Evaluation of magnetic resonance angiography as a possible alternative to rotational angiography or computed tomography angiography for assessing cerebrovascular computational fluid dynamics
Abstract The aim of this study was to conduct a flow experiment using a cerebrovascular phantom and investigate whether magnetic resonance angiography (MRA) could replace three-dimensional rotational angiography (RA) and computed tomography angiography (CTA) to construct vascular models for computat...
Ausführliche Beschreibung
Autor*in: |
Yoneyama, Yuya [verfasserIn] Isoda, Haruo [verfasserIn] Ishiguro, Kenta [verfasserIn] Terada, Masaki [verfasserIn] Kamiya, Masaki [verfasserIn] Otsubo, Kenichi [verfasserIn] Perera, Roshani [verfasserIn] Mizuno, Takashi [verfasserIn] Fukuyama, Atsushi [verfasserIn] Takiguchi, Kazuya [verfasserIn] Watanabe, Tomoya [verfasserIn] Kosugi, Takafumi [verfasserIn] Komori, Yoshiaki [verfasserIn] Naganawa, Shinji [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
Cine phase-contrast MR imaging (cine PC MRI) Computational fluid dynamics (CFD) Computed tomography angiography (CTA) |
---|
Übergeordnetes Werk: |
Enthalten in: Australasian physical & engineering sciences in medicine - Cham : Springer, 2001, 43(2020), 4 vom: 12. Okt., Seite 1327-1337 |
---|---|
Übergeordnetes Werk: |
volume:43 ; year:2020 ; number:4 ; day:12 ; month:10 ; pages:1327-1337 |
Links: |
---|
DOI / URN: |
10.1007/s13246-020-00936-6 |
---|
Katalog-ID: |
SPR042457114 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR042457114 | ||
003 | DE-627 | ||
005 | 20230519081523.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201220s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s13246-020-00936-6 |2 doi | |
035 | |a (DE-627)SPR042457114 | ||
035 | |a (DE-599)SPRs13246-020-00936-6-e | ||
035 | |a (SPR)s13246-020-00936-6-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q ASE |
084 | |a 44.03 |2 bkl | ||
100 | 1 | |a Yoneyama, Yuya |e verfasserin |4 aut | |
245 | 1 | 0 | |a Evaluation of magnetic resonance angiography as a possible alternative to rotational angiography or computed tomography angiography for assessing cerebrovascular computational fluid dynamics |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract The aim of this study was to conduct a flow experiment using a cerebrovascular phantom and investigate whether magnetic resonance angiography (MRA) could replace three-dimensional rotational angiography (RA) and computed tomography angiography (CTA) to construct vascular models for computational fluid dynamics (CFD). We performed MRA and 3D cine phase-contrast (PC) MR imaging with a silicone cerebrovascular phantom of an internal carotid artery-posterior communicating artery aneurysm with blood-mimicking fluid, and controlled flow with a flowmeter. We also obtained RA and CTA data for the phantom. Four analysts constructed vascular models based on the three different modalities. These 12 constructed models used flow information based on 3D cine PC MR imaging for CFD. We compared RA-, CTA-, MRA-based CFD results using the micro-CT-based CFD result as the criterion standard to investigate whether MRA-based CFD was not inferior to RA- or CTA-based CFD. We also analyzed the inter-analyst variability. Wall shear stress (WSS) distributions and streamlines of RA- or MRA-based CFD and those of micro-CT-based CFD were similar, but the vascular models and WSS values were different. Accuracy in measurements of blood vessel diameter, cross-sectional maximum velocity, and spatially averaged WSS was the highest for RA-based CFD, followed by MRA-based and CTA-based CFD using micro-CT-based CFD result as the reference. Except maximum velocity from CTA, all other parameters had good inter-analyst agreement using different modalities. The results demonstrated that non-invasive MRA can be used for cerebrovascular CFD models with good inter-analyst agreements. | ||
650 | 4 | |a Cine phase-contrast MR imaging (cine PC MRI) |7 (dpeaa)DE-He213 | |
650 | 4 | |a Computational fluid dynamics (CFD) |7 (dpeaa)DE-He213 | |
650 | 4 | |a Computed tomography angiography (CTA) |7 (dpeaa)DE-He213 | |
650 | 4 | |a Intracranial aneurysm |7 (dpeaa)DE-He213 | |
650 | 4 | |a Magnetic resonance angiography (MRA) |7 (dpeaa)DE-He213 | |
650 | 4 | |a Rotational angiography (RA) |7 (dpeaa)DE-He213 | |
700 | 1 | |a Isoda, Haruo |e verfasserin |4 aut | |
700 | 1 | |a Ishiguro, Kenta |e verfasserin |4 aut | |
700 | 1 | |a Terada, Masaki |e verfasserin |4 aut | |
700 | 1 | |a Kamiya, Masaki |e verfasserin |4 aut | |
700 | 1 | |a Otsubo, Kenichi |e verfasserin |4 aut | |
700 | 1 | |a Perera, Roshani |e verfasserin |4 aut | |
700 | 1 | |a Mizuno, Takashi |e verfasserin |4 aut | |
700 | 1 | |a Fukuyama, Atsushi |e verfasserin |4 aut | |
700 | 1 | |a Takiguchi, Kazuya |e verfasserin |4 aut | |
700 | 1 | |a Watanabe, Tomoya |e verfasserin |4 aut | |
700 | 1 | |a Kosugi, Takafumi |e verfasserin |4 aut | |
700 | 1 | |a Komori, Yoshiaki |e verfasserin |4 aut | |
700 | 1 | |a Naganawa, Shinji |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Australasian physical & engineering sciences in medicine |d Cham : Springer, 2001 |g 43(2020), 4 vom: 12. Okt., Seite 1327-1337 |w (DE-627)320430707 |w (DE-600)2003728-4 |x 1879-5447 |7 nnns |
773 | 1 | 8 | |g volume:43 |g year:2020 |g number:4 |g day:12 |g month:10 |g pages:1327-1337 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s13246-020-00936-6 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4246 | ||
