On the Minimal Displacement Vector of Compositions and Convex Combinations of Nonexpansive Mappings
Abstract Monotone operators and (firmly) nonexpansive mappings are fundamental objects in modern analysis and computational optimization. It was shown in 2012 that if finitely many firmly nonexpansive mappings have or “almost have” fixed points, then the same is true for compositions and convex comb...
Ausführliche Beschreibung
Autor*in: |
Bauschke, Heinz H. [verfasserIn] Moursi, Walaa M. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Foundations of Computational Mathematics - Springer-Verlag, 2001, 20(2020), 6 vom: 19. Feb., Seite 1653-1666 |
---|---|
Übergeordnetes Werk: |
volume:20 ; year:2020 ; number:6 ; day:19 ; month:02 ; pages:1653-1666 |
Links: |
---|
DOI / URN: |
10.1007/s10208-020-09449-w |
---|
Katalog-ID: |
SPR04205818X |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR04205818X | ||
003 | DE-627 | ||
005 | 20201126070740.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201126s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s10208-020-09449-w |2 doi | |
035 | |a (DE-627)SPR04205818X | ||
035 | |a (SPR)s10208-020-09449-w-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Bauschke, Heinz H. |e verfasserin |4 aut | |
245 | 1 | 0 | |a On the Minimal Displacement Vector of Compositions and Convex Combinations of Nonexpansive Mappings |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Monotone operators and (firmly) nonexpansive mappings are fundamental objects in modern analysis and computational optimization. It was shown in 2012 that if finitely many firmly nonexpansive mappings have or “almost have” fixed points, then the same is true for compositions and convex combinations. More recently, sharp information about the minimal displacement vector of compositions and of convex combinations of firmly nonexpansive mappings was obtained in terms of the displacement vectors of the underlying operators. Using a new proof technique based on the Brezis–Haraux theorem and reflected resolvents, we extend these results from firmly nonexpansive to general averaged nonexpansive mappings. Various examples illustrate the tightness of our results. | ||
650 | 4 | |a Averaged nonexpansive mapping |7 (dpeaa)DE-He213 | |
650 | 4 | |a Brezis–Haraux theorem |7 (dpeaa)DE-He213 | |
650 | 4 | |a Displacement map |7 (dpeaa)DE-He213 | |
650 | 4 | |a Maximally monotone operator |7 (dpeaa)DE-He213 | |
650 | 4 | |a Minimal displacement vector |7 (dpeaa)DE-He213 | |
650 | 4 | |a Nonexpansive mapping |7 (dpeaa)DE-He213 | |
650 | 4 | |a Resolvent |7 (dpeaa)DE-He213 | |
700 | 1 | |a Moursi, Walaa M. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Foundations of Computational Mathematics |d Springer-Verlag, 2001 |g 20(2020), 6 vom: 19. Feb., Seite 1653-1666 |w (DE-627)SPR009133062 |7 nnns |
773 | 1 | 8 | |g volume:20 |g year:2020 |g number:6 |g day:19 |g month:02 |g pages:1653-1666 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s10208-020-09449-w |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
951 | |a AR | ||
952 | |d 20 |j 2020 |e 6 |b 19 |c 02 |h 1653-1666 |
author_variant |
h h b hh hhb w m m wm wmm |
---|---|
matchkey_str |
bauschkeheinzhmoursiwalaam:2020----:nhmnmlipaeetetrfopstosncnecmiai |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.1007/s10208-020-09449-w doi (DE-627)SPR04205818X (SPR)s10208-020-09449-w-e DE-627 ger DE-627 rakwb eng Bauschke, Heinz H. verfasserin aut On the Minimal Displacement Vector of Compositions and Convex Combinations of Nonexpansive Mappings 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Monotone operators and (firmly) nonexpansive mappings are fundamental objects in modern analysis and computational optimization. It was shown in 2012 that if finitely many firmly nonexpansive mappings have or “almost have” fixed points, then the same is true for compositions and convex combinations. More recently, sharp information about the minimal displacement vector of compositions and of convex combinations of firmly nonexpansive mappings was obtained in terms of the displacement vectors of the underlying operators. Using a new proof technique based on the Brezis–Haraux theorem and reflected resolvents, we extend these results from firmly nonexpansive to general averaged nonexpansive mappings. Various examples illustrate the tightness of our results. Averaged nonexpansive mapping (dpeaa)DE-He213 Brezis–Haraux theorem (dpeaa)DE-He213 Displacement map (dpeaa)DE-He213 Maximally monotone operator (dpeaa)DE-He213 Minimal displacement vector (dpeaa)DE-He213 Nonexpansive mapping (dpeaa)DE-He213 Resolvent (dpeaa)DE-He213 Moursi, Walaa M. verfasserin aut Enthalten in Foundations of Computational Mathematics Springer-Verlag, 2001 20(2020), 6 vom: 19. Feb., Seite 1653-1666 (DE-627)SPR009133062 nnns volume:20 year:2020 number:6 day:19 month:02 pages:1653-1666 https://dx.doi.org/10.1007/s10208-020-09449-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 20 2020 6 19 02 1653-1666 |
