Contributions of the fixed point technique to solve the 2D Volterra integral equations, Riemann–Liouville fractional integrals, and Atangana–Baleanu integral operators
Abstract In this manuscript, some fixed point results for generalized contractive type mappings under mild conditions in the setting of double controlled metric spaces (in short, $\eta _{\gimel }^{\nu }$-metric spaces) are obtained. Moreover, some related consequences dealing with a common fixed poi...
Ausführliche Beschreibung
Autor*in: |
Hammad, Hasanen A. [verfasserIn] Aydi, Hassen [verfasserIn] Mlaiki, Nabil [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
Double controlled metric spaces 2D Volterra integral equations |
---|
Übergeordnetes Werk: |
Enthalten in: Advances in difference equations - [S.l.] : Springer International, 2004, 2021(2021), 1 vom: 02. Feb. |
---|---|
Übergeordnetes Werk: |
volume:2021 ; year:2021 ; number:1 ; day:02 ; month:02 |
Links: |
---|
DOI / URN: |
10.1186/s13662-021-03255-6 |
---|
Katalog-ID: |
SPR042979935 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR042979935 | ||
003 | DE-627 | ||
005 | 20230519223618.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210203s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s13662-021-03255-6 |2 doi | |
035 | |a (DE-627)SPR042979935 | ||
035 | |a (DE-599)SPRs13662-021-03255-6-e | ||
035 | |a (SPR)s13662-021-03255-6-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |a 610 |q ASE |
084 | |a 31.49 |2 bkl | ||
100 | 1 | |a Hammad, Hasanen A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Contributions of the fixed point technique to solve the 2D Volterra integral equations, Riemann–Liouville fractional integrals, and Atangana–Baleanu integral operators |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract In this manuscript, some fixed point results for generalized contractive type mappings under mild conditions in the setting of double controlled metric spaces (in short, $\eta _{\gimel }^{\nu }$-metric spaces) are obtained. Moreover, some related consequences dealing with a common fixed point concept and nontrivial examples to support our results are presented. Ultimately, we use the theoretical results to discuss the existence and uniqueness of solutions of 2D Volterra integral equations, Riemann–Liouville integrals and Atangana–Baleanu integral operators are given. | ||
650 | 4 | |a Double controlled metric spaces |7 (dpeaa)DE-He213 | |
650 | 4 | |a 2D Volterra integral equations |7 (dpeaa)DE-He213 | |
650 | 4 | |a Riemann–Liouville fractional integrals |7 (dpeaa)DE-He213 | |
650 | 4 | |a Atangana–Baleanu integral operators |7 (dpeaa)DE-He213 | |
700 | 1 | |a Aydi, Hassen |e verfasserin |4 aut | |
700 | 1 | |a Mlaiki, Nabil |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Advances in difference equations |d [S.l.] : Springer International, 2004 |g 2021(2021), 1 vom: 02. Feb. |w (DE-627)377755699 |w (DE-600)2132815-8 |x 1687-1847 |7 nnns |
773 | 1 | 8 | |g volume:2021 |g year:2021 |g number:1 |g day:02 |g month:02 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s13662-021-03255-6 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OPC-MAT | ||
912 | |a SSG-OPC-ASE | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 31.49 |q ASE |
951 | |a AR | ||
952 | |d 2021 |j 2021 |e 1 |b 02 |c 02 |
author_variant |
h a h ha hah h a ha n m nm |
---|---|
matchkey_str |
article:16871847:2021----::otiuinoteiepitehiutsleh2vleritgaeutosimnlovlercinlnerl |
hierarchy_sort_str |
2021 |
bklnumber |
31.49 |
publishDate |
2021 |
allfields |
10.1186/s13662-021-03255-6 doi (DE-627)SPR042979935 (DE-599)SPRs13662-021-03255-6-e (SPR)s13662-021-03255-6-e DE-627 ger DE-627 rakwb eng 510 610 ASE 31.49 bkl Hammad, Hasanen A. verfasserin aut Contributions of the fixed point technique to solve the 2D Volterra integral equations, Riemann–Liouville fractional integrals, and Atangana–Baleanu integral operators 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this manuscript, some fixed point results for generalized contractive type mappings under mild conditions in the setting of double controlled metric spaces (in short, $\eta _{\gimel }^{\nu }$-metric spaces) are obtained. Moreover, some related consequences dealing with a common fixed point concept and nontrivial examples to support our results are presented. Ultimately, we use the theoretical results to discuss the existence and uniqueness of solutions of 2D Volterra integral equations, Riemann–Liouville integrals and Atangana–Baleanu integral operators are given. Double controlled metric spaces (dpeaa)DE-He213 2D Volterra integral equations (dpeaa)DE-He213 Riemann–Liouville fractional integrals (dpeaa)DE-He213 Atangana–Baleanu integral operators (dpeaa)DE-He213 Aydi, Hassen verfasserin aut Mlaiki, Nabil verfasserin aut Enthalten in Advances in difference equations [S.l.] : Springer International, 2004 2021(2021), 1 vom: 02. Feb. (DE-627)377755699 (DE-600)2132815-8 1687-1847 nnns volume:2021 year:2021 number:1 day:02 month:02 https://dx.doi.org/10.1186/s13662-021-03255-6 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.49 ASE AR 2021 2021 1 02 02 |
