An updated evaluation of the global mean land surface air temperature and surface temperature trends based on CLSAT and CMST
Abstract Past versions of global surface temperature (ST) datasets have been shown to have underestimated the recent warming trend over 1998–2012. This study uses a newly updated global land surface air temperature and a land and marine surface temperature dataset, referred to as China global land s...
Ausführliche Beschreibung
Autor*in: |
Li, Qingxiang [verfasserIn] Sun, Wenbin [verfasserIn] Yun, Xiang [verfasserIn] Huang, Boyin [verfasserIn] Dong, Wenjie [verfasserIn] Wang, Xiaolan L. [verfasserIn] Zhai, Panmao [verfasserIn] Jones, Phil [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
Global mean surface temperature (GMST) |
---|
Übergeordnetes Werk: |
Enthalten in: Climate dynamics - Berlin : Springer, 1986, 56(2021), 1-2 vom: Jan., Seite 635-650 |
---|---|
Übergeordnetes Werk: |
volume:56 ; year:2021 ; number:1-2 ; month:01 ; pages:635-650 |
Links: |
---|
DOI / URN: |
10.1007/s00382-020-05502-0 |
---|
Katalog-ID: |
SPR042907942 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR042907942 | ||
003 | DE-627 | ||
005 | 20220110175123.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210130s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s00382-020-05502-0 |2 doi | |
035 | |a (DE-627)SPR042907942 | ||
035 | |a (DE-599)SPRs00382-020-05502-0-e | ||
035 | |a (SPR)s00382-020-05502-0-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q ASE |
084 | |a 38.80 |2 bkl | ||
100 | 1 | |a Li, Qingxiang |e verfasserin |4 aut | |
245 | 1 | 3 | |a An updated evaluation of the global mean land surface air temperature and surface temperature trends based on CLSAT and CMST |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Past versions of global surface temperature (ST) datasets have been shown to have underestimated the recent warming trend over 1998–2012. This study uses a newly updated global land surface air temperature and a land and marine surface temperature dataset, referred to as China global land surface air temperature (C-LSAT) and China merged surface temperature (CMST), to estimate trends in the global mean ST (combining land surface air temperature and sea surface temperature anomalies) with the data uncertainties being taken into account. Comparing with existing datasets, the statistical significance of the global mean ST warming trend during the past century (1900–2017) remains unchanged, while the recent warming trend during the “hiatus” period (1998–012) increases obviously, which is statistically significant at 95% level when fitting uncertainty is considered as in previous studies (including IPCC AR5) and is significant at 90% level when both fitting and data uncertainties are considered. Our analysis shows that the global mean ST warming trends in this short period become closer among the newly developed global observational data (CMST), remotely sensed/Buoy network infilled datasets, and reanalysis data. Based on the new datasets, the warming trends of global mean land SAT as derived from C-LSAT 2.0 for the period of 1979–2019, 1951–2019, 1900–2019 and 1850–2019 were estimated to be 0.296, 0.219, 0.119 and 0.081 °C/decade, respectively. The warming trends of global mean ST as derived from CMST for the periods of 1998–2019, 1979–2019, 1951–2019 and 1900–2019 were estimated to be 0.195, 0.173, 0.145 and 0.091 °C/decade, respectively. | ||
650 | 4 | |a Global mean surface temperature (GMST) |7 (dpeaa)DE-He213 | |
650 | 4 | |a Global land surface air temperature (GLSAT) |7 (dpeaa)DE-He213 | |
650 | 4 | |a Sea surface temperature (SST) |7 (dpeaa)DE-He213 | |
650 | 4 | |a Trends |7 (dpeaa)DE-He213 | |
650 | 4 | |a Dataset |7 (dpeaa)DE-He213 | |
700 | 1 | |a Sun, Wenbin |e verfasserin |4 aut | |
700 | 1 | |a Yun, Xiang |e verfasserin |4 aut | |
700 | 1 | |a Huang, Boyin |e verfasserin |4 aut | |
700 | 1 | |a Dong, Wenjie |e verfasserin |4 aut | |
700 | 1 | |a Wang, Xiaolan L. |e verfasserin |4 aut | |
700 | 1 | |a Zhai, Panmao |e verfasserin |4 aut | |
700 | 1 | |a Jones, Phil |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Climate dynamics |d Berlin : Springer, 1986 |g 56(2021), 1-2 vom: Jan., Seite 635-650 |w (DE-627)268128561 |w (DE-600)1471747-5 |x 1432-0894 |7 nnns |
773 | 1 | 8 | |g volume:56 |g year:2021 |g number:1-2 |g month:01 |g pages:635-650 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s00382-020-05502-0 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OPC-GGO | ||
912 | |a SSG-OPC-ASE | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_381 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_612 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 38.80 |q ASE |
