silicon is currently the most commonly used material for the fabrication of microelectromechanical systems (MEMS). However, silicon-based MEMS will not be suitable for long-endurance devices involving components rotating at high speed, where friction and wear need to be minimized, components such as 2-D cantilevers that may be subjected to very large flexural displacements, where stiction is a problem, or components that will be exposed to corrosive environments. The mechanical, thermal, chemical, and tribological properties of diamond make it an ideal material for the fabrication of long-endurance MEMS components. Cost-effective fabrication of these components could in principle be achieved by coating Si with diamond films and using conventional lithographic patterning methods in conjunction with e. g. sacrificial Ti or $ SiO_{2} $ layers. However, diamond coatings grown by conventional chemical vapor deposition (CVD) methods exhibit a coarse-grained structure that prevents high-resolution patterning, or a fine-grained microstructure with a significant amount of intergranular non-diamond carbon. We demonstrate here the fabrication of 2-D and 3-D phase-pure ultrananocrystalline diamond (UNCD) MEMS components by coating Si with UNCD films, coupled with lithographic patterning methods involving sacrificial release layers. UNCD films are grown by microwave plasma CVD using $ C_{60} $-Ar or $ CH_{4} $-Ar gas mixtures, which result in films that have 3–5 nm grain size, are 10-20 times smoother than conventionally grown diamond films, are extremely resistant to corrosive environments, and are predicted to have a brittle fracture strength similar to that of single crystal diamond. | ||
700 | 1 | |a Krauss, A. R. |e verfasserin |4 aut | |
700 | 1 | |a Gruen, D. M. |e verfasserin |4 aut | |
700 | 1 | |a Meyer, E. M. |e verfasserin |4 aut | |
700 | 1 | |a Busmann, H. G. |e verfasserin |4 aut | |
700 | 1 | |a Tucek, J. |e verfasserin |4 aut | |
700 | 1 | |a Sumant, A. |e verfasserin |4 aut | |
700 | 1 | |a Jayatissa, A. |e verfasserin |4 aut | |
700 | 1 | |a Moldovan, N. |e verfasserin |4 aut | |
700 | 1 | |a Mancini, D. C. |e verfasserin |4 aut | |
700 | 1 | |a Gardos, M. N. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t MRS online proceedings library |d Warrendale, Pa. : MRS, 1998 |g 605(1999), 1 vom: Dez., Seite 73-78 |w (DE-627)57782046X |w (DE-600)2451008-7 |x 1946-4274 |7 nnns |
773 | 1 | 8 | |g volume:605 |g year:1999 |g number:1 |g month:12 |g pages:73-78 |
856 | 4 | 0 | |u https://dx.doi.org/10.1557/PROC-605-73 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_2005 | ||
951 | |a AR | ||
952 | |d 605 |j 1999 |e 1 |c 12 |h 73-78 |
author_variant |
o a oa a r k ar ark d m g dm dmg e m m em emm h g b hg hgb j t jt a s as a j aj n m nm d c m dc dcm m n g mn mng |
---|---|
matchkey_str |
article:19464274:1999----::wadhedmninllrnncytlieimnucsrcuefrhgrslt |
hierarchy_sort_str |
1999 |
publishDate |
1999 |
allfields |
10.1557/PROC-605-73 doi (DE-627)SPR041972724 (SPR)PROC-605-73-e DE-627 ger DE-627 rakwb eng 670 ASE Auciello, O. verfasserin aut Two- and Three-Dimensional Ultrananocrystalline Diamond (UNCD) Structures for a High Resolution Diamond-Based MEMS Technology 1999 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Silicon is currently the most commonly used material for the fabrication of microelectromechanical systems (MEMS). However, silicon-based MEMS will not be suitable for long-endurance devices involving components rotating at high speed, where friction and wear need to be minimized, components such as 2-D cantilevers that may be subjected to very large flexural displacements, where stiction is a problem, or components that will be exposed to corrosive environments. The mechanical, thermal, chemical, and tribological properties of diamond make it an ideal material for the fabrication of long-endurance MEMS components. Cost-effective fabrication of these components could in principle be achieved by coating Si with diamond films and using conventional lithographic patterning methods in conjunction with e. g. sacrificial Ti or $ SiO_{2} $ layers. However, diamond coatings grown by conventional chemical vapor deposition (CVD) methods exhibit a coarse-grained structure that prevents high-resolution patterning, or a fine-grained microstructure with a significant amount of intergranular non-diamond carbon. We demonstrate here the fabrication of 2-D and 3-D phase-pure ultrananocrystalline diamond (UNCD) MEMS components by coating Si with UNCD films, coupled with lithographic patterning methods involving sacrificial release layers. UNCD films are grown by microwave plasma CVD using $ C_{60} $-Ar or $ CH_{4} $-Ar