spelling |
10.1007/s10208-020-09449-w doi (DE-627)SPR04205818X (SPR)s10208-020-09449-w-e DE-627 ger DE-627 rakwb eng Bauschke, Heinz H. verfasserin aut On the Minimal Displacement Vector of Compositions and Convex Combinations of Nonexpansive Mappings 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Monotone operators and (firmly) nonexpansive mappings are fundamental objects in modern analysis and computational optimization. It was shown in 2012 that if finitely many firmly nonexpansive mappings have or “almost have” fixed points, then the same is true for compositions and convex combinations. More recently, sharp information about the minimal displacement vector of compositions and of convex combinations of firmly nonexpansive mappings was obtained in terms of the displacement vectors of the underlying operators. Using a new proof technique based on the Brezis–Haraux theorem and reflected resolvents, we extend these results from firmly nonexpansive to general averaged nonexpansive mappings. Various examples illustrate the tightness of our results. Averaged nonexpansive mapping (dpeaa)DE-He213 Brezis–Haraux theorem (dpeaa)DE-He213 Displacement map (dpeaa)DE-He213 Maximally monotone operator (dpeaa)DE-He213 Minimal displacement vector (dpeaa)DE-He213 Nonexpansive mapping (dpeaa)DE-He213 Resolvent (dpeaa)DE-He213 Moursi, Walaa M. verfasserin aut Enthalten in Foundations of Computational Mathematics Springer-Verlag, 2001 20(2020), 6 vom: 19. Feb., Seite 1653-1666 (DE-627)SPR009133062 nnns volume:20 year:2020 number:6 day:19 month:02 pages:1653-1666 https://dx.doi.org/10.1007/s10208-020-09449-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 20 2020 6 19 02 1653-1666 |
allfields_unstemmed |
10.1007/s10208-020-09449-w doi (DE-627)SPR04205818X (SPR)s10208-020-09449-w-e DE-627 ger DE-627 rakwb eng Bauschke, Heinz H. verfasserin aut On the Minimal Displacement Vector of Compositions and Convex Combinations of Nonexpansive Mappings 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Monotone operators and (firmly) nonexpansive mappings are fundamental objects in modern analysis and computational optimization. It was shown in 2012 that if finitely many firmly nonexpansive mappings have or “almost have” fixed points, then the same is true for compositions and convex combinations. More recently, sharp information about the minimal displacement vector of compositions and of convex combinations of firmly nonexpansive mappings was obtained in terms of the displacement vectors of the underlying operators. Using a new proof technique based on the Brezis–Haraux theorem and reflected resolvents, we extend these results from firmly nonexpansive to general averaged nonexpansive mappings. Various examples illustrate the tightness of our results. Averaged nonexpansive mapping (dpeaa)DE-He213 Brezis–Haraux theorem (dpeaa)DE-He213 Displacement map (dpeaa)DE-He213 Maximally monotone operator (dpeaa)DE-He213 Minimal displacement vector (dpeaa)DE-He213 Nonexpansive mapping (dpeaa)DE-He213 Resolvent (dpeaa)DE-He213 Moursi, Walaa M. verfasserin aut Enthalten in Foundations of Computational Mathematics Springer-Verlag, 2001 20(2020), 6 vom: 19. Feb., Seite 1653-1666 (DE-627)SPR009133062 nnns volume:20 year:2020 number:6 day:19 month:02 pages:1653-1666 https://dx.doi.org/10.1007/s10208-020-09449-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 20 2020 6 19 02 1653-1666 |
allfieldsGer |
10.1007/s10208-020-09449-w doi (DE-627)SPR04205818X (SPR)s10208-020-09449-w-e DE-627 ger DE-627 rakwb eng Bauschke, Heinz H. verfasserin aut On the Minimal Displacement Vector of Compositions and Convex Combinations of Nonexpansive Mappings 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Monotone operators and (firmly) nonexpansive mappings are fundamental objects in modern analysis and computational optimization. It was shown in 2012 that if finitely many firmly nonexpansive mappings have or “almost have” fixed points, then the same is true for compositions and convex combinations. More recently, sharp information about the minimal displacement vector of compositions and of convex combinations of firmly nonexpansive mappings was obtained in terms of the displacement vectors of the underlying operators. Using a new proof technique based on the Brezis–Haraux theorem and reflected resolvents, we extend these results from firmly nonexpansive to general averaged nonexpansive mappings. Various examples illustrate the tightness of our results. Averaged nonexpansive mapping (dpeaa)DE-He213 Brezis–Haraux theorem (dpeaa)DE-He213 Displacement map (dpeaa)DE-He213 Maximally monotone operator (dpeaa)DE-He213 Minimal displacement vector (dpeaa)DE-He213 Nonexpansive mapping (dpeaa)DE-He213 Resolvent (dpeaa)DE-He213 Moursi, Walaa M. verfasserin aut Enthalten in Foundations of Computational Mathematics Springer-Verlag, 2001 20(2020), 6 vom: 19. Feb., Seite 1653-1666 (DE-627)SPR009133062 nnns volume:20 year:2020 number:6 day:19 month:02 pages:1653-1666 https://dx.doi.org/10.1007/s10208-020-09449-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 20 2020 6 19 02 1653-1666 |