951 | |a AR | ||
952 | |d 56 |j 2021 |e 1-2 |c 01 |h 635-650 |
author_variant |
q l ql w s ws x y xy b h bh w d wd x l w xl xlw p z pz p j pj |
---|---|
matchkey_str |
article:14320894:2021----::npaeeautootelblenadufcareprtradufctmeau |
hierarchy_sort_str |
2021 |
bklnumber |
38.80 |
publishDate |
2021 |
allfields |
10.1007/s00382-020-05502-0 doi (DE-627)SPR042907942 (DE-599)SPRs00382-020-05502-0-e (SPR)s00382-020-05502-0-e DE-627 ger DE-627 rakwb eng 550 ASE 38.80 bkl Li, Qingxiang verfasserin aut An updated evaluation of the global mean land surface air temperature and surface temperature trends based on CLSAT and CMST 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Past versions of global surface temperature (ST) datasets have been shown to have underestimated the recent warming trend over 1998–2012. This study uses a newly updated global land surface air temperature and a land and marine surface temperature dataset, referred to as China global land surface air temperature (C-LSAT) and China merged surface temperature (CMST), to estimate trends in the global mean ST (combining land surface air temperature and sea surface temperature anomalies) with the data uncertainties being taken into account. Comparing with existing datasets, the statistical significance of the global mean ST warming trend during the past century (1900–2017) remains unchanged, while the recent warming trend during the “hiatus” period (1998–012) increases obviously, which is statistically significant at 95% level when fitting uncertainty is considered as in previous studies (including IPCC AR5) and is significant at 90% level when both fitting and data uncertainties are considered. Our analysis shows that the global mean ST warming trends in this short period become closer among the newly developed global observational data (CMST), remotely sensed/Buoy network infilled datasets, and reanalysis data. Based on the new datasets, the warming trends of global mean land SAT as derived from C-LSAT 2.0 for the period of 1979–2019, 1951–2019, 1900–2019 and 1850–2019 were estimated to be 0.296, 0.219, 0.119 and 0.081 °C/decade, respectively. The warming trends of global mean ST as derived from CMST for the periods of 1998–2019, 1979–2019, 1951–2019 and 1900–2019 were estimated to be 0.195, 0.173, 0.145 and 0.091 °C/decade, respectively. Global mean surface temperature (GMST) (dpeaa)DE-He213 Global land surface air temperature (GLSAT) (dpeaa)DE-He213 Sea surface temperature (SST) (dpeaa)DE-He213 Trends (dpeaa)DE-He213 Dataset (dpeaa)DE-He213 Sun, Wenbin verfasserin aut Yun, Xiang verfasserin aut Huang, Boyin verfasserin aut Dong, Wenjie verfasserin aut Wang, Xiaolan L. verfasserin aut Zhai, Panmao verfasserin aut Jones, Phil verfasserin aut Enthalten in Climate dynamics Berlin : Springer, 1986 56(2021), 1-2 vom: Jan., Seite 635-650 (DE-627)268128561 (DE-600)1471747-5 1432-0894 nnns volume:56 year:2021 number:1-2 month:01 pages:635-650 https://dx.doi.org/10.1007/s00382-020-05502-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-GGO SSG-OPC-ASE GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_612 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.80 ASE AR 56 2021 1-2 01 635-650 |
spelling |
10.1007/s00382-020-05502-0 doi (DE-627)SPR042907942 (DE-599)SPRs00382-020-05502-0-e (SPR)s00382-020-05502-0-e DE-627 ger DE-627 rakwb eng 550 ASE 38.80 bkl Li, Qingxiang verfasserin aut An updated evaluation of the global mean land surface air temperature and surface temperature trends based on CLSAT and CMST 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Past versions of global surface temperature (ST) datasets have been shown to have underestimated the recent warming trend over 1998–2012. This study uses a newly updated global land surface air temperature and a land and marine surface temperature dataset, referred to as China global land surface air temperature (C-LSAT) and China merged surface temperature (CMST), to estimate trends in the global mean ST (combining land surface air temperature and sea surface temperature anomalies) with the data uncertainties being taken into account. Comparing with existing datasets, the statistical significance of the global mean ST warming trend during the past century (1900–2017) remains unchanged, while the recent warming trend during the “hiatus” period (1998–012) increases obviously, which is statistically significant at 95% level when fitting uncertainty is considered as in previous studies (including IPCC AR5) and is significant at 90% level when both fitting and data uncertainties are considered. Our analysis shows that the global mean ST warming trends in this short period