gas mixtures, which result in films that have 3–5 nm grain size, are 10-20 times smoother than conventionally grown diamond films, are extremely resistant to corrosive environments, and are predicted to have a brittle fracture strength similar to that of single crystal diamond. Krauss, A. R. verfasserin aut Gruen, D. M. verfasserin aut Meyer, E. M. verfasserin aut Busmann, H. G. verfasserin aut Tucek, J. verfasserin aut Sumant, A. verfasserin aut Jayatissa, A. verfasserin aut Moldovan, N. verfasserin aut Mancini, D. C. verfasserin aut Gardos, M. N. verfasserin aut Enthalten in MRS online proceedings library Warrendale, Pa. : MRS, 1998 605(1999), 1 vom: Dez., Seite 73-78 (DE-627)57782046X (DE-600)2451008-7 1946-4274 nnns volume:605 year:1999 number:1 month:12 pages:73-78 https://dx.doi.org/10.1557/PROC-605-73 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_2005 AR 605 1999 1 12 73-78 |
spelling |
10.1557/PROC-605-73 doi (DE-627)SPR041972724 (SPR)PROC-605-73-e DE-627 ger DE-627 rakwb eng 670 ASE Auciello, O. verfasserin aut Two- and Three-Dimensional Ultrananocrystalline Diamond (UNCD) Structures for a High Resolution Diamond-Based MEMS Technology 1999 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Silicon is currently the most commonly used material for the fabrication of microelectromechanical systems (MEMS). However, silicon-based MEMS will not be suitable for long-endurance devices involving components rotating at high speed, where friction and wear need to be minimized, components such as 2-D cantilevers that may be subjected to very large flexural displacements, where stiction is a problem, or components that will be exposed to corrosive environments. The mechanical, thermal, chemical, and tribological properties of diamond make it an ideal material for the fabrication of long-endurance MEMS components. Cost-effective fabrication of these components could in principle be achieved by coating Si with diamond films and using conventional lithographic patterning methods in conjunction with e. g. sacrificial Ti or $ SiO_{2} $ layers. However, diamond coatings grown by conventional chemical vapor deposition (CVD) methods exhibit a coarse-grained structure that prevents high-resolution patterning, or a fine-grained microstructure with a significant amount of intergranular non-diamond carbon. We demonstrate here the fabrication of 2-D and 3-D phase-pure ultrananocrystalline diamond (UNCD) MEMS components by coating Si with UNCD films, coupled with lithographic patterning methods involving sacrificial release layers. UNCD films are grown by microwave plasma CVD using $ C_{60} $-Ar or $ CH_{4} $-Ar gas mixtures, which result in films that have 3–5 nm grain size, are 10-20 times smoother than conventionally grown diamond films, are extremely resistant to corrosive environments, and are predicted to have a brittle fracture strength similar to that of single crystal diamond. Krauss, A. R. verfasserin aut Gruen, D. M. verfasserin aut Meyer, E. M. verfasserin aut Busmann, H. G. verfasserin aut Tucek, J. verfasserin aut Sumant, A. verfasserin aut Jayatissa, A. verfasserin aut Moldovan, N. verfasserin aut Mancini, D. C. verfasserin aut Gardos, M. N. verfasserin aut Enthalten in MRS online proceedings library Warrendale, Pa. : MRS, 1998 605(1999), 1 vom: Dez., Seite 73-78 (DE-627)57782046X (DE-600)2451008-7 1946-4274 nnns volume:605 year:1999 number:1 month:12 pages:73-78 https://dx.doi.org/10.1557/PROC-605-73 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_2005 AR 605 1999 1 12 73-78 |
allfields_unstemmed |
10.1557/PROC-605-73 doi (DE-627)SPR041972724 (SPR)PROC-605-73-e DE-627 ger DE-627 rakwb eng 670 ASE Auciello, O. verfasserin aut Two- and Three-Dimensional Ultrananocrystalline Diamond (UNCD) Structures for a High Resolution Diamond-Based MEMS Technology 1999 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Silicon is currently the most commonly used material for the fabrication of microelectromechanical systems (MEMS). However, silicon-based MEMS will not be suitable for long-endurance devices involving components rotating at high speed, where friction and wear need to be minimized, components such as 2-D cantilevers that may be subjected to very large flexural displacements, where stiction is a problem, or components that will be exposed to corrosive environments. The mechanical, thermal, chemical, and tribological properties of diamond make it an ideal material for the fabrication of long-endurance MEMS components. Cost-effective fabrication of these components could in principle be achieved by coating Si with diamond films and using conventional lithographic patterning methods in conjunction with