spelling |
10.1186/s13662-021-03255-6 doi (DE-627)SPR042979935 (DE-599)SPRs13662-021-03255-6-e (SPR)s13662-021-03255-6-e DE-627 ger DE-627 rakwb eng 510 610 ASE 31.49 bkl Hammad, Hasanen A. verfasserin aut Contributions of the fixed point technique to solve the 2D Volterra integral equations, Riemann–Liouville fractional integrals, and Atangana–Baleanu integral operators 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this manuscript, some fixed point results for generalized contractive type mappings under mild conditions in the setting of double controlled metric spaces (in short, $\eta _{\gimel }^{\nu }$-metric spaces) are obtained. Moreover, some related consequences dealing with a common fixed point concept and nontrivial examples to support our results are presented. Ultimately, we use the theoretical results to discuss the existence and uniqueness of solutions of 2D Volterra integral equations, Riemann–Liouville integrals and Atangana–Baleanu integral operators are given. Double controlled metric spaces (dpeaa)DE-He213 2D Volterra integral equations (dpeaa)DE-He213 Riemann–Liouville fractional integrals (dpeaa)DE-He213 Atangana–Baleanu integral operators (dpeaa)DE-He213 Aydi, Hassen verfasserin aut Mlaiki, Nabil verfasserin aut Enthalten in Advances in difference equations [S.l.] : Springer International, 2004 2021(2021), 1 vom: 02. Feb. (DE-627)377755699 (DE-600)2132815-8 1687-1847 nnns volume:2021 year:2021 number:1 day:02 month:02 https://dx.doi.org/10.1186/s13662-021-03255-6 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.49 ASE AR 2021 2021 1 02 02 |
allfields_unstemmed |
10.1186/s13662-021-03255-6 doi (DE-627)SPR042979935 (DE-599)SPRs13662-021-03255-6-e (SPR)s13662-021-03255-6-e DE-627 ger DE-627 rakwb eng 510 610 ASE 31.49 bkl Hammad, Hasanen A. verfasserin aut Contributions of the fixed point technique to solve the 2D Volterra integral equations, Riemann–Liouville fractional integrals, and Atangana–Baleanu integral operators 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this manuscript, some fixed point results for generalized contractive type mappings under mild conditions in the setting of double controlled metric spaces (in short, $\eta _{\gimel }^{\nu }$-metric spaces) are obtained. Moreover, some related consequences dealing with a common fixed point concept and nontrivial examples to support our results are presented. Ultimately, we use the theoretical results to discuss the existence and uniqueness of solutions of 2D Volterra integral equations, Riemann–Liouville integrals and Atangana–Baleanu integral operators are given. Double controlled metric spaces (dpeaa)DE-He213 2D Volterra integral equations (dpeaa)DE-He213 Riemann–Liouville fractional integrals (dpeaa)DE-He213 Atangana–Baleanu integral operators (dpeaa)DE-He213 Aydi, Hassen verfasserin aut Mlaiki, Nabil verfasserin aut Enthalten in Advances in difference equations [S.l.] : Springer International, 2004 2021(2021), 1 vom: 02. Feb. (DE-627)377755699 (DE-600)2132815-8 1687-1847 nnns volume:2021 year:2021 number:1 day:02 month:02 https://dx.doi.org/10.1186/s13662-021-03255-6 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.49 ASE AR 2021 2021 1 02 02 |
allfieldsGer |
10.1186/s13662-021-03255-6 doi (DE-627)SPR042979935 (DE-599)SPRs13662-021-03255-6-e (SPR)s13662-021-03255-6-e DE-627 ger DE-627 rakwb eng 510 610 ASE 31.49 bkl Hammad, Hasanen A. verfasserin aut Contributions of the fixed point technique to solve the 2D Volterra integral equations, Riemann–Liouville fractional integrals, and Atangana–Baleanu integral operators 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this manuscript, some fixed point results for generalized contractive type mappings under mild conditions in the setting of double controlled metric spaces (in short, $\eta _{\gimel }^{\nu }$-metric spaces) are obtained. Moreover, some related consequences dealing with a common fixed point concept and nontrivial examples to support our results are presented. Ultimately, we use the theoretical results to discuss the existence and uniqueness of solutions of 2D Volterra integral equations, Riemann–Liouville integrals and Atangana–Baleanu integral operators are given. Double controlled metric spaces (dpeaa)DE-He213 2D Volterra integral equations (dpeaa)DE-He213 Riemann–Liouville fractional integrals (dpeaa)DE-He213 Atangana–Baleanu integral operators (dpeaa)DE-He213 Aydi, Hassen verfasserin aut Mlaiki, Nabil verfasserin aut Enthalten in Advances in difference equations [S.l.] : Springer International, 2004 2021(2021), 1 vom: 02. Feb. (DE-627)377755699 (DE-600)2132815-8 1687-1847 nnns volume:2021 year:2021 number:1 day:02 month:02 https://dx.doi.org/10.1186/s13662-021-03255-6 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.49 ASE AR 2021 2021 1 02 02 |
allfieldsSound |