become closer among the newly developed global observational data (CMST), remotely sensed/Buoy network infilled datasets, and reanalysis data. Based on the new datasets, the warming trends of global mean land SAT as derived from C-LSAT 2.0 for the period of 1979–2019, 1951–2019, 1900–2019 and 1850–2019 were estimated to be 0.296, 0.219, 0.119 and 0.081 °C/decade, respectively. The warming trends of global mean ST as derived from CMST for the periods of 1998–2019, 1979–2019, 1951–2019 and 1900–2019 were estimated to be 0.195, 0.173, 0.145 and 0.091 °C/decade, respectively. Global mean surface temperature (GMST) (dpeaa)DE-He213 Global land surface air temperature (GLSAT) (dpeaa)DE-He213 Sea surface temperature (SST) (dpeaa)DE-He213 Trends (dpeaa)DE-He213 Dataset (dpeaa)DE-He213 Sun, Wenbin verfasserin aut Yun, Xiang verfasserin aut Huang, Boyin verfasserin aut Dong, Wenjie verfasserin aut Wang, Xiaolan L. verfasserin aut Zhai, Panmao verfasserin aut Jones, Phil verfasserin aut Enthalten in Climate dynamics Berlin : Springer, 1986 56(2021), 1-2 vom: Jan., Seite 635-650 (DE-627)268128561 (DE-600)1471747-5 1432-0894 nnns volume:56 year:2021 number:1-2 month:01 pages:635-650 https://dx.doi.org/10.1007/s00382-020-05502-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-GGO SSG-OPC-ASE GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_612 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.80 ASE AR 56 2021 1-2 01 635-650 |
allfields_unstemmed |
10.1007/s00382-020-05502-0 doi (DE-627)SPR042907942 (DE-599)SPRs00382-020-05502-0-e (SPR)s00382-020-05502-0-e DE-627 ger DE-627 rakwb eng 550 ASE 38.80 bkl Li, Qingxiang verfasserin aut An updated evaluation of the global mean land surface air temperature and surface temperature trends based on CLSAT and CMST 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Past versions of global surface temperature (ST) datasets have been shown to have underestimated the recent warming trend over 1998–2012. This study uses a newly updated global land surface air temperature and a land and marine surface temperature dataset, referred to as China global land surface air temperature (C-LSAT) and China merged surface temperature (CMST), to estimate trends in the global mean ST (combining land surface air temperature and sea surface temperature anomalies) with the data uncertainties being taken into account. Comparing with existing datasets, the statistical significance of the global mean ST warming trend during the past century (1900–2017) remains unchanged, while the recent warming trend during the “hiatus” period (1998–012) increases obviously, which is statistically significant at 95% level when fitting uncertainty is considered as in previous studies (including IPCC AR5) and is significant at 90% level when both fitting and data uncertainties are considered. Our analysis shows that the global mean ST warming trends in this short period become closer among the newly developed global observational data (CMST), remotely sensed/Buoy network infilled datasets, and reanalysis data. Based on the new datasets, the warming trends of global mean land SAT as derived from C-LSAT 2.0 for the period of 1979–2019, 1951–2019, 1900–2019 and 1850–2019 were estimated to be 0.296, 0.219, 0.119 and 0.081 °C/decade, respectively. The warming trends of global mean ST as derived from CMST for the periods of 1998–2019, 1979–2019, 1951–2019 and 1900–2019 were estimated to be 0.195, 0.173, 0.145 and 0.091 °C/decade, respectively. Global mean surface temperature (GMST) (dpeaa)DE-He213 Global land surface air temperature (GLSAT) (dpeaa)DE-He213 Sea surface temperature (SST) (dpeaa)DE-He213 Trends (dpeaa)DE-He213 Dataset (dpeaa)DE-He213 Sun, Wenbin verfasserin aut Yun, Xiang verfasserin aut Huang, Boyin verfasserin aut Dong, Wenjie verfasserin aut Wang, Xiaolan L. verfasserin aut Zhai, Panmao verfasserin aut Jones, Phil verfasserin aut Enthalten in Climate dynamics Berlin : Springer, 1986 56(2021), 1-2 vom: Jan., Seite 635-650 (DE-627)268128561 (DE-600)1471747-5 1432-0894 nnns volume:56 year:2021 number:1-2 month:01 pages:635-650 https://dx.doi.org/10.1007/s00382-020-05502-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-GGO SSG-OPC-ASE GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_612 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.80 ASE AR 56 2021 1-2 01 635-650 |
allfieldsGer |