e. g. sacrificial Ti or $ SiO_{2} $ layers. However, diamond coatings grown by conventional chemical vapor deposition (CVD) methods exhibit a coarse-grained structure that prevents high-resolution patterning, or a fine-grained microstructure with a significant amount of intergranular non-diamond carbon. We demonstrate here the fabrication of 2-D and 3-D phase-pure ultrananocrystalline diamond (UNCD) MEMS components by coating Si with UNCD films, coupled with lithographic patterning methods involving sacrificial release layers. UNCD films are grown by microwave plasma CVD using $ C_{60} $-Ar or $ CH_{4} $-Ar gas mixtures, which result in films that have 3–5 nm grain size, are 10-20 times smoother than conventionally grown diamond films, are extremely resistant to corrosive environments, and are predicted to have a brittle fracture strength similar to that of single crystal diamond. Krauss, A. R. verfasserin aut Gruen, D. M. verfasserin aut Meyer, E. M. verfasserin aut Busmann, H. G. verfasserin aut Tucek, J. verfasserin aut Sumant, A. verfasserin aut Jayatissa, A. verfasserin aut Moldovan, N. verfasserin aut Mancini, D. C. verfasserin aut Gardos, M. N. verfasserin aut Enthalten in MRS online proceedings library Warrendale, Pa. : MRS, 1998 605(1999), 1 vom: Dez., Seite 73-78 (DE-627)57782046X (DE-600)2451008-7 1946-4274 nnns volume:605 year:1999 number:1 month:12 pages:73-78 https://dx.doi.org/10.1557/PROC-605-73 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_2005 AR 605 1999 1 12 73-78 |
allfieldsGer |
10.1557/PROC-605-73 doi (DE-627)SPR041972724 (SPR)PROC-605-73-e DE-627 ger DE-627 rakwb eng 670 ASE Auciello, O. verfasserin aut Two- and Three-Dimensional Ultrananocrystalline Diamond (UNCD) Structures for a High Resolution Diamond-Based MEMS Technology 1999 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Silicon is currently the most commonly used material for the fabrication of microelectromechanical systems (MEMS). However, silicon-based MEMS will not be suitable for long-endurance devices involving components rotating at high speed, where friction and wear need to be minimized, components such as 2-D cantilevers that may be subjected to very large flexural displacements, where stiction is a problem, or components that will be exposed to corrosive environments. The mechanical, thermal, chemical, and tribological properties of diamond make it an ideal material for the fabrication of long-endurance MEMS components. Cost-effective fabrication of these components could in principle be achieved by coating Si with diamond films and using conventional lithographic patterning methods in conjunction with e. g. sacrificial Ti or $ SiO_{2} $ layers. However, diamond coatings grown by conventional chemical vapor deposition (CVD) methods exhibit a coarse-grained structure that prevents high-resolution patterning, or a fine-grained microstructure with a significant amount of intergranular non-diamond carbon. We demonstrate here the fabrication of 2-D and 3-D phase-pure ultrananocrystalline diamond (UNCD) MEMS components by coating Si with UNCD films, coupled with lithographic patterning methods involving sacrificial release layers. UNCD films are grown by microwave plasma CVD using $ C_{60} $-Ar or $ CH_{4} $-Ar gas mixtures, which result in films that have 3–5 nm grain size, are 10-20 times smoother than conventionally grown diamond films, are extremely resistant to corrosive environments, and are predicted to have a brittle fracture strength similar to that of single crystal diamond. Krauss, A. R. verfasserin aut Gruen, D. M. verfasserin aut Meyer, E. M. verfasserin aut Busmann, H. G. verfasserin aut Tucek, J. verfasserin aut Sumant, A. verfasserin aut Jayatissa, A. verfasserin aut Moldovan, N. verfasserin aut Mancini, D. C. verfasserin aut Gardos, M. N. verfasserin aut Enthalten in MRS online proceedings library Warrendale, Pa. : MRS, 1998 605(1999), 1 vom: Dez., Seite 73-78 (DE-627)57782046X (DE-600)2451008-7 1946-4274 nnns volume:605 year:1999 number:1 month:12 pages:73-78 https://dx.doi.org/10.1557/PROC-605-73 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_2005 AR 605 1999 1 12 73-78 |
allfieldsSound |