936 | b | k | |a 44.03 |q ASE |
951 | |a AR | ||
952 | |d 43 |j 2020 |e 4 |b 12 |c 10 |h 1327-1337 |
author_variant |
y y yy h i hi k i ki m t mt m k mk k o ko r p rp t m tm a f af k t kt t w tw t k tk y k yk s n sn |
---|---|
matchkey_str |
article:18795447:2020----::vlainfantceoacagorpyspsilatraieooainlnigahocmuetmgahagorpyoassi |
hierarchy_sort_str |
2020 |
bklnumber |
44.03 |
publishDate |
2020 |
allfields |
10.1007/s13246-020-00936-6 doi (DE-627)SPR042457114 (DE-599)SPRs13246-020-00936-6-e (SPR)s13246-020-00936-6-e DE-627 ger DE-627 rakwb eng 610 ASE 44.03 bkl Yoneyama, Yuya verfasserin aut Evaluation of magnetic resonance angiography as a possible alternative to rotational angiography or computed tomography angiography for assessing cerebrovascular computational fluid dynamics 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The aim of this study was to conduct a flow experiment using a cerebrovascular phantom and investigate whether magnetic resonance angiography (MRA) could replace three-dimensional rotational angiography (RA) and computed tomography angiography (CTA) to construct vascular models for computational fluid dynamics (CFD). We performed MRA and 3D cine phase-contrast (PC) MR imaging with a silicone cerebrovascular phantom of an internal carotid artery-posterior communicating artery aneurysm with blood-mimicking fluid, and controlled flow with a flowmeter. We also obtained RA and CTA data for the phantom. Four analysts constructed vascular models based on the three different modalities. These 12 constructed models used flow information based on 3D cine PC MR imaging for CFD. We compared RA-, CTA-, MRA-based CFD results using the micro-CT-based CFD result as the criterion standard to investigate whether MRA-based CFD was not inferior to RA- or CTA-based CFD. We also analyzed the inter-analyst variability. Wall shear stress (WSS) distributions and streamlines of RA- or MRA-based CFD and those of micro-CT-based CFD were similar, but the vascular models and WSS values were different. Accuracy in measurements of blood vessel diameter, cross-sectional maximum velocity, and spatially averaged WSS was the highest for RA-based CFD, followed by MRA-based and CTA-based CFD using micro-CT-based CFD result as the reference. Except maximum velocity from CTA, all other parameters had good inter-analyst agreement using different modalities. The results demonstrated that non-invasive MRA can be used for cerebrovascular CFD models with good inter-analyst agreements. Cine phase-contrast MR imaging (cine PC MRI) (dpeaa)DE-He213 Computational fluid dynamics (CFD) (dpeaa)DE-He213 Computed tomography angiography (CTA) (dpeaa)DE-He213 Intracranial aneurysm (dpeaa)DE-He213 Magnetic resonance angiography (MRA) (dpeaa)DE-He213 Rotational angiography (RA) (dpeaa)DE-He213 Isoda, Haruo verfasserin aut Ishiguro, Kenta verfasserin aut Terada, Masaki verfasserin aut Kamiya, Masaki verfasserin aut Otsubo, Kenichi verfasserin aut Perera, Roshani verfasserin aut Mizuno, Takashi verfasserin aut Fukuyama, Atsushi verfasserin aut Takiguchi, Kazuya verfasserin aut Watanabe, Tomoya verfasserin aut Kosugi, Takafumi verfasserin aut Komori, Yoshiaki verfasserin aut Naganawa, Shinji verfasserin aut Enthalten in Australasian physical & engineering sciences in medicine Cham : Springer, 2001 43(2020), 4 vom: 12. Okt., Seite 1327-1337 (DE-627)320430707 (DE-600)2003728-4 1879-5447 nnns volume:43 year:2020 number:4 day:12 month:10 pages:1327-1337 https://dx.doi.org/10.1007/s13246-020-00936-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_120 GBV_ILN_150 GBV_ILN_2188 GBV_ILN_2336 GBV_ILN_2472 GBV_ILN_2522 GBV_ILN_4246 44.03 ASE AR 43 2020 4 12 10 1327-1337 |
spelling |
10.1007/s13246-020-00936-6 doi (DE-627)SPR042457114 (DE-599)SPRs13246-020-00936-6-e (SPR)s13246-020-00936-6-e DE-627 ger DE-627 rakwb eng 610 ASE 44.03 bkl Yoneyama, Yuya verfasserin aut Evaluation of magnetic resonance angiography as a possible alternative to rotational angiography or computed tomography angiography for assessing cerebrovascular computational fluid dynamics 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The aim of this study was to conduct a flow experiment using a cerebrovascular phantom and investigate whether magnetic resonance angiography (MRA) could replace three-dimensional rotational angiography (RA) and computed tomography angiography (CTA) to construct vascular models for computational fluid dynamics (CFD). We performed MRA and 3D cine phase-contrast (PC) MR imaging with a silicone cerebrovascular phantom of an internal carotid artery-posterior communicating artery aneurysm with blood-mimicking fluid, and controlled flow with a flowmeter. We also obtained RA and CTA data for the phantom. Four analysts constructed vascular models based on the three different modalities. These 12 constructed models used flow information based on 3D cine PC MR imaging for CFD. We compared RA-, CTA-, MRA-based CFD results using the micro-CT-based CFD result as the criterion standard to investigate whether MRA-based CFD was not inferior to RA- or CTA-based CFD. We also analyzed the inter-analyst variability. Wall shear stress (WSS) distributions and streamlines of RA- or MRA-based CFD and those of micro-CT-based CFD were similar, but the vascular models and WSS values were different. Accuracy in measurements of blood vessel diameter, cross-sectional