10.1007/s00382-020-05502-0 doi (DE-627)SPR042907942 (DE-599)SPRs00382-020-05502-0-e (SPR)s00382-020-05502-0-e DE-627 ger DE-627 rakwb eng 550 ASE 38.80 bkl Li, Qingxiang verfasserin aut An updated evaluation of the global mean land surface air temperature and surface temperature trends based on CLSAT and CMST 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Past versions of global surface temperature (ST) datasets have been shown to have underestimated the recent warming trend over 1998–2012. This study uses a newly updated global land surface air temperature and a land and marine surface temperature dataset, referred to as China global land surface air temperature (C-LSAT) and China merged surface temperature (CMST), to estimate trends in the global mean ST (combining land surface air temperature and sea surface temperature anomalies) with the data uncertainties being taken into account. Comparing with existing datasets, the statistical significance of the global mean ST warming trend during the past century (1900–2017) remains unchanged, while the recent warming trend during the “hiatus” period (1998–012) increases obviously, which is statistically significant at 95% level when fitting uncertainty is considered as in previous studies (including IPCC AR5) and is significant at 90% level when both fitting and data uncertainties are considered. Our analysis shows that the global mean ST warming trends in this short period become closer among the newly developed global observational data (CMST), remotely sensed/Buoy network infilled datasets, and reanalysis data. Based on the new datasets, the warming trends of global mean land SAT as derived from C-LSAT 2.0 for the period of 1979–2019, 1951–2019, 1900–2019 and 1850–2019 were estimated to be 0.296, 0.219, 0.119 and 0.081 °C/decade, respectively. The warming trends of global mean ST as derived from CMST for the periods of 1998–2019, 1979–2019, 1951–2019 and 1900–2019 were estimated to be 0.195, 0.173, 0.145 and 0.091 °C/decade, respectively. Global mean surface temperature (GMST) (dpeaa)DE-He213 Global land surface air temperature (GLSAT) (dpeaa)DE-He213 Sea surface temperature (SST) (dpeaa)DE-He213 Trends (dpeaa)DE-He213 Dataset (dpeaa)DE-He213 Sun, Wenbin verfasserin aut Yun, Xiang verfasserin aut Huang, Boyin verfasserin aut Dong, Wenjie verfasserin aut Wang, Xiaolan L. verfasserin aut Zhai, Panmao verfasserin aut Jones, Phil verfasserin aut Enthalten in Climate dynamics Berlin : Springer, 1986 56(2021), 1-2 vom: Jan., Seite 635-650 (DE-627)268128561 (DE-600)1471747-5 1432-0894 nnns volume:56 year:2021 number:1-2 month:01 pages:635-650 https://dx.doi.org/10.1007/s00382-020-05502-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-GGO SSG-OPC-ASE GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_612 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.80 ASE AR 56 2021 1-2 01 635-650 |
allfieldsSound |
10.1007/s00382-020-05502-0 doi (DE-627)SPR042907942 (DE-599)SPRs00382-020-05502-0-e (SPR)s00382-020-05502-0-e DE-627 ger DE-627 rakwb eng 550 ASE 38.80 bkl Li, Qingxiang verfasserin aut An updated evaluation of the global mean land surface air temperature and surface temperature trends based on CLSAT and CMST 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Past versions of global surface temperature (ST) datasets have been shown to have underestimated the recent warming trend over 1998–2012. This study uses a newly updated global land surface air temperature and a land and marine surface temperature dataset, referred to as China global land surface air temperature (C-LSAT) and China merged surface temperature (CMST), to estimate trends in the global mean ST (combining land surface air temperature and sea surface temperature anomalies) with the data uncertainties being taken into account. Comparing with existing datasets, the statistical significance of the global mean ST warming trend during the past century (1900–2017) remains unchanged, while the recent warming trend during the “hiatus” period (1998–012) increases obviously, which is statistically significant at 95% level when fitting uncertainty is considered as in previous studies (including IPCC AR5) and is significant at 90% level when both fitting and data uncertainties are considered. Our analysis shows that the global mean ST warming trends in this short period become closer among the newly developed global observational data (CMST), remotely sensed/Buoy network infilled datasets, and reanalysis data. Based on the new datasets, the warming trends of global mean land SAT as derived from C-LSAT 2.0 for the period of 1979–2019, 1951–2019, 1900–2019 and 1850–2019 were estimated to be 0.296, 0.219, 0.119 and 0.081 °C/decade, respectively. The warming trends of global mean ST as derived from CMST for the periods of 1998–2019, 1979–2019, 1951–2019 and 1900–2019 were estimated to be 0.195, 0.173, 0.145 and 0.091 °C/decade, respectively. Global mean surface temperature (GMST) (dpeaa)DE-He213 Global land surface air