10.1557/PROC-605-73 doi (DE-627)SPR041972724 (SPR)PROC-605-73-e DE-627 ger DE-627 rakwb eng 670 ASE Auciello, O. verfasserin aut Two- and Three-Dimensional Ultrananocrystalline Diamond (UNCD) Structures for a High Resolution Diamond-Based MEMS Technology 1999 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Silicon is currently the most commonly used material for the fabrication of microelectromechanical systems (MEMS). However, silicon-based MEMS will not be suitable for long-endurance devices involving components rotating at high speed, where friction and wear need to be minimized, components such as 2-D cantilevers that may be subjected to very large flexural displacements, where stiction is a problem, or components that will be exposed to corrosive environments. The mechanical, thermal, chemical, and tribological properties of diamond make it an ideal material for the fabrication of long-endurance MEMS components. Cost-effective fabrication of these components could in principle be achieved by coating Si with diamond films and using conventional lithographic patterning methods in conjunction with e. g. sacrificial Ti or $ SiO_{2} $ layers. However, diamond coatings grown by conventional chemical vapor deposition (CVD) methods exhibit a coarse-grained structure that prevents high-resolution patterning, or a fine-grained microstructure with a significant amount of intergranular non-diamond carbon. We demonstrate here the fabrication of 2-D and 3-D phase-pure ultrananocrystalline diamond (UNCD) MEMS components by coating Si with UNCD films, coupled with lithographic patterning methods involving sacrificial release layers. UNCD films are grown by microwave plasma CVD using $ C_{60} $-Ar or $ CH_{4} $-Ar gas mixtures, which result in films that have 3–5 nm grain size, are 10-20 times smoother than conventionally grown diamond films, are extremely resistant to corrosive environments, and are predicted to have a brittle fracture strength similar to that of single crystal diamond. Krauss, A. R. verfasserin aut Gruen, D. M. verfasserin aut Meyer, E. M. verfasserin aut Busmann, H. G. verfasserin aut Tucek, J. verfasserin aut Sumant, A. verfasserin aut Jayatissa, A. verfasserin aut Moldovan, N. verfasserin aut Mancini, D. C. verfasserin aut Gardos, M. N. verfasserin aut Enthalten in MRS online proceedings library Warrendale, Pa. : MRS, 1998 605(1999), 1 vom: Dez., Seite 73-78 (DE-627)57782046X (DE-600)2451008-7 1946-4274 nnns volume:605 year:1999 number:1 month:12 pages:73-78 https://dx.doi.org/10.1557/PROC-605-73 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_2005 AR 605 1999 1 12 73-78 |
language |
English |
source |
Enthalten in MRS online proceedings library 605(1999), 1 vom: Dez., Seite 73-78 volume:605 year:1999 number:1 month:12 pages:73-78 |
sourceStr |
Enthalten in MRS online proceedings library 605(1999), 1 vom: Dez., Seite 73-78 volume:605 year:1999 number:1 month:12 pages:73-78 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
MRS online proceedings library |
authorswithroles_txt_mv |
Auciello, O. @@aut@@ Krauss, A. R. @@aut@@ Gruen, D. M. @@aut@@ Meyer, E. M. @@aut@@ Busmann, H. G. @@aut@@ Tucek, J. @@aut@@ Sumant, A. @@aut@@ Jayatissa, A. @@aut@@ Moldovan, N. @@aut@@ Mancini, D. C. @@aut@@ Gardos, M. N. @@aut@@ |
publishDateDaySort_date |
1999-12-01T00:00:00Z |
hierarchy_top_id |
57782046X |
dewey-sort |
3670 |
id |
SPR041972724 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR041972724</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220112052745.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201114s1999 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1557/PROC-605-73</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR041972724</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)PROC-605-73-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Auciello, O.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Two- and Three-Dimensional Ultrananocrystalline Diamond (UNCD) Structures for a High Resolution Diamond-Based MEMS Technology</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1999</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Silicon is currently the most commonly used material for the fabrication of microelectromechanical systems (MEMS). However, silicon-based MEMS will not be suitable for long-endurance devices involving components rotating at high speed, where friction and wear need to be minimized, components such as 2-D cantilevers that may be subjected to very large flexural displacements, where stiction is a problem, or components that will be exposed to corrosive environments. The mechanical, thermal, chemical, and tribological properties of diamond make it an ideal material for the fabrication of long-endurance MEMS components. Cost-effective fabrication of these components could in principle be achieved by coating Si with diamond films and using conventional lithographic patterning methods in conjunction with e. g. sacrificial Ti or $ SiO_{2} $ layers. However, diamond coatings grown by conventional chemical vapor deposition (CVD) methods exhibit a coarse-grained structure that prevents high-resolution patterning, or a fine-grained microstructure with a significant amount of intergranular non-diamond carbon. We demonstrate here the fabrication of 2-D and 3-D phase-pure ultrananocrystalline diamond (UNCD) MEMS components by coating Si with UNCD films, coupled with lithographic patterning methods involving sacrificial release layers. UNCD films are grown by microwave plasma CVD using $ C_{60} $-Ar or $ CH_{4} $-Ar gas mixtures, which result in films that have 3–5 nm grain size, are 10-20 times smoother than conventionally grown diamond films, are extremely resistant to corrosive environments, and are predicted to have a brittle fracture strength similar to that of single crystal diamond.