Unsupervised multi-view representation learning with proximity guided representation and generalized canonical correlation analysis

Abstract Multi-view data can collaborate with each other to provide more comprehensive information than single-view data. Although there exist a few unsupervised multi-view representation learning methods taking both the discrepancies and incorporating complementary information from different views...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Zheng, Tingyi [verfasserIn]

Ge, Huibin [verfasserIn]

Li, Jiayi [verfasserIn]

Wang, Li [verfasserIn]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2020

Schlagwörter:

Unsupervised multi-view representation learning

Proximity guided dynamic routing

Latent specific characteristic

Discrimination representation

Generalized canonical correlation analysis

Übergeordnetes Werk:

Enthalten in: Applied intelligence - Dordrecht [u.a.] : Springer Science + Business Media B.V, 1991, 51(2020), 1 vom: 10. Aug., Seite 248-264

Übergeordnetes Werk:

volume:51 ; year:2020 ; number:1 ; day:10 ; month:08 ; pages:248-264

Links:

Volltext

DOI / URN:

10.1007/s10489-020-01821-1

Katalog-ID:

SPR042532132

Nicht das Richtige dabei?

Schreiben Sie uns!