allfieldsSound |
10.1007/s10208-020-09449-w doi (DE-627)SPR04205818X (SPR)s10208-020-09449-w-e DE-627 ger DE-627 rakwb eng Bauschke, Heinz H. verfasserin aut On the Minimal Displacement Vector of Compositions and Convex Combinations of Nonexpansive Mappings 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Monotone operators and (firmly) nonexpansive mappings are fundamental objects in modern analysis and computational optimization. It was shown in 2012 that if finitely many firmly nonexpansive mappings have or “almost have” fixed points, then the same is true for compositions and convex combinations. More recently, sharp information about the minimal displacement vector of compositions and of convex combinations of firmly nonexpansive mappings was obtained in terms of the displacement vectors of the underlying operators. Using a new proof technique based on the Brezis–Haraux theorem and reflected resolvents, we extend these results from firmly nonexpansive to general averaged nonexpansive mappings. Various examples illustrate the tightness of our results. Averaged nonexpansive mapping (dpeaa)DE-He213 Brezis–Haraux theorem (dpeaa)DE-He213 Displacement map (dpeaa)DE-He213 Maximally monotone operator (dpeaa)DE-He213 Minimal displacement vector (dpeaa)DE-He213 Nonexpansive mapping (dpeaa)DE-He213 Resolvent (dpeaa)DE-He213 Moursi, Walaa M. verfasserin aut Enthalten in Foundations of Computational Mathematics Springer-Verlag, 2001 20(2020), 6 vom: 19. Feb., Seite 1653-1666 (DE-627)SPR009133062 nnns volume:20 year:2020 number:6 day:19 month:02 pages:1653-1666 https://dx.doi.org/10.1007/s10208-020-09449-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 20 2020 6 19 02 1653-1666 |
language |
English |
source |
Enthalten in Foundations of Computational Mathematics 20(2020), 6 vom: 19. Feb., Seite 1653-1666 volume:20 year:2020 number:6 day:19 month:02 pages:1653-1666 |
sourceStr |
Enthalten in Foundations of Computational Mathematics 20(2020), 6 vom: 19. Feb., Seite 1653-1666 volume:20 year:2020 number:6 day:19 month:02 pages:1653-1666 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Averaged nonexpansive mapping Brezis–Haraux theorem Displacement map Maximally monotone operator Minimal displacement vector Nonexpansive mapping Resolvent |
isfreeaccess_bool |
false |
container_title |
Foundations of Computational Mathematics |
authorswithroles_txt_mv |
Bauschke, Heinz H. @@aut@@ Moursi, Walaa M. @@aut@@ |
publishDateDaySort_date |
2020-02-19T00:00:00Z |
hierarchy_top_id |
SPR009133062 |
id |
SPR04205818X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR04205818X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20201126070740.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201126s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10208-020-09449-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR04205818X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10208-020-09449-w-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bauschke, Heinz H.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the Minimal Displacement Vector of Compositions and Convex Combinations of Nonexpansive Mappings</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Monotone operators and (firmly) nonexpansive mappings are fundamental objects in modern analysis and computational optimization. It was shown in 2012 that if finitely many firmly nonexpansive mappings have or “almost have” fixed points, then the same is true for compositions and convex combinations. More recently, sharp information about the minimal displacement vector of compositions and of convex combinations of firmly nonexpansive mappings was obtained in terms of the displacement vectors of the underlying operators. Using a new proof technique based on the Brezis–Haraux theorem and reflected resolvents, we extend these results from firmly nonexpansive to general averaged nonexpansive mappings. Various examples illustrate the tightness of our results.