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Krauss, A. R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gruen, D. M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meyer, E. M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Busmann, H. G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tucek, J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sumant, A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jayatissa, A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moldovan, N.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mancini, D. C.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gardos, M. N.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">MRS online proceedings library</subfield><subfield code="d">Warrendale, Pa. : MRS, 1998</subfield><subfield code="g">605(1999), 1 vom: Dez., Seite 73-78</subfield><subfield code="w">(DE-627)57782046X</subfield><subfield code="w">(DE-600)2451008-7</subfield><subfield code="x">1946-4274</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:605</subfield><subfield code="g">year:1999</subfield><subfield code="g">number:1</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:73-78</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1557/PROC-605-73</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">605</subfield><subfield code="j">1999</subfield><subfield code="e">1</subfield><subfield code="c">12</subfield><subfield code="h">73-78</subfield></datafield></record></collection>
|
author |
Auciello, O. |
spellingShingle |
Auciello, O. ddc 670 Two- and Three-Dimensional Ultrananocrystalline Diamond (UNCD) Structures for a High Resolution Diamond-Based MEMS Technology |
authorStr |
Auciello, O. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)57782046X |
format |
electronic Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1946-4274 |
topic_title |
670 ASE Two- and Three-Dimensional Ultrananocrystalline Diamond (UNCD) Structures for a High Resolution Diamond-Based MEMS Technology |
topic |
ddc 670 |
topic_unstemmed |
ddc 670 |
topic_browse |
ddc 670 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
MRS online proceedings library |
hierarchy_parent_id |
57782046X |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
MRS online proceedings library |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)57782046X (DE-600)2451008-7 |
title |
Two- and Three-Dimensional Ultrananocrystalline Diamond (UNCD) Structures for a High Resolution Diamond-Based MEMS Technology |
ctrlnum |
(DE-627)SPR041972724 (SPR)PROC-605-73-e |
title_full |
Two- and Three-Dimensional Ultrananocrystalline Diamond (UNCD) Structures for a High Resolution Diamond-Based MEMS Technology |
author_sort |
Auciello, O. |
journal |
MRS online proceedings library |
journalStr |
MRS online proceedings library |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
1999 |
contenttype_str_mv |
txt |
container_start_page |
73 |
author_browse |
Auciello, O. Krauss, A. R. Gruen, D. M. Meyer, E. M. Busmann, H. G. Tucek, J. Sumant, A. Jayatissa, A. Moldovan, N. Mancini, D. C. Gardos, M. N. |
container_volume |
605 |
class |
670 ASE |
format_se |
Elektronische Aufsätze |
author-letter |
Auciello, O. |
doi_str_mv |
10.1557/PROC-605-73 |
dewey-full |
670 |
author2-role |
verfasserin |
title_sort |
two- and three-dimensional ultrananocrystalline diamond (uncd) structures for a high resolution diamond-based mems technology |
title_auth |
Two- and Three-Dimensional Ultrananocrystalline Diamond (UNCD) Structures for a High Resolution Diamond-Based MEMS Technology |
abstract |