temperature (GLSAT) (dpeaa)DE-He213 Sea surface temperature (SST) (dpeaa)DE-He213 Trends (dpeaa)DE-He213 Dataset (dpeaa)DE-He213 Sun, Wenbin verfasserin aut Yun, Xiang verfasserin aut Huang, Boyin verfasserin aut Dong, Wenjie verfasserin aut Wang, Xiaolan L. verfasserin aut Zhai, Panmao verfasserin aut Jones, Phil verfasserin aut Enthalten in Climate dynamics Berlin : Springer, 1986 56(2021), 1-2 vom: Jan., Seite 635-650 (DE-627)268128561 (DE-600)1471747-5 1432-0894 nnns volume:56 year:2021 number:1-2 month:01 pages:635-650 https://dx.doi.org/10.1007/s00382-020-05502-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-GGO SSG-OPC-ASE GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_612 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.80 ASE AR 56 2021 1-2 01 635-650 |
language |
English |
source |
Enthalten in Climate dynamics 56(2021), 1-2 vom: Jan., Seite 635-650 volume:56 year:2021 number:1-2 month:01 pages:635-650 |
sourceStr |
Enthalten in Climate dynamics 56(2021), 1-2 vom: Jan., Seite 635-650 volume:56 year:2021 number:1-2 month:01 pages:635-650 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Global mean surface temperature (GMST) Global land surface air temperature (GLSAT) Sea surface temperature (SST) Trends Dataset |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Climate dynamics |
authorswithroles_txt_mv |
Li, Qingxiang @@aut@@ Sun, Wenbin @@aut@@ Yun, Xiang @@aut@@ Huang, Boyin @@aut@@ Dong, Wenjie @@aut@@ Wang, Xiaolan L. @@aut@@ Zhai, Panmao @@aut@@ Jones, Phil @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
268128561 |
dewey-sort |
3550 |
id |
SPR042907942 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR042907942</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220110175123.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210130s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00382-020-05502-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR042907942</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)SPRs00382-020-05502-0-e</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00382-020-05502-0-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.80</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Qingxiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An updated evaluation of the global mean land surface air temperature and surface temperature trends based on CLSAT and CMST</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Past versions of global surface temperature (ST) datasets have been shown to have underestimated the recent warming trend over 1998–2012. This study uses a newly updated global land surface air temperature and a land and marine surface temperature dataset, referred to as China global land surface air temperature (C-LSAT) and China merged surface temperature (CMST), to estimate trends in the global mean ST (combining land surface air temperature and sea surface temperature anomalies) with the data uncertainties being taken into account. Comparing with existing datasets, the statistical significance of the global mean ST warming trend during the past century (1900–2017) remains unchanged, while the recent warming trend during the “hiatus” period (1998–012) increases obviously, which is statistically significant at 95% level when fitting uncertainty is considered as in previous studies (including IPCC AR5) and is significant at 90% level when both fitting and data uncertainties are considered. Our analysis shows that the global mean ST warming trends in this short period become closer among the newly developed global observational data (CMST), remotely sensed/Buoy network infilled datasets, and reanalysis data. Based on the new datasets, the warming trends of global mean land SAT as derived from C-LSAT 2.0 for the period of 1979–2019, 1951–2019, 1900–2019 and 1850–2019 were estimated to be 0.296, 0.219, 0.119 and 0.081 °C/decade, respectively. The warming trends of global mean ST as derived from CMST for the periods of 1998–2019, 1979–2019, 1951–2019 and 1900–2019 were estimated to be 0.195, 0.173, 0.145 and 0.091 °C/decade, respectively.