10.1186/s13662-021-03255-6 doi (DE-627)SPR042979935 (DE-599)SPRs13662-021-03255-6-e (SPR)s13662-021-03255-6-e DE-627 ger DE-627 rakwb eng 510 610 ASE 31.49 bkl Hammad, Hasanen A. verfasserin aut Contributions of the fixed point technique to solve the 2D Volterra integral equations, Riemann–Liouville fractional integrals, and Atangana–Baleanu integral operators 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this manuscript, some fixed point results for generalized contractive type mappings under mild conditions in the setting of double controlled metric spaces (in short, $\eta _{\gimel }^{\nu }$-metric spaces) are obtained. Moreover, some related consequences dealing with a common fixed point concept and nontrivial examples to support our results are presented. Ultimately, we use the theoretical results to discuss the existence and uniqueness of solutions of 2D Volterra integral equations, Riemann–Liouville integrals and Atangana–Baleanu integral operators are given. Double controlled metric spaces (dpeaa)DE-He213 2D Volterra integral equations (dpeaa)DE-He213 Riemann–Liouville fractional integrals (dpeaa)DE-He213 Atangana–Baleanu integral operators (dpeaa)DE-He213 Aydi, Hassen verfasserin aut Mlaiki, Nabil verfasserin aut Enthalten in Advances in difference equations [S.l.] : Springer International, 2004 2021(2021), 1 vom: 02. Feb. (DE-627)377755699 (DE-600)2132815-8 1687-1847 nnns volume:2021 year:2021 number:1 day:02 month:02 https://dx.doi.org/10.1186/s13662-021-03255-6 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.49 ASE AR 2021 2021 1 02 02 |
language |
English |
source |
Enthalten in Advances in difference equations 2021(2021), 1 vom: 02. Feb. volume:2021 year:2021 number:1 day:02 month:02 |
sourceStr |
Enthalten in Advances in difference equations 2021(2021), 1 vom: 02. Feb. volume:2021 year:2021 number:1 day:02 month:02 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Double controlled metric spaces 2D Volterra integral equations Riemann–Liouville fractional integrals Atangana–Baleanu integral operators |
dewey-raw |
510 |
isfreeaccess_bool |
true |
container_title |
Advances in difference equations |
authorswithroles_txt_mv |
Hammad, Hasanen A. @@aut@@ Aydi, Hassen @@aut@@ Mlaiki, Nabil @@aut@@ |
publishDateDaySort_date |
2021-02-02T00:00:00Z |
hierarchy_top_id |
377755699 |
dewey-sort |
3510 |
id |
SPR042979935 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR042979935</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519223618.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210203s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13662-021-03255-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR042979935</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)SPRs13662-021-03255-6-e</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13662-021-03255-6-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">610</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.49</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hammad, Hasanen A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Contributions of the fixed point technique to solve the 2D Volterra integral equations, Riemann–Liouville fractional integrals, and Atangana–Baleanu integral operators</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this manuscript, some fixed point results for generalized contractive type mappings under mild conditions in the setting of double controlled metric spaces (in short, $\eta _{\gimel }^{\nu }$-metric spaces) are obtained. Moreover, some related consequences dealing with a common fixed point concept and nontrivial examples to support our results are presented. Ultimately, we use the theoretical results to discuss the existence and uniqueness of solutions of 2D Volterra integral equations, Riemann–Liouville integrals and Atangana–Baleanu integral operators are given.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Double controlled metric spaces</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">2D Volterra integral equations</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Riemann–Liouville fractional integrals</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Atangana–Baleanu integral operators</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Aydi, Hassen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mlaiki, Nabil</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Advances in difference equations</subfield><subfield code="d">[S.l.] : Springer International, 2004</subfield><subfield code="g">2021(2021), 1 vom: 02. Feb.</subfield><subfield code="w">(DE-627)377755699</subfield><subfield code="w">(DE-600)2132815-8</subfield><subfield code="x">1687-1847</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2021</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">day:02</subfield><subfield code="g">month:02</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13662-021-03255-6</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.49</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2021</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="b">02</subfield><subfield code="c">02</subfield></datafield></record></collection>
|
author |
Hammad, Hasanen A. |
spellingShingle |
Hammad, Hasanen A. ddc 510 