Abstract Silicon is currently the most commonly used material for the fabrication of microelectromechanical systems (MEMS). However, silicon-based MEMS will not be suitable for long-endurance devices involving components rotating at high speed, where friction and wear need to be minimized, components such as 2-D cantilevers that may be subjected to very large flexural displacements, where stiction is a problem, or components that will be exposed to corrosive environments. The mechanical, thermal, chemical, and tribological properties of diamond make it an ideal material for the fabrication of long-endurance MEMS components. Cost-effective fabrication of these components could in principle be achieved by coating Si with diamond films and using conventional lithographic patterning methods in conjunction with e. g. sacrificial Ti or $ SiO_{2} $ layers. However, diamond coatings grown by conventional chemical vapor deposition (CVD) methods exhibit a coarse-grained structure that prevents high-resolution patterning, or a fine-grained microstructure with a significant amount of intergranular non-diamond carbon. We demonstrate here the fabrication of 2-D and 3-D phase-pure ultrananocrystalline diamond (UNCD) MEMS components by coating Si with UNCD films, coupled with lithographic patterning methods involving sacrificial release layers. UNCD films are grown by microwave plasma CVD using $ C_{60} $-Ar or $ CH_{4} $-Ar gas mixtures, which result in films that have 3–5 nm grain size, are 10-20 times smoother than conventionally grown diamond films, are extremely resistant to corrosive environments, and are predicted to have a brittle fracture strength similar to that of single crystal diamond. |
abstractGer |
Abstract Silicon is currently the most commonly used material for the fabrication of microelectromechanical systems (MEMS). However, silicon-based MEMS will not be suitable for long-endurance devices involving components rotating at high speed, where friction and wear need to be minimized, components such as 2-D cantilevers that may be subjected to very large flexural displacements, where stiction is a problem, or components that will be exposed to corrosive environments. The mechanical, thermal, chemical, and tribological properties of diamond make it an ideal material for the fabrication of long-endurance MEMS components. Cost-effective fabrication of these components could in principle be achieved by coating Si with diamond films and using conventional lithographic patterning methods in conjunction with e. g. sacrificial Ti or $ SiO_{2} $ layers. However, diamond coatings grown by conventional chemical vapor deposition (CVD) methods exhibit a coarse-grained structure that prevents high-resolution patterning, or a fine-grained microstructure with a significant amount of intergranular non-diamond carbon. We demonstrate here the fabrication of 2-D and 3-D phase-pure ultrananocrystalline diamond (UNCD) MEMS components by coating Si with UNCD films, coupled with lithographic patterning methods involving sacrificial release layers. UNCD films are grown by microwave plasma CVD using $ C_{60} $-Ar or $ CH_{4} $-Ar gas mixtures, which result in films that have 3–5 nm grain size, are 10-20 times smoother than conventionally grown diamond films, are extremely resistant to corrosive environments, and are predicted to have a brittle fracture strength similar to that of single crystal diamond. |
abstract_unstemmed |
Abstract Silicon is currently the most commonly used material for the fabrication of microelectromechanical systems (MEMS). However, silicon-based MEMS will not be suitable for long-endurance devices involving components rotating at high speed, where friction and wear need to be minimized, components such as 2-D cantilevers that may be subjected to very large flexural displacements, where stiction is a problem, or components that will be exposed to corrosive environments. The mechanical, thermal, chemical, and tribological properties of diamond make it an ideal material for the fabrication of long-endurance MEMS components. Cost-effective fabrication of these components could in principle be achieved by coating Si with diamond films and using conventional lithographic patterning methods in conjunction with e. g. sacrificial Ti or $ SiO_{2} $ layers. However, diamond coatings grown by conventional chemical vapor deposition (CVD) methods exhibit a coarse-grained structure that prevents high-resolution patterning, or a fine-grained microstructure with a significant amount of intergranular non-diamond carbon. We demonstrate here the fabrication of 2-D and 3-D phase-pure ultrananocrystalline diamond (UNCD) MEMS components by coating Si with UNCD films, coupled with lithographic patterning methods involving sacrificial release layers. UNCD films are grown by microwave plasma CVD using $ C_{60} $-Ar or $ CH_{4} $-Ar gas mixtures, which result in films that have 3–5 nm grain size, are 10-20 times smoother than conventionally grown diamond films, are extremely resistant to corrosive environments, and are predicted to have a brittle fracture strength similar to that of single crystal diamond. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_2005 |