maximum velocity, and spatially averaged WSS was the highest for RA-based CFD, followed by MRA-based and CTA-based CFD using micro-CT-based CFD result as the reference. Except maximum velocity from CTA, all other parameters had good inter-analyst agreement using different modalities. The results demonstrated that non-invasive MRA can be used for cerebrovascular CFD models with good inter-analyst agreements. Cine phase-contrast MR imaging (cine PC MRI) (dpeaa)DE-He213 Computational fluid dynamics (CFD) (dpeaa)DE-He213 Computed tomography angiography (CTA) (dpeaa)DE-He213 Intracranial aneurysm (dpeaa)DE-He213 Magnetic resonance angiography (MRA) (dpeaa)DE-He213 Rotational angiography (RA) (dpeaa)DE-He213 Isoda, Haruo verfasserin aut Ishiguro, Kenta verfasserin aut Terada, Masaki verfasserin aut Kamiya, Masaki verfasserin aut Otsubo, Kenichi verfasserin aut Perera, Roshani verfasserin aut Mizuno, Takashi verfasserin aut Fukuyama, Atsushi verfasserin aut Takiguchi, Kazuya verfasserin aut Watanabe, Tomoya verfasserin aut Kosugi, Takafumi verfasserin aut Komori, Yoshiaki verfasserin aut Naganawa, Shinji verfasserin aut Enthalten in Australasian physical & engineering sciences in medicine Cham : Springer, 2001 43(2020), 4 vom: 12. Okt., Seite 1327-1337 (DE-627)320430707 (DE-600)2003728-4 1879-5447 nnns volume:43 year:2020 number:4 day:12 month:10 pages:1327-1337 https://dx.doi.org/10.1007/s13246-020-00936-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_120 GBV_ILN_150 GBV_ILN_2188 GBV_ILN_2336 GBV_ILN_2472 GBV_ILN_2522 GBV_ILN_4246 44.03 ASE AR 43 2020 4 12 10 1327-1337 |
allfields_unstemmed |
10.1007/s13246-020-00936-6 doi (DE-627)SPR042457114 (DE-599)SPRs13246-020-00936-6-e (SPR)s13246-020-00936-6-e DE-627 ger DE-627 rakwb eng 610 ASE 44.03 bkl Yoneyama, Yuya verfasserin aut Evaluation of magnetic resonance angiography as a possible alternative to rotational angiography or computed tomography angiography for assessing cerebrovascular computational fluid dynamics 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The aim of this study was to conduct a flow experiment using a cerebrovascular phantom and investigate whether magnetic resonance angiography (MRA) could replace three-dimensional rotational angiography (RA) and computed tomography angiography (CTA) to construct vascular models for computational fluid dynamics (CFD). We performed MRA and 3D cine phase-contrast (PC) MR imaging with a silicone cerebrovascular phantom of an internal carotid artery-posterior communicating artery aneurysm with blood-mimicking fluid, and controlled flow with a flowmeter. We also obtained RA and CTA data for the phantom. Four analysts constructed vascular models based on the three different modalities. These 12 constructed models used flow information based on 3D cine PC MR imaging for CFD. We compared RA-, CTA-, MRA-based CFD results using the micro-CT-based CFD result as the criterion standard to investigate whether MRA-based CFD was not inferior to RA- or CTA-based CFD. We also analyzed the inter-analyst variability. Wall shear stress (WSS) distributions and streamlines of RA- or MRA-based CFD and those of micro-CT-based CFD were similar, but the vascular models and WSS values were different. Accuracy in measurements of blood vessel diameter, cross-sectional maximum velocity, and spatially averaged WSS was the highest for RA-based CFD, followed by MRA-based and CTA-based CFD using micro-CT-based CFD result as the reference. Except maximum velocity from CTA, all other parameters had good inter-analyst agreement using different modalities. The results demonstrated that non-invasive MRA can be used for cerebrovascular CFD models with good inter-analyst agreements. Cine phase-contrast MR imaging (cine PC MRI) (dpeaa)DE-He213 Computational fluid dynamics (CFD) (dpeaa)DE-He213 Computed tomography angiography (CTA) (dpeaa)DE-He213 Intracranial aneurysm (dpeaa)DE-He213 Magnetic resonance angiography (MRA) (dpeaa)DE-He213 Rotational angiography (RA) (dpeaa)DE-He213 Isoda, Haruo verfasserin aut Ishiguro, Kenta verfasserin aut Terada, Masaki verfasserin aut Kamiya, Masaki verfasserin aut Otsubo, Kenichi verfasserin aut Perera, Roshani verfasserin aut Mizuno, Takashi verfasserin aut Fukuyama, Atsushi verfasserin aut Takiguchi, Kazuya verfasserin aut Watanabe, Tomoya verfasserin aut Kosugi, Takafumi verfasserin aut Komori, Yoshiaki verfasserin aut Naganawa, Shinji verfasserin aut Enthalten in Australasian physical & engineering sciences in medicine Cham : Springer, 2001 43(2020), 4 vom: 12. Okt., Seite 1327-1337 (DE-627)320430707 (DE-600)2003728-4 1879-5447 nnns volume:43 year:2020 number:4 day:12 month:10 pages:1327-1337 https://dx.doi.org/10.1007/s13246-020-00936-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_120 GBV_ILN_150 GBV_ILN_2188 GBV_ILN_2336 GBV_ILN_2472 GBV_ILN_2522 GBV_ILN_4246 44.03 ASE AR 43 2020 4 12 10 1327-1337 |
allfieldsGer |
