Finite Element Analysis of Adhesive Failure of Solid Composite Propellant Multi-material Structure for Underwater Intelligent Equipment
Abstract This paper is a consecutive work based on the last paper “Finite element analysis of viscoelastic/damage behaviors of composite solid propellant for underwater intelligent equipment”. This paper studies adhesive failure behaviors of multi-material structure in underwater intelligent equipme...
Ausführliche Beschreibung
Autor*in: |
Li, J. X. [verfasserIn] Liu, P. F. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Practical failure analysis - Springer New York, 2001, 21(2020), 1 vom: 03. Nov., Seite 241-249 |
---|---|
Übergeordnetes Werk: |
volume:21 ; year:2020 ; number:1 ; day:03 ; month:11 ; pages:241-249 |
Links: |
---|
DOI / URN: |
10.1007/s11668-020-01056-9 |
---|
Katalog-ID: |
SPR042802865 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR042802865 | ||
003 | DE-627 | ||
005 | 20210122064842.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210122s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11668-020-01056-9 |2 doi | |
035 | |a (DE-627)SPR042802865 | ||
035 | |a (DE-599)SPRs11668-020-01056-9-e | ||
035 | |a (SPR)s11668-020-01056-9-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Li, J. X. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Finite Element Analysis of Adhesive Failure of Solid Composite Propellant Multi-material Structure for Underwater Intelligent Equipment |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract This paper is a consecutive work based on the last paper “Finite element analysis of viscoelastic/damage behaviors of composite solid propellant for underwater intelligent equipment”. This paper studies adhesive failure behaviors of multi-material structure in underwater intelligent equipment, which includes the propellant layer/lining layer/adiabatic layer/aluminum layer. First, the hyperelastic mechanical properties for ethylene–propylene–diene monomer for adiabatic layer are predicted by using the Mooney–Rivlin constitutive model, where the material parameters are fitted by combining with theoretical and experimental load curves. Second, the adhesive failure between the propellant layer and the lining layer is predicted for the designed multiple material layers under shear loads by combining with the bilinear cohesive model, the constitutive models for the propellant and adiabatic layer materials. Finally, the adhesive failure mechanisms and the load responses are studied for the shear specimens. | ||
650 | 4 | |a Multi-material layers |7 (dpeaa)DE-He213 | |
650 | 4 | |a Adhesive failure |7 (dpeaa)DE-He213 | |
650 | 4 | |a Finite element analysis (FEA) |7 (dpeaa)DE-He213 | |
700 | 1 | |a Liu, P. F. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Practical failure analysis |d Springer New York, 2001 |g 21(2020), 1 vom: 03. Nov., Seite 241-249 |w (DE-627)886125871 |w (DE-600)2893589-5 |x 5555-1313 |7 nnns |
773 | 1 | 8 | |g volume:21 |g year:2020 |g number:1 |g day:03 |g month:11 |g pages:241-249 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11668-020-01056-9 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
951 | |a AR | ||
952 | |d 21 |j 2020 |e 1 |b 03 |c 11 |h 241-249 |
author_variant |
j x l jx jxl p f l pf pfl |
---|---|
matchkey_str |
article:55551313:2020----::iielmnaayioahsvfiuefoicmoierplatutmtrasrcue |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.1007/s11668-020-01056-9 doi (DE-627)SPR042802865 (DE-599)SPRs11668-020-01056-9-e (SPR)s11668-020-01056-9-e DE-627 ger DE-627 rakwb eng Li, J. X. verfasserin aut Finite Element Analysis of Adhesive Failure of Solid Composite Propellant Multi-material Structure for Underwater Intelligent Equipment 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract This paper is a consecutive work based on the last paper “Finite element analysis of viscoelastic/damage behaviors of composite solid propellant for underwater intelligent equipment”. This paper studies adhesive failure behaviors of multi-material structure in underwater intelligent equipment, which includes the propellant layer/lining layer/adiabatic layer/aluminum layer. First, the hyperelastic mechanical properties for ethylene–propylene–diene monomer for adiabatic layer are predicted by using the Mooney–Rivlin constitutive model, where the material parameters are fitted by combining with theoretical and experimental load curves. Second, the adhesive failure between the propellant layer and the lining layer is predicted for the designed multiple material layers under shear loads by combining with the bilinear cohesive model, the constitutive models for the propellant and adiabatic layer materials. Finally, the adhesive failure mechanisms and the load responses are studied for the shear specimens. Multi-material layers (dpeaa)DE-He213 Adhesive failure (dpeaa)DE-He213 Finite element analysis (FEA) (dpeaa)DE-He213 Liu, P. F. verfasserin aut Enthalten in Practical failure analysis Springer New York, 2001 21(2020), 1 vom: 03. Nov., Seite 241-249 (DE-627)886125871 (DE-600)2893589-5 5555-1313 nnns volume:21 year:2020 number:1 day:03 month:11 pages:241-249 https://dx.doi.org/10.1007/s11668-020-01056-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 21 2020 1 03 11 241-249 |