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Averaged nonexpansive mapping</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Brezis–Haraux theorem</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Displacement map</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maximally monotone operator</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Minimal displacement vector</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonexpansive mapping</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Resolvent</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moursi, Walaa M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Foundations of Computational Mathematics</subfield><subfield code="d">Springer-Verlag, 2001</subfield><subfield code="g">20(2020), 6 vom: 19. Feb., Seite 1653-1666</subfield><subfield code="w">(DE-627)SPR009133062</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:6</subfield><subfield code="g">day:19</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:1653-1666</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10208-020-09449-w</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2020</subfield><subfield code="e">6</subfield><subfield code="b">19</subfield><subfield code="c">02</subfield><subfield code="h">1653-1666</subfield></datafield></record></collection>
|
author |
Bauschke, Heinz H. |
spellingShingle |
Bauschke, Heinz H. misc Averaged nonexpansive mapping misc Brezis–Haraux theorem misc Displacement map misc Maximally monotone operator misc Minimal displacement vector misc Nonexpansive mapping misc Resolvent On the Minimal Displacement Vector of Compositions and Convex Combinations of Nonexpansive Mappings |
authorStr |
Bauschke, Heinz H. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)SPR009133062 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
On the Minimal Displacement Vector of Compositions and Convex Combinations of Nonexpansive Mappings Averaged nonexpansive mapping (dpeaa)DE-He213 Brezis–Haraux theorem (dpeaa)DE-He213 Displacement map (dpeaa)DE-He213 Maximally monotone operator (dpeaa)DE-He213 Minimal displacement vector (dpeaa)DE-He213 Nonexpansive mapping (dpeaa)DE-He213 Resolvent (dpeaa)DE-He213 |
topic |
misc Averaged nonexpansive mapping misc Brezis–Haraux theorem misc Displacement map misc Maximally monotone operator misc Minimal displacement vector misc Nonexpansive mapping misc Resolvent |
topic_unstemmed |
misc Averaged nonexpansive mapping misc Brezis–Haraux theorem misc Displacement map misc Maximally monotone operator misc Minimal displacement vector misc Nonexpansive mapping misc Resolvent |
topic_browse |
misc Averaged nonexpansive mapping misc Brezis–Haraux theorem misc Displacement map misc Maximally monotone operator misc Minimal displacement vector misc Nonexpansive mapping misc Resolvent |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Foundations of Computational Mathematics |
hierarchy_parent_id |
SPR009133062 |
hierarchy_top_title |
Foundations of Computational Mathematics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)SPR009133062 |
title |
On the Minimal Displacement Vector of Compositions and Convex Combinations of Nonexpansive Mappings |
ctrlnum |
(DE-627)SPR04205818X (SPR)s10208-020-09449-w-e |
title_full |
On the Minimal Displacement Vector of Compositions and Convex Combinations of Nonexpansive Mappings |
author_sort |
Bauschke, Heinz H. |
journal |
Foundations of Computational Mathematics |
journalStr |
Foundations of Computational Mathematics |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
1653 |
author_browse |
Bauschke, Heinz H. Moursi, Walaa M. |
container_volume |
20 |
format_se |
Elektronische Aufsätze |
author-letter |
Bauschke, Heinz H. |
doi_str_mv |
10.1007/s10208-020-09449-w |
author2-role |
verfasserin |
title_sort |
on the minimal displacement vector of compositions and convex combinations of nonexpansive mappings |
title_auth |
On the Minimal Displacement Vector of Compositions and Convex Combinations of Nonexpansive Mappings |
abstract |
Abstract Monotone operators and (firmly) nonexpansive mappings are fundamental objects in modern analysis and computational optimization. It was shown in 2012 that if finitely many firmly nonexpansive mappings have or “almost have” fixed points, then the same is true for compositions and convex combinations. More recently, sharp information about the minimal displacement vector of compositions and of convex combinations of firmly nonexpansive mappings was obtained in terms of the displacement vectors of the underlying operators. Using a new proof technique based on the Brezis–Haraux theorem and reflected resolvents, we extend these results from firmly nonexpansive to general averaged nonexpansive mappings. Various examples illustrate the tightness of our results. |
abstractGer |