10.1007/s13246-020-00936-6 doi (DE-627)SPR042457114 (DE-599)SPRs13246-020-00936-6-e (SPR)s13246-020-00936-6-e DE-627 ger DE-627 rakwb eng 610 ASE 44.03 bkl Yoneyama, Yuya verfasserin aut Evaluation of magnetic resonance angiography as a possible alternative to rotational angiography or computed tomography angiography for assessing cerebrovascular computational fluid dynamics 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The aim of this study was to conduct a flow experiment using a cerebrovascular phantom and investigate whether magnetic resonance angiography (MRA) could replace three-dimensional rotational angiography (RA) and computed tomography angiography (CTA) to construct vascular models for computational fluid dynamics (CFD). We performed MRA and 3D cine phase-contrast (PC) MR imaging with a silicone cerebrovascular phantom of an internal carotid artery-posterior communicating artery aneurysm with blood-mimicking fluid, and controlled flow with a flowmeter. We also obtained RA and CTA data for the phantom. Four analysts constructed vascular models based on the three different modalities. These 12 constructed models used flow information based on 3D cine PC MR imaging for CFD. We compared RA-, CTA-, MRA-based CFD results using the micro-CT-based CFD result as the criterion standard to investigate whether MRA-based CFD was not inferior to RA- or CTA-based CFD. We also analyzed the inter-analyst variability. Wall shear stress (WSS) distributions and streamlines of RA- or MRA-based CFD and those of micro-CT-based CFD were similar, but the vascular models and WSS values were different. Accuracy in measurements of blood vessel diameter, cross-sectional maximum velocity, and spatially averaged WSS was the highest for RA-based CFD, followed by MRA-based and CTA-based CFD using micro-CT-based CFD result as the reference. Except maximum velocity from CTA, all other parameters had good inter-analyst agreement using different modalities. The results demonstrated that non-invasive MRA can be used for cerebrovascular CFD models with good inter-analyst agreements. Cine phase-contrast MR imaging (cine PC MRI) (dpeaa)DE-He213 Computational fluid dynamics (CFD) (dpeaa)DE-He213 Computed tomography angiography (CTA) (dpeaa)DE-He213 Intracranial aneurysm (dpeaa)DE-He213 Magnetic resonance angiography (MRA) (dpeaa)DE-He213 Rotational angiography (RA) (dpeaa)DE-He213 Isoda, Haruo verfasserin aut Ishiguro, Kenta verfasserin aut Terada, Masaki verfasserin aut Kamiya, Masaki verfasserin aut Otsubo, Kenichi verfasserin aut Perera, Roshani verfasserin aut Mizuno, Takashi verfasserin aut Fukuyama, Atsushi verfasserin aut Takiguchi, Kazuya verfasserin aut Watanabe, Tomoya verfasserin aut Kosugi, Takafumi verfasserin aut Komori, Yoshiaki verfasserin aut Naganawa, Shinji verfasserin aut Enthalten in Australasian physical & engineering sciences in medicine Cham : Springer, 2001 43(2020), 4 vom: 12. Okt., Seite 1327-1337 (DE-627)320430707 (DE-600)2003728-4 1879-5447 nnns volume:43 year:2020 number:4 day:12 month:10 pages:1327-1337 https://dx.doi.org/10.1007/s13246-020-00936-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_120 GBV_ILN_150 GBV_ILN_2188 GBV_ILN_2336 GBV_ILN_2472 GBV_ILN_2522 GBV_ILN_4246 44.03 ASE AR 43 2020 4 12 10 1327-1337 |
allfieldsSound |
10.1007/s13246-020-00936-6 doi (DE-627)SPR042457114 (DE-599)SPRs13246-020-00936-6-e (SPR)s13246-020-00936-6-e DE-627 ger DE-627 rakwb eng 610 ASE 44.03 bkl Yoneyama, Yuya verfasserin aut Evaluation of magnetic resonance angiography as a possible alternative to rotational angiography or computed tomography angiography for assessing cerebrovascular computational fluid dynamics 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The aim of this study was to conduct a flow experiment using a cerebrovascular phantom and investigate whether magnetic resonance angiography (MRA) could replace three-dimensional rotational angiography (RA) and computed tomography angiography (CTA) to construct vascular models for computational fluid dynamics (CFD). We performed MRA and 3D cine phase-contrast (PC) MR imaging with a silicone cerebrovascular phantom of an internal carotid artery-posterior communicating artery aneurysm with blood-mimicking fluid, and controlled flow with a flowmeter. We also obtained RA and CTA data for the phantom. Four analysts constructed vascular models based on the three different modalities. These 12 constructed models used flow information based on 3D cine PC MR imaging for CFD. We compared RA-, CTA-, MRA-based CFD results using the micro-CT-based CFD result as the criterion standard to investigate whether MRA-based CFD was not inferior to RA- or CTA-based CFD. We also analyzed the inter-analyst variability. Wall shear stress (WSS) distributions and streamlines of RA- or MRA-based CFD and those of micro-CT-based CFD were similar, but the vascular models and WSS values were different. Accuracy in measurements of blood vessel diameter, cross-sectional maximum velocity, and spatially averaged WSS was the highest for RA-based CFD, followed by MRA-based and CTA-based CFD using micro-CT-based CFD result as the reference. Except maximum velocity from CTA, all other parameters had good inter-analyst agreement using different modalities. The results demonstrated that non-invasive MRA can be used for cerebrovascular CFD models with good inter-analyst agreements. Cine phase-contrast MR imaging (cine PC MRI) (dpeaa)DE-He213 Computational fluid dynamics (CFD) (dpeaa)DE-He213 Computed tomography angiography (CTA) (dpeaa)DE-He213 Intracranial aneurysm (dpeaa)DE-He213 Magnetic resonance angiography (MRA) (dpeaa)DE-He213 Rotational angiography (RA) (dpeaa)DE-He213 Isoda, Haruo verfasserin aut Ishiguro, Kenta verfasserin aut Terada, Masaki verfasserin aut Kamiya, Masaki verfasserin aut Otsubo, Kenichi verfasserin aut Perera, Roshani verfasserin aut Mizuno, Takashi verfasserin aut Fukuyama, Atsushi verfasserin aut Takiguchi, Kazuya verfasserin aut Watanabe, Tomoya verfasserin aut Kosugi, Takafumi verfasserin aut Komori, Yoshiaki verfasserin aut Naganawa, Shinji verfasserin aut Enthalten in Australasian physical & engineering sciences in medicine Cham : Springer, 2001 43(2020), 4 vom: 12. Okt., Seite 1327-1337 (DE-627)320430707 (DE-600)2003728-4 1879-5447 nnns volume:43 year:2020 number:4 day:12 month:10 pages:1327-1337 https://dx.doi.org/10.1007/s13246-020-00936-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_120 GBV_ILN_150 GBV_ILN_2188 GBV_ILN_2336 GBV_ILN_2472 GBV_ILN_2522 GBV_ILN_4246 44.03 ASE AR 43 2020 4 12 10 1327-1337 |