spelling |
10.1007/s11668-020-01056-9 doi (DE-627)SPR042802865 (DE-599)SPRs11668-020-01056-9-e (SPR)s11668-020-01056-9-e DE-627 ger DE-627 rakwb eng Li, J. X. verfasserin aut Finite Element Analysis of Adhesive Failure of Solid Composite Propellant Multi-material Structure for Underwater Intelligent Equipment 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract This paper is a consecutive work based on the last paper “Finite element analysis of viscoelastic/damage behaviors of composite solid propellant for underwater intelligent equipment”. This paper studies adhesive failure behaviors of multi-material structure in underwater intelligent equipment, which includes the propellant layer/lining layer/adiabatic layer/aluminum layer. First, the hyperelastic mechanical properties for ethylene–propylene–diene monomer for adiabatic layer are predicted by using the Mooney–Rivlin constitutive model, where the material parameters are fitted by combining with theoretical and experimental load curves. Second, the adhesive failure between the propellant layer and the lining layer is predicted for the designed multiple material layers under shear loads by combining with the bilinear cohesive model, the constitutive models for the propellant and adiabatic layer materials. Finally, the adhesive failure mechanisms and the load responses are studied for the shear specimens. Multi-material layers (dpeaa)DE-He213 Adhesive failure (dpeaa)DE-He213 Finite element analysis (FEA) (dpeaa)DE-He213 Liu, P. F. verfasserin aut Enthalten in Practical failure analysis Springer New York, 2001 21(2020), 1 vom: 03. Nov., Seite 241-249 (DE-627)886125871 (DE-600)2893589-5 5555-1313 nnns volume:21 year:2020 number:1 day:03 month:11 pages:241-249 https://dx.doi.org/10.1007/s11668-020-01056-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 21 2020 1 03 11 241-249 |
allfields_unstemmed |
10.1007/s11668-020-01056-9 doi (DE-627)SPR042802865 (DE-599)SPRs11668-020-01056-9-e (SPR)s11668-020-01056-9-e DE-627 ger DE-627 rakwb eng Li, J. X. verfasserin aut Finite Element Analysis of Adhesive Failure of Solid Composite Propellant Multi-material Structure for Underwater Intelligent Equipment 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract This paper is a consecutive work based on the last paper “Finite element analysis of viscoelastic/damage behaviors of composite solid propellant for underwater intelligent equipment”. This paper studies adhesive failure behaviors of multi-material structure in underwater intelligent equipment, which includes the propellant layer/lining layer/adiabatic layer/aluminum layer. First, the hyperelastic mechanical properties for ethylene–propylene–diene monomer for adiabatic layer are predicted by using the Mooney–Rivlin constitutive model, where the material parameters are fitted by combining with theoretical and experimental load curves. Second, the adhesive failure between the propellant layer and the lining layer is predicted for the designed multiple material layers under shear loads by combining with the bilinear cohesive model, the constitutive models for the propellant and adiabatic layer materials. Finally, the adhesive failure mechanisms and the load responses are studied for the shear specimens. Multi-material layers (dpeaa)DE-He213 Adhesive failure (dpeaa)DE-He213 Finite element analysis (FEA) (dpeaa)DE-He213 Liu, P. F. verfasserin aut Enthalten in Practical failure analysis Springer New York, 2001 21(2020), 1 vom: 03. Nov., Seite 241-249 (DE-627)886125871 (DE-600)2893589-5 5555-1313 nnns volume:21 year:2020 number:1 day:03 month:11 pages:241-249 https://dx.doi.org/10.1007/s11668-020-01056-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 21 2020 1 03 11 241-249 |
allfieldsGer |
10.1007/s11668-020-01056-9 doi (DE-627)SPR042802865 (DE-599)SPRs11668-020-01056-9-e (SPR)s11668-020-01056-9-e DE-627 ger DE-627 rakwb eng Li, J. X. verfasserin aut Finite Element Analysis of Adhesive Failure of Solid Composite Propellant Multi-material Structure for Underwater Intelligent Equipment 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract This paper is a consecutive work based on the last paper “Finite element analysis of viscoelastic/damage behaviors of composite solid propellant for underwater intelligent equipment”. This paper studies adhesive failure behaviors of multi-material structure in underwater intelligent equipment, which includes the propellant layer/lining layer/adiabatic layer/aluminum layer. First, the hyperelastic mechanical properties for ethylene–propylene–diene monomer for adiabatic layer are predicted by using the Mooney–Rivlin constitutive model, where the material parameters are fitted by combining with theoretical and experimental load curves. Second, the adhesive failure between the propellant layer and the lining layer