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global mean surface temperature (GMST)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global land surface air temperature (GLSAT)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sea surface temperature (SST)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Trends</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dataset</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Wenbin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yun, Xiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Boyin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dong, Wenjie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Xiaolan L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhai, Panmao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jones, Phil</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Climate dynamics</subfield><subfield code="d">Berlin : Springer, 1986</subfield><subfield code="g">56(2021), 1-2 vom: Jan., Seite 635-650</subfield><subfield code="w">(DE-627)268128561</subfield><subfield code="w">(DE-600)1471747-5</subfield><subfield code="x">1432-0894</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:56</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1-2</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:635-650</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00382-020-05502-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_612</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.80</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">56</subfield><subfield code="j">2021</subfield><subfield code="e">1-2</subfield><subfield code="c">01</subfield><subfield code="h">635-650</subfield></datafield></record></collection>
|
author |
Li, Qingxiang |
spellingShingle |
Li, Qingxiang ddc 550 bkl 38.80 misc Global mean surface temperature (GMST) misc Global land surface air temperature (GLSAT) misc Sea surface temperature (SST) misc Trends misc Dataset An updated evaluation of the global mean land surface air temperature and surface temperature trends based on CLSAT and CMST |
authorStr |
Li, Qingxiang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)268128561 |
format |
electronic Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1432-0894 |
topic_title |
550 ASE 38.80 bkl An updated evaluation of the global mean land surface air temperature and surface temperature trends based on CLSAT and CMST Global mean surface temperature (GMST) (dpeaa)DE-He213 Global land surface air temperature (GLSAT) (dpeaa)DE-He213 Sea surface temperature (SST) (dpeaa)DE-He213 Trends (dpeaa)DE-He213 Dataset (dpeaa)DE-He213 |
topic |
ddc 550 bkl 38.80 misc Global mean surface temperature (GMST) misc Global land surface air temperature (GLSAT) misc Sea surface temperature (SST) misc Trends misc Dataset |
topic_unstemmed |
ddc 550 bkl 38.80 misc Global mean surface temperature (GMST) misc Global land surface air temperature (GLSAT) misc Sea surface temperature (SST) misc Trends misc Dataset |
topic_browse |
ddc 550 bkl 38.80 misc Global mean surface temperature (GMST) misc Global land surface air temperature (GLSAT) misc Sea surface temperature (SST) misc Trends misc Dataset |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Climate dynamics |
hierarchy_parent_id |
268128561 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Climate dynamics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)268128561 (DE-600)1471747-5 |
title |
An updated evaluation of the global mean land surface air temperature and surface temperature trends based on CLSAT and CMST |
ctrlnum |
(DE-627)SPR042907942 (DE-599)SPRs00382-020-05502-0-e (SPR)s00382-020-05502-0-e |
title_full |
An updated evaluation of the global mean land surface air temperature and surface temperature trends based on CLSAT and CMST |
author_sort |
Li, Qingxiang |
journal |
Climate dynamics |
journalStr |
Climate dynamics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
635 |
author_browse |
Li, Qingxiang Sun, Wenbin Yun, Xiang Huang, Boyin Dong, Wenjie Wang, Xiaolan L. Zhai, Panmao Jones, Phil |
container_volume |
56 |
class |
550 ASE 38.80 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Li, Qingxiang |
doi_str_mv |
10.1007/s00382-020-05502-0 |
dewey-full |
550 |
author2-role |
verfasserin |
title_sort |
updated evaluation of the global mean land surface air temperature and surface temperature trends based on clsat and cmst |
title_auth |
An updated evaluation of the global mean land surface air temperature and surface temperature trends based on CLSAT and CMST |
abstract |