language |
English |
source |
Enthalten in Australasian physical & engineering sciences in medicine 43(2020), 4 vom: 12. Okt., Seite 1327-1337 volume:43 year:2020 number:4 day:12 month:10 pages:1327-1337 |
sourceStr |
Enthalten in Australasian physical & engineering sciences in medicine 43(2020), 4 vom: 12. Okt., Seite 1327-1337 volume:43 year:2020 number:4 day:12 month:10 pages:1327-1337 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Cine phase-contrast MR imaging (cine PC MRI) Computational fluid dynamics (CFD) Computed tomography angiography (CTA) Intracranial aneurysm Magnetic resonance angiography (MRA) Rotational angiography (RA) |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
Australasian physical & engineering sciences in medicine |
authorswithroles_txt_mv |
Yoneyama, Yuya @@aut@@ Isoda, Haruo @@aut@@ Ishiguro, Kenta @@aut@@ Terada, Masaki @@aut@@ Kamiya, Masaki @@aut@@ Otsubo, Kenichi @@aut@@ Perera, Roshani @@aut@@ Mizuno, Takashi @@aut@@ Fukuyama, Atsushi @@aut@@ Takiguchi, Kazuya @@aut@@ Watanabe, Tomoya @@aut@@ Kosugi, Takafumi @@aut@@ Komori, Yoshiaki @@aut@@ Naganawa, Shinji @@aut@@ |
publishDateDaySort_date |
2020-10-12T00:00:00Z |
hierarchy_top_id |
320430707 |
dewey-sort |
3610 |
id |
SPR042457114 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR042457114</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519081523.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201220s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s13246-020-00936-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR042457114</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)SPRs13246-020-00936-6-e</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13246-020-00936-6-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.03</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yoneyama, Yuya</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Evaluation of magnetic resonance angiography as a possible alternative to rotational angiography or computed tomography angiography for assessing cerebrovascular computational fluid dynamics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The aim of this study was to conduct a flow experiment using a cerebrovascular phantom and investigate whether magnetic resonance angiography (MRA) could replace three-dimensional rotational angiography (RA) and computed tomography angiography (CTA) to construct vascular models for computational fluid dynamics (CFD). We performed MRA and 3D cine phase-contrast (PC) MR imaging with a silicone cerebrovascular phantom of an internal carotid artery-posterior communicating artery aneurysm with blood-mimicking fluid, and controlled flow with a flowmeter. We also obtained RA and CTA data for the phantom. Four analysts constructed vascular models based on the three different modalities. These 12 constructed models used flow information based on 3D cine PC MR imaging for CFD. We compared RA-, CTA-, MRA-based CFD results using the micro-CT-based CFD result as the criterion standard to investigate whether MRA-based CFD was not inferior to RA- or CTA-based CFD. We also analyzed the inter-analyst variability. Wall shear stress (WSS) distributions and streamlines of RA- or MRA-based CFD and those of micro-CT-based CFD were similar, but the vascular models and WSS values were different. Accuracy in measurements of blood vessel diameter, cross-sectional maximum velocity, and spatially averaged WSS was the highest for RA-based CFD, followed by MRA-based and CTA-based CFD using micro-CT-based CFD result as the reference. Except maximum velocity from CTA, all other parameters had good inter-analyst agreement using different modalities. The results demonstrated that non-invasive MRA can be used for cerebrovascular CFD models with good inter-analyst agreements.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cine phase-contrast MR imaging (cine PC MRI)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational fluid dynamics (CFD)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computed tomography angiography (CTA)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intracranial aneurysm</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic resonance angiography (MRA)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rotational angiography (RA)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Isoda, Haruo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ishiguro, Kenta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Terada, Masaki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kamiya, Masaki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Otsubo, Kenichi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Perera, Roshani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mizuno, Takashi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fukuyama, Atsushi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Takiguchi, Kazuya</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Watanabe, Tomoya</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kosugi, Takafumi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Komori, Yoshiaki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Naganawa, Shinji</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Australasian