container_issue |
1 |
title_short |
Two- and Three-Dimensional Ultrananocrystalline Diamond (UNCD) Structures for a High Resolution Diamond-Based MEMS Technology |
url |
https://dx.doi.org/10.1557/PROC-605-73 |
remote_bool |
true |
author2 |
Krauss, A. R. Gruen, D. M. Meyer, E. M. Busmann, H. G. Tucek, J. Sumant, A. Jayatissa, A. Moldovan, N. Mancini, D. C. Gardos, M. N. |
author2Str |
Krauss, A. R. Gruen, D. M. Meyer, E. M. Busmann, H. G. Tucek, J. Sumant, A. Jayatissa, A. Moldovan, N. Mancini, D. C. Gardos, M. N. |
ppnlink |
57782046X |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1557/PROC-605-73 |
up_date |
2024-07-04T00:19:17.572Z |
_version_ |
1803605620895514624 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR041972724</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220112052745.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201114s1999 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1557/PROC-605-73</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR041972724</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)PROC-605-73-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Auciello, O.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Two- and Three-Dimensional Ultrananocrystalline Diamond (UNCD) Structures for a High Resolution Diamond-Based MEMS Technology</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1999</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Silicon is currently the most commonly used material for the fabrication of microelectromechanical systems (MEMS). However, silicon-based MEMS will not be suitable for long-endurance devices involving components rotating at high speed, where friction and wear need to be minimized, components such as 2-D cantilevers that may be subjected to very large flexural displacements, where stiction is a problem, or components that will be exposed to corrosive environments. The mechanical, thermal, chemical, and tribological properties of diamond make it an ideal material for the fabrication of long-endurance MEMS components. Cost-effective fabrication of these components could in principle be achieved by coating Si with diamond films and using conventional lithographic patterning methods in conjunction with e. g. sacrificial Ti or $ SiO_{2} $ layers. However, diamond coatings grown by conventional chemical vapor deposition (CVD) methods exhibit a coarse-grained structure that prevents high-resolution patterning, or a fine-grained microstructure with a significant amount of intergranular non-diamond carbon. We demonstrate here the fabrication of 2-D and 3-D phase-pure ultrananocrystalline diamond (UNCD) MEMS components by coating Si with UNCD films, coupled with lithographic patterning methods involving sacrificial release layers. UNCD films are grown by microwave plasma CVD using $ C_{60} $-Ar or $ CH_{4} $-Ar gas mixtures, which result in films that have 3–5 nm grain size, are 10-20 times smoother than conventionally grown diamond films, are extremely resistant to corrosive environments, and are predicted to have a brittle fracture strength similar to that of single crystal diamond.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Krauss, A. R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gruen, D. M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meyer, E. M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Busmann, H. G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tucek, J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sumant, A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jayatissa, A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moldovan, N.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mancini, D. C.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gardos, M. N.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">MRS online proceedings library</subfield><subfield code="d">Warrendale, Pa. : MRS, 1998</subfield><subfield code="g">605(1999), 1 vom: Dez., Seite 73-78</subfield><subfield code="w">(DE-627)57782046X</subfield><subfield code="w">(DE-600)2451008-7</subfield><subfield code="x">1946-4274</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:605</subfield><subfield code="g">year:1999</subfield><subfield code="g">number:1</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:73-78</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1557/PROC-605-73</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">605</subfield><subfield code="j">1999</subfield><subfield code="e">1</subfield><subfield code="c">12</subfield><subfield code="h">73-78</subfield></datafield></record></collection>
|
score |
7.401886 |