Abstract Past versions of global surface temperature (ST) datasets have been shown to have underestimated the recent warming trend over 1998–2012. This study uses a newly updated global land surface air temperature and a land and marine surface temperature dataset, referred to as China global land surface air temperature (C-LSAT) and China merged surface temperature (CMST), to estimate trends in the global mean ST (combining land surface air temperature and sea surface temperature anomalies) with the data uncertainties being taken into account. Comparing with existing datasets, the statistical significance of the global mean ST warming trend during the past century (1900–2017) remains unchanged, while the recent warming trend during the “hiatus” period (1998–012) increases obviously, which is statistically significant at 95% level when fitting uncertainty is considered as in previous studies (including IPCC AR5) and is significant at 90% level when both fitting and data uncertainties are considered. Our analysis shows that the global mean ST warming trends in this short period become closer among the newly developed global observational data (CMST), remotely sensed/Buoy network infilled datasets, and reanalysis data. Based on the new datasets, the warming trends of global mean land SAT as derived from C-LSAT 2.0 for the period of 1979–2019, 1951–2019, 1900–2019 and 1850–2019 were estimated to be 0.296, 0.219, 0.119 and 0.081 °C/decade, respectively. The warming trends of global mean ST as derived from CMST for the periods of 1998–2019, 1979–2019, 1951–2019 and 1900–2019 were estimated to be 0.195, 0.173, 0.145 and 0.091 °C/decade, respectively. |
abstractGer |
Abstract Past versions of global surface temperature (ST) datasets have been shown to have underestimated the recent warming trend over 1998–2012. This study uses a newly updated global land surface air temperature and a land and marine surface temperature dataset, referred to as China global land surface air temperature (C-LSAT) and China merged surface temperature (CMST), to estimate trends in the global mean ST (combining land surface air temperature and sea surface temperature anomalies) with the data uncertainties being taken into account. Comparing with existing datasets, the statistical significance of the global mean ST warming trend during the past century (1900–2017) remains unchanged, while the recent warming trend during the “hiatus” period (1998–012) increases obviously, which is statistically significant at 95% level when fitting uncertainty is considered as in previous studies (including IPCC AR5) and is significant at 90% level when both fitting and data uncertainties are considered. Our analysis shows that the global mean ST warming trends in this short period become closer among the newly developed global observational data (CMST), remotely sensed/Buoy network infilled datasets, and reanalysis data. Based on the new datasets, the warming trends of global mean land SAT as derived from C-LSAT 2.0 for the period of 1979–2019, 1951–2019, 1900–2019 and 1850–2019 were estimated to be 0.296, 0.219, 0.119 and 0.081 °C/decade, respectively. The warming trends of global mean ST as derived from CMST for the periods of 1998–2019, 1979–2019, 1951–2019 and 1900–2019 were estimated to be 0.195, 0.173, 0.145 and 0.091 °C/decade, respectively. |
abstract_unstemmed |
Abstract Past versions of global surface temperature (ST) datasets have been shown to have underestimated the recent warming trend over 1998–2012. This study uses a newly updated global land surface air temperature and a land and marine surface temperature dataset, referred to as China global land surface air temperature (C-LSAT) and China merged surface temperature (CMST), to estimate trends in the global mean ST (combining land surface air temperature and sea surface temperature anomalies) with the data uncertainties being taken into account. Comparing with existing datasets, the statistical significance of the global mean ST warming trend during the past century (1900–2017) remains unchanged, while the recent warming trend during the “hiatus” period (1998–012) increases obviously, which is statistically significant at 95% level when fitting uncertainty is considered as in previous studies (including IPCC AR5) and is significant at 90% level when both fitting and data uncertainties are considered. Our analysis shows that the global mean ST warming trends in this short period become closer among the newly developed global observational data (CMST), remotely sensed/Buoy network infilled datasets, and reanalysis data. Based on the new datasets, the warming trends of global mean land SAT as derived from C-LSAT 2.0 for the period of 1979–2019, 1951–2019, 1900–2019 and 1850–2019 were estimated to be 0.296, 0.219, 0.119 and 0.081 °C/decade, respectively. The warming trends of global mean ST as derived from CMST for the periods of 1998–2019, 1979–2019, 1951–2019 and 1900–2019 were estimated to be 0.195, 0.173, 0.145 and 0.091 °C/decade, respectively. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-GGO SSG-OPC-ASE GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_612 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
1-2 |
title_short |
An updated evaluation of the global mean land surface air temperature and surface temperature trends based on CLSAT and CMST |
url |