physical & engineering sciences in medicine</subfield><subfield code="d">Cham : Springer, 2001</subfield><subfield code="g">43(2020), 4 vom: 12. Okt., Seite 1327-1337</subfield><subfield code="w">(DE-627)320430707</subfield><subfield code="w">(DE-600)2003728-4</subfield><subfield code="x">1879-5447</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:43</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:4</subfield><subfield code="g">day:12</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:1327-1337</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s13246-020-00936-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.03</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">43</subfield><subfield code="j">2020</subfield><subfield code="e">4</subfield><subfield code="b">12</subfield><subfield code="c">10</subfield><subfield code="h">1327-1337</subfield></datafield></record></collection>
|
author |
Yoneyama, Yuya |
spellingShingle |
Yoneyama, Yuya ddc 610 bkl 44.03 misc Cine phase-contrast MR imaging (cine PC MRI) misc Computational fluid dynamics (CFD) misc Computed tomography angiography (CTA) misc Intracranial aneurysm misc Magnetic resonance angiography (MRA) misc Rotational angiography (RA) Evaluation of magnetic resonance angiography as a possible alternative to rotational angiography or computed tomography angiography for assessing cerebrovascular computational fluid dynamics |
authorStr |
Yoneyama, Yuya |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320430707 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1879-5447 |
topic_title |
610 ASE 44.03 bkl Evaluation of magnetic resonance angiography as a possible alternative to rotational angiography or computed tomography angiography for assessing cerebrovascular computational fluid dynamics Cine phase-contrast MR imaging (cine PC MRI) (dpeaa)DE-He213 Computational fluid dynamics (CFD) (dpeaa)DE-He213 Computed tomography angiography (CTA) (dpeaa)DE-He213 Intracranial aneurysm (dpeaa)DE-He213 Magnetic resonance angiography (MRA) (dpeaa)DE-He213 Rotational angiography (RA) (dpeaa)DE-He213 |
topic |
ddc 610 bkl 44.03 misc Cine phase-contrast MR imaging (cine PC MRI) misc Computational fluid dynamics (CFD) misc Computed tomography angiography (CTA) misc Intracranial aneurysm misc Magnetic resonance angiography (MRA) misc Rotational angiography (RA) |
topic_unstemmed |
ddc 610 bkl 44.03 misc Cine phase-contrast MR imaging (cine PC MRI) misc Computational fluid dynamics (CFD) misc Computed tomography angiography (CTA) misc Intracranial aneurysm misc Magnetic resonance angiography (MRA) misc Rotational angiography (RA) |
topic_browse |
ddc 610 bkl 44.03 misc Cine phase-contrast MR imaging (cine PC MRI) misc Computational fluid dynamics (CFD) misc Computed tomography angiography (CTA) misc Intracranial aneurysm misc Magnetic resonance angiography (MRA) misc Rotational angiography (RA) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Australasian physical & engineering sciences in medicine |
hierarchy_parent_id |
320430707 |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
Australasian physical & engineering sciences in medicine |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320430707 (DE-600)2003728-4 |
title |
Evaluation of magnetic resonance angiography as a possible alternative to rotational angiography or computed tomography angiography for assessing cerebrovascular computational fluid dynamics |
ctrlnum |
(DE-627)SPR042457114 (DE-599)SPRs13246-020-00936-6-e (SPR)s13246-020-00936-6-e |
title_full |
Evaluation of magnetic resonance angiography as a possible alternative to rotational angiography or computed tomography angiography for assessing cerebrovascular computational fluid dynamics |
author_sort |
Yoneyama, Yuya |
journal |
Australasian physical & engineering sciences in medicine |
journalStr |
Australasian physical & engineering sciences in medicine |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
1327 |
author_browse |
Yoneyama, Yuya Isoda, Haruo Ishiguro, Kenta Terada, Masaki Kamiya, Masaki Otsubo, Kenichi Perera, Roshani Mizuno, Takashi Fukuyama, Atsushi Takiguchi, Kazuya Watanabe, Tomoya Kosugi, Takafumi Komori, Yoshiaki Naganawa, Shinji |
container_volume |
43 |
class |
610 ASE 44.03 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Yoneyama, Yuya |
doi_str_mv |
10.1007/s13246-020-00936-6 |
dewey-full |
610 |
author2-role |
verfasserin |
title_sort |
evaluation of magnetic resonance angiography as a possible alternative to rotational angiography or computed tomography angiography for assessing cerebrovascular computational fluid dynamics |
title_auth |
Evaluation of magnetic resonance angiography as a possible alternative to rotational angiography or computed tomography angiography for assessing cerebrovascular computational fluid dynamics |
abstract |