is predicted for the designed multiple material layers under shear loads by combining with the bilinear cohesive model, the constitutive models for the propellant and adiabatic layer materials. Finally, the adhesive failure mechanisms and the load responses are studied for the shear specimens. Multi-material layers (dpeaa)DE-He213 Adhesive failure (dpeaa)DE-He213 Finite element analysis (FEA) (dpeaa)DE-He213 Liu, P. F. verfasserin aut Enthalten in Practical failure analysis Springer New York, 2001 21(2020), 1 vom: 03. Nov., Seite 241-249 (DE-627)886125871 (DE-600)2893589-5 5555-1313 nnns volume:21 year:2020 number:1 day:03 month:11 pages:241-249 https://dx.doi.org/10.1007/s11668-020-01056-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 21 2020 1 03 11 241-249 |
allfieldsSound |
10.1007/s11668-020-01056-9 doi (DE-627)SPR042802865 (DE-599)SPRs11668-020-01056-9-e (SPR)s11668-020-01056-9-e DE-627 ger DE-627 rakwb eng Li, J. X. verfasserin aut Finite Element Analysis of Adhesive Failure of Solid Composite Propellant Multi-material Structure for Underwater Intelligent Equipment 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract This paper is a consecutive work based on the last paper “Finite element analysis of viscoelastic/damage behaviors of composite solid propellant for underwater intelligent equipment”. This paper studies adhesive failure behaviors of multi-material structure in underwater intelligent equipment, which includes the propellant layer/lining layer/adiabatic layer/aluminum layer. First, the hyperelastic mechanical properties for ethylene–propylene–diene monomer for adiabatic layer are predicted by using the Mooney–Rivlin constitutive model, where the material parameters are fitted by combining with theoretical and experimental load curves. Second, the adhesive failure between the propellant layer and the lining layer is predicted for the designed multiple material layers under shear loads by combining with the bilinear cohesive model, the constitutive models for the propellant and adiabatic layer materials. Finally, the adhesive failure mechanisms and the load responses are studied for the shear specimens. Multi-material layers (dpeaa)DE-He213 Adhesive failure (dpeaa)DE-He213 Finite element analysis (FEA) (dpeaa)DE-He213 Liu, P. F. verfasserin aut Enthalten in Practical failure analysis Springer New York, 2001 21(2020), 1 vom: 03. Nov., Seite 241-249 (DE-627)886125871 (DE-600)2893589-5 5555-1313 nnns volume:21 year:2020 number:1 day:03 month:11 pages:241-249 https://dx.doi.org/10.1007/s11668-020-01056-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 21 2020 1 03 11 241-249 |
language |
English |
source |
Enthalten in Practical failure analysis 21(2020), 1 vom: 03. Nov., Seite 241-249 volume:21 year:2020 number:1 day:03 month:11 pages:241-249 |
sourceStr |
Enthalten in Practical failure analysis 21(2020), 1 vom: 03. Nov., Seite 241-249 volume:21 year:2020 number:1 day:03 month:11 pages:241-249 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Multi-material layers Adhesive failure Finite element analysis (FEA) |
isfreeaccess_bool |
false |
container_title |
Practical failure analysis |
authorswithroles_txt_mv |
Li, J. X. @@aut@@ Liu, P. F. @@aut@@ |
publishDateDaySort_date |
2020-11-03T00:00:00Z |
hierarchy_top_id |
886125871 |
id |
SPR042802865 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR042802865</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210122064842.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210122s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11668-020-01056-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR042802865</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)SPRs11668-020-01056-9-e</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11668-020-01056-9-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, J. X.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Finite Element Analysis of Adhesive Failure of Solid Composite Propellant Multi-material Structure for Underwater Intelligent Equipment</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper is a consecutive work based on the last paper “Finite element analysis of viscoelastic/damage behaviors of composite solid propellant for underwater intelligent equipment”. This paper studies adhesive failure behaviors of multi-material structure in underwater intelligent equipment, which includes the propellant layer/lining layer/adiabatic layer/aluminum layer. First, the hyperelastic mechanical properties for ethylene–propylene–diene monomer for adiabatic layer are predicted by using the Mooney–Rivlin constitutive model, where the material parameters are fitted by combining with theoretical and experimental load curves. Second, the adhesive failure between the propellant layer and the lining layer is predicted for the designed multiple material layers under shear loads by combining with the bilinear cohesive model, the constitutive models for the propellant and adiabatic layer materials. Finally, the adhesive failure mechanisms and the load responses are studied for the shear specimens.