https://dx.doi.org/10.1007/s00382-020-05502-0 |
remote_bool |
true |
author2 |
Sun, Wenbin Yun, Xiang Huang, Boyin Dong, Wenjie Wang, Xiaolan L. Zhai, Panmao Jones, Phil |
author2Str |
Sun, Wenbin Yun, Xiang Huang, Boyin Dong, Wenjie Wang, Xiaolan L. Zhai, Panmao Jones, Phil |
ppnlink |
268128561 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00382-020-05502-0 |
up_date |
2024-07-03T15:30:32.599Z |
_version_ |
1803572354860711936 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR042907942</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220110175123.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210130s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00382-020-05502-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR042907942</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)SPRs00382-020-05502-0-e</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00382-020-05502-0-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.80</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Qingxiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An updated evaluation of the global mean land surface air temperature and surface temperature trends based on CLSAT and CMST</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Past versions of global surface temperature (ST) datasets have been shown to have underestimated the recent warming trend over 1998–2012. This study uses a newly updated global land surface air temperature and a land and marine surface temperature dataset, referred to as China global land surface air temperature (C-LSAT) and China merged surface temperature (CMST), to estimate trends in the global mean ST (combining land surface air temperature and sea surface temperature anomalies) with the data uncertainties being taken into account. Comparing with existing datasets, the statistical significance of the global mean ST warming trend during the past century (1900–2017) remains unchanged, while the recent warming trend during the “hiatus” period (1998–012) increases obviously, which is statistically significant at 95% level when fitting uncertainty is considered as in previous studies (including IPCC AR5) and is significant at 90% level when both fitting and data uncertainties are considered. Our analysis shows that the global mean ST warming trends in this short period become closer among the newly developed global observational data (CMST), remotely sensed/Buoy network infilled datasets, and reanalysis data. Based on the new datasets, the warming trends of global mean land SAT as derived from C-LSAT 2.0 for the period of 1979–2019, 1951–2019, 1900–2019 and 1850–2019 were estimated to be 0.296, 0.219, 0.119 and 0.081 °C/decade, respectively. The warming trends of global mean ST as derived from CMST for the periods of 1998–2019, 1979–2019, 1951–2019 and 1900–2019 were estimated to be 0.195, 0.173, 0.145 and 0.091 °C/decade, respectively.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global mean surface temperature (GMST)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global land surface air temperature (GLSAT)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sea surface temperature (SST)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Trends</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dataset</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Wenbin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yun, Xiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Boyin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dong, Wenjie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Xiaolan L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhai, Panmao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jones, Phil</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Climate dynamics</subfield><subfield code="d">Berlin : Springer, 1986</subfield><subfield code="g">56(2021), 1-2 vom: Jan., Seite 635-650</subfield><subfield code="w">(DE-627)268128561</subfield><subfield code="w">(DE-600)1471747-5</subfield><subfield code="x">1432-0894</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:56</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1-2</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:635-650</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00382-020-05502-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_612</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.80</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">56</subfield><subfield code="j">2021</subfield><subfield code="e">1-2</subfield><subfield code="c">01</subfield><subfield code="h">635-650</subfield></datafield></record></collection>
|
score |
7.4012985 |