Abstract The aim of this study was to conduct a flow experiment using a cerebrovascular phantom and investigate whether magnetic resonance angiography (MRA) could replace three-dimensional rotational angiography (RA) and computed tomography angiography (CTA) to construct vascular models for computational fluid dynamics (CFD). We performed MRA and 3D cine phase-contrast (PC) MR imaging with a silicone cerebrovascular phantom of an internal carotid artery-posterior communicating artery aneurysm with blood-mimicking fluid, and controlled flow with a flowmeter. We also obtained RA and CTA data for the phantom. Four analysts constructed vascular models based on the three different modalities. These 12 constructed models used flow information based on 3D cine PC MR imaging for CFD. We compared RA-, CTA-, MRA-based CFD results using the micro-CT-based CFD result as the criterion standard to investigate whether MRA-based CFD was not inferior to RA- or CTA-based CFD. We also analyzed the inter-analyst variability. Wall shear stress (WSS) distributions and streamlines of RA- or MRA-based CFD and those of micro-CT-based CFD were similar, but the vascular models and WSS values were different. Accuracy in measurements of blood vessel diameter, cross-sectional maximum velocity, and spatially averaged WSS was the highest for RA-based CFD, followed by MRA-based and CTA-based CFD using micro-CT-based CFD result as the reference. Except maximum velocity from CTA, all other parameters had good inter-analyst agreement using different modalities. The results demonstrated that non-invasive MRA can be used for cerebrovascular CFD models with good inter-analyst agreements. |
abstractGer |
Abstract The aim of this study was to conduct a flow experiment using a cerebrovascular phantom and investigate whether magnetic resonance angiography (MRA) could replace three-dimensional rotational angiography (RA) and computed tomography angiography (CTA) to construct vascular models for computational fluid dynamics (CFD). We performed MRA and 3D cine phase-contrast (PC) MR imaging with a silicone cerebrovascular phantom of an internal carotid artery-posterior communicating artery aneurysm with blood-mimicking fluid, and controlled flow with a flowmeter. We also obtained RA and CTA data for the phantom. Four analysts constructed vascular models based on the three different modalities. These 12 constructed models used flow information based on 3D cine PC MR imaging for CFD. We compared RA-, CTA-, MRA-based CFD results using the micro-CT-based CFD result as the criterion standard to investigate whether MRA-based CFD was not inferior to RA- or CTA-based CFD. We also analyzed the inter-analyst variability. Wall shear stress (WSS) distributions and streamlines of RA- or MRA-based CFD and those of micro-CT-based CFD were similar, but the vascular models and WSS values were different. Accuracy in measurements of blood vessel diameter, cross-sectional maximum velocity, and spatially averaged WSS was the highest for RA-based CFD, followed by MRA-based and CTA-based CFD using micro-CT-based CFD result as the reference. Except maximum velocity from CTA, all other parameters had good inter-analyst agreement using different modalities. The results demonstrated that non-invasive MRA can be used for cerebrovascular CFD models with good inter-analyst agreements. |
abstract_unstemmed |
Abstract The aim of this study was to conduct a flow experiment using a cerebrovascular phantom and investigate whether magnetic resonance angiography (MRA) could replace three-dimensional rotational angiography (RA) and computed tomography angiography (CTA) to construct vascular models for computational fluid dynamics (CFD). We performed MRA and 3D cine phase-contrast (PC) MR imaging with a silicone cerebrovascular phantom of an internal carotid artery-posterior communicating artery aneurysm with blood-mimicking fluid, and controlled flow with a flowmeter. We also obtained RA and CTA data for the phantom. Four analysts constructed vascular models based on the three different modalities. These 12 constructed models used flow information based on 3D cine PC MR imaging for CFD. We compared RA-, CTA-, MRA-based CFD results using the micro-CT-based CFD result as the criterion standard to investigate whether MRA-based CFD was not inferior to RA- or CTA-based CFD. We also analyzed the inter-analyst variability. Wall shear stress (WSS) distributions and streamlines of RA- or MRA-based CFD and those of micro-CT-based CFD were similar, but the vascular models and WSS values were different. Accuracy in measurements of blood vessel diameter, cross-sectional maximum velocity, and spatially averaged WSS was the highest for RA-based CFD, followed by MRA-based and CTA-based CFD using micro-CT-based CFD result as the reference. Except maximum velocity from CTA, all other parameters had good inter-analyst agreement using different modalities. The results demonstrated that non-invasive MRA can be used for cerebrovascular CFD models with good inter-analyst agreements. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_120 GBV_ILN_150 GBV_ILN_2188 GBV_ILN_2336 GBV_ILN_2472 GBV_ILN_2522 GBV_ILN_4246 |
container_issue |
4 |
title_short |
Evaluation of magnetic resonance angiography as a possible alternative to rotational angiography or computed tomography angiography for assessing cerebrovascular computational fluid dynamics |
url |
https://dx.doi.org/10.1007/s13246-020-00936-6 |
remote_bool |
true |
author2 |
Isoda, Haruo Ishiguro, Kenta Terada, Masaki Kamiya, Masaki Otsubo, Kenichi Perera, Roshani Mizuno, Takashi Fukuyama, Atsushi Takiguchi, Kazuya Watanabe, Tomoya Kosugi, Takafumi Komori, Yoshiaki Naganawa, Shinji |