Abstract Monotone operators and (firmly) nonexpansive mappings are fundamental objects in modern analysis and computational optimization. It was shown in 2012 that if finitely many firmly nonexpansive mappings have or “almost have” fixed points, then the same is true for compositions and convex combinations. More recently, sharp information about the minimal displacement vector of compositions and of convex combinations of firmly nonexpansive mappings was obtained in terms of the displacement vectors of the underlying operators. Using a new proof technique based on the Brezis–Haraux theorem and reflected resolvents, we extend these results from firmly nonexpansive to general averaged nonexpansive mappings. Various examples illustrate the tightness of our results. |
abstract_unstemmed |
Abstract Monotone operators and (firmly) nonexpansive mappings are fundamental objects in modern analysis and computational optimization. It was shown in 2012 that if finitely many firmly nonexpansive mappings have or “almost have” fixed points, then the same is true for compositions and convex combinations. More recently, sharp information about the minimal displacement vector of compositions and of convex combinations of firmly nonexpansive mappings was obtained in terms of the displacement vectors of the underlying operators. Using a new proof technique based on the Brezis–Haraux theorem and reflected resolvents, we extend these results from firmly nonexpansive to general averaged nonexpansive mappings. Various examples illustrate the tightness of our results. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER |
container_issue |
6 |
title_short |
On the Minimal Displacement Vector of Compositions and Convex Combinations of Nonexpansive Mappings |
url |
https://dx.doi.org/10.1007/s10208-020-09449-w |
remote_bool |
true |
author2 |
Moursi, Walaa M. |
author2Str |
Moursi, Walaa M. |
ppnlink |
SPR009133062 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10208-020-09449-w |
up_date |
2024-07-04T00:38:19.522Z |
_version_ |
1803606818317926400 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR04205818X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20201126070740.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201126s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10208-020-09449-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR04205818X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10208-020-09449-w-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bauschke, Heinz H.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the Minimal Displacement Vector of Compositions and Convex Combinations of Nonexpansive Mappings</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Monotone operators and (firmly) nonexpansive mappings are fundamental objects in modern analysis and computational optimization. It was shown in 2012 that if finitely many firmly nonexpansive mappings have or “almost have” fixed points, then the same is true for compositions and convex combinations. More recently, sharp information about the minimal displacement vector of compositions and of convex combinations of firmly nonexpansive mappings was obtained in terms of the displacement vectors of the underlying operators. Using a new proof technique based on the Brezis–Haraux theorem and reflected resolvents, we extend these results from firmly nonexpansive to general averaged nonexpansive mappings. Various examples illustrate the tightness of our results.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Averaged nonexpansive mapping</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Brezis–Haraux theorem</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Displacement map</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maximally monotone operator</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Minimal displacement vector</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonexpansive mapping</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Resolvent</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moursi, Walaa M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Foundations of Computational Mathematics</subfield><subfield code="d">Springer-Verlag, 2001</subfield><subfield code="g">20(2020), 6 vom: 19. Feb., Seite 1653-1666</subfield><subfield code="w">(DE-627)SPR009133062</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:6</subfield><subfield code="g">day:19</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:1653-1666</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10208-020-09449-w</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2020</subfield><subfield code="e">6</subfield><subfield code="b">19</subfield><subfield code="c">02</subfield><subfield code="h">1653-1666</subfield></datafield></record></collection>
|
score |
7.400776 |