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-material layers</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adhesive failure</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite element analysis (FEA)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, P. F.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Practical failure analysis</subfield><subfield code="d">Springer New York, 2001</subfield><subfield code="g">21(2020), 1 vom: 03. Nov., Seite 241-249</subfield><subfield code="w">(DE-627)886125871</subfield><subfield code="w">(DE-600)2893589-5</subfield><subfield code="x">5555-1313</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:21</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:1</subfield><subfield code="g">day:03</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:241-249</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11668-020-01056-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">21</subfield><subfield code="j">2020</subfield><subfield code="e">1</subfield><subfield code="b">03</subfield><subfield code="c">11</subfield><subfield code="h">241-249</subfield></datafield></record></collection>
|
author |
Li, J. X. |
spellingShingle |
Li, J. X. misc Multi-material layers misc Adhesive failure misc Finite element analysis (FEA) Finite Element Analysis of Adhesive Failure of Solid Composite Propellant Multi-material Structure for Underwater Intelligent Equipment |
authorStr |
Li, J. X. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)886125871 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
5555-1313 |
topic_title |
Finite Element Analysis of Adhesive Failure of Solid Composite Propellant Multi-material Structure for Underwater Intelligent Equipment Multi-material layers (dpeaa)DE-He213 Adhesive failure (dpeaa)DE-He213 Finite element analysis (FEA) (dpeaa)DE-He213 |
topic |
misc Multi-material layers misc Adhesive failure misc Finite element analysis (FEA) |
topic_unstemmed |
misc Multi-material layers misc Adhesive failure misc Finite element analysis (FEA) |
topic_browse |
misc Multi-material layers misc Adhesive failure misc Finite element analysis (FEA) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Practical failure analysis |
hierarchy_parent_id |
886125871 |
hierarchy_top_title |
Practical failure analysis |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)886125871 (DE-600)2893589-5 |
title |
Finite Element Analysis of Adhesive Failure of Solid Composite Propellant Multi-material Structure for Underwater Intelligent Equipment |
ctrlnum |
(DE-627)SPR042802865 (DE-599)SPRs11668-020-01056-9-e (SPR)s11668-020-01056-9-e |
title_full |
Finite Element Analysis of Adhesive Failure of Solid Composite Propellant Multi-material Structure for Underwater Intelligent Equipment |
author_sort |
Li, J. X. |
journal |
Practical failure analysis |
journalStr |
Practical failure analysis |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
241 |
author_browse |
Li, J. X. Liu, P. F. |
container_volume |
21 |
format_se |
Elektronische Aufsätze |
author-letter |
Li, J. X. |
doi_str_mv |
10.1007/s11668-020-01056-9 |
author2-role |
verfasserin |
title_sort |
finite element analysis of adhesive failure of solid composite propellant multi-material structure for underwater intelligent equipment |
title_auth |
Finite Element Analysis of Adhesive Failure of Solid Composite Propellant Multi-material Structure for Underwater Intelligent Equipment |
abstract |
Abstract This paper is a consecutive work based on the last paper “Finite element analysis of viscoelastic/damage behaviors of composite solid propellant for underwater intelligent equipment”. This paper studies adhesive failure behaviors of multi-material structure in underwater intelligent equipment, which includes the propellant layer/lining layer/adiabatic layer/aluminum layer. First, the hyperelastic mechanical properties for ethylene–propylene–diene monomer for adiabatic layer are predicted by using the Mooney–Rivlin constitutive model, where the material parameters are fitted by combining with theoretical and experimental load curves. Second, the adhesive failure between the propellant layer and the lining layer is predicted for the designed multiple material layers under shear loads by combining with the bilinear cohesive model, the constitutive models for the propellant and adiabatic layer materials. Finally, the adhesive failure mechanisms and the load responses are studied for the shear specimens. |
abstractGer |