author2Str |
Isoda, Haruo Ishiguro, Kenta Terada, Masaki Kamiya, Masaki Otsubo, Kenichi Perera, Roshani Mizuno, Takashi Fukuyama, Atsushi Takiguchi, Kazuya Watanabe, Tomoya Kosugi, Takafumi Komori, Yoshiaki Naganawa, Shinji |
ppnlink |
320430707 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s13246-020-00936-6 |
up_date |
2024-07-04T02:04:53.886Z |
_version_ |
1803612265002303488 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR042457114</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519081523.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201220s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s13246-020-00936-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR042457114</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)SPRs13246-020-00936-6-e</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13246-020-00936-6-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.03</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yoneyama, Yuya</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Evaluation of magnetic resonance angiography as a possible alternative to rotational angiography or computed tomography angiography for assessing cerebrovascular computational fluid dynamics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The aim of this study was to conduct a flow experiment using a cerebrovascular phantom and investigate whether magnetic resonance angiography (MRA) could replace three-dimensional rotational angiography (RA) and computed tomography angiography (CTA) to construct vascular models for computational fluid dynamics (CFD). We performed MRA and 3D cine phase-contrast (PC) MR imaging with a silicone cerebrovascular phantom of an internal carotid artery-posterior communicating artery aneurysm with blood-mimicking fluid, and controlled flow with a flowmeter. We also obtained RA and CTA data for the phantom. Four analysts constructed vascular models based on the three different modalities. These 12 constructed models used flow information based on 3D cine PC MR imaging for CFD. We compared RA-, CTA-, MRA-based CFD results using the micro-CT-based CFD result as the criterion standard to investigate whether MRA-based CFD was not inferior to RA- or CTA-based CFD. We also analyzed the inter-analyst variability. Wall shear stress (WSS) distributions and streamlines of RA- or MRA-based CFD and those of micro-CT-based CFD were similar, but the vascular models and WSS values were different. Accuracy in measurements of blood vessel diameter, cross-sectional maximum velocity, and spatially averaged WSS was the highest for RA-based CFD, followed by MRA-based and CTA-based CFD using micro-CT-based CFD result as the reference. Except maximum velocity from CTA, all other parameters had good inter-analyst agreement using different modalities. The results demonstrated that non-invasive MRA can be used for cerebrovascular CFD models with good inter-analyst agreements.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cine phase-contrast MR imaging (cine PC MRI)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational fluid dynamics (CFD)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computed tomography angiography (CTA)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intracranial aneurysm</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic resonance angiography (MRA)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rotational angiography (RA)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Isoda, Haruo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ishiguro, Kenta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Terada, Masaki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kamiya, Masaki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Otsubo, Kenichi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Perera, Roshani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mizuno, Takashi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fukuyama, Atsushi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Takiguchi, Kazuya</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Watanabe, Tomoya</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kosugi, Takafumi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Komori, Yoshiaki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Naganawa, Shinji</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Australasian physical & engineering sciences in medicine</subfield><subfield code="d">Cham : Springer, 2001</subfield><subfield code="g">43(2020), 4 vom: 12. Okt., Seite 1327-1337</subfield><subfield code="w">(DE-627)320430707</subfield><subfield code="w">(DE-600)2003728-4</subfield><subfield code="x">1879-5447</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:43</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:4</subfield><subfield code="g">day:12</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:1327-1337</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s13246-020-00936-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.03</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">43</subfield><subfield code="j">2020</subfield><subfield code="e">4</subfield><subfield code="b">12</subfield><subfield code="c">10</subfield><subfield code="h">1327-1337</subfield></datafield></record></collection>
|
score |
7.4024124 |