Abstract This paper is a consecutive work based on the last paper “Finite element analysis of viscoelastic/damage behaviors of composite solid propellant for underwater intelligent equipment”. This paper studies adhesive failure behaviors of multi-material structure in underwater intelligent equipment, which includes the propellant layer/lining layer/adiabatic layer/aluminum layer. First, the hyperelastic mechanical properties for ethylene–propylene–diene monomer for adiabatic layer are predicted by using the Mooney–Rivlin constitutive model, where the material parameters are fitted by combining with theoretical and experimental load curves. Second, the adhesive failure between the propellant layer and the lining layer is predicted for the designed multiple material layers under shear loads by combining with the bilinear cohesive model, the constitutive models for the propellant and adiabatic layer materials. Finally, the adhesive failure mechanisms and the load responses are studied for the shear specimens. |
abstract_unstemmed |
Abstract This paper is a consecutive work based on the last paper “Finite element analysis of viscoelastic/damage behaviors of composite solid propellant for underwater intelligent equipment”. This paper studies adhesive failure behaviors of multi-material structure in underwater intelligent equipment, which includes the propellant layer/lining layer/adiabatic layer/aluminum layer. First, the hyperelastic mechanical properties for ethylene–propylene–diene monomer for adiabatic layer are predicted by using the Mooney–Rivlin constitutive model, where the material parameters are fitted by combining with theoretical and experimental load curves. Second, the adhesive failure between the propellant layer and the lining layer is predicted for the designed multiple material layers under shear loads by combining with the bilinear cohesive model, the constitutive models for the propellant and adiabatic layer materials. Finally, the adhesive failure mechanisms and the load responses are studied for the shear specimens. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER |
container_issue |
1 |
title_short |
Finite Element Analysis of Adhesive Failure of Solid Composite Propellant Multi-material Structure for Underwater Intelligent Equipment |
url |
https://dx.doi.org/10.1007/s11668-020-01056-9 |
remote_bool |
true |
author2 |
Liu, P. F. |
author2Str |
Liu, P. F. |
ppnlink |
886125871 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11668-020-01056-9 |
up_date |
2024-07-03T14:55:14.137Z |
_version_ |
1803570133477621760 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR042802865</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210122064842.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210122s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11668-020-01056-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR042802865</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)SPRs11668-020-01056-9-e</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11668-020-01056-9-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, J. X.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Finite Element Analysis of Adhesive Failure of Solid Composite Propellant Multi-material Structure for Underwater Intelligent Equipment</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper is a consecutive work based on the last paper “Finite element analysis of viscoelastic/damage behaviors of composite solid propellant for underwater intelligent equipment”. This paper studies adhesive failure behaviors of multi-material structure in underwater intelligent equipment, which includes the propellant layer/lining layer/adiabatic layer/aluminum layer. First, the hyperelastic mechanical properties for ethylene–propylene–diene monomer for adiabatic layer are predicted by using the Mooney–Rivlin constitutive model, where the material parameters are fitted by combining with theoretical and experimental load curves. Second, the adhesive failure between the propellant layer and the lining layer is predicted for the designed multiple material layers under shear loads by combining with the bilinear cohesive model, the constitutive models for the propellant and adiabatic layer materials. Finally, the adhesive failure mechanisms and the load responses are studied for the shear specimens.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-material layers</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adhesive failure</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite element analysis (FEA)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, P. F.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Practical failure analysis</subfield><subfield code="d">Springer New York, 2001</subfield><subfield code="g">21(2020), 1 vom: 03. Nov., Seite 241-249</subfield><subfield code="w">(DE-627)886125871</subfield><subfield code="w">(DE-600)2893589-5</subfield><subfield code="x">5555-1313</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:21</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:1</subfield><subfield code="g">day:03</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:241-249</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11668-020-01056-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">21</subfield><subfield code="j">2020</subfield><subfield code="e">1</subfield><subfield code="b">03</subfield><subfield code="c">11</subfield><subfield code="h">241-249</subfield></datafield></record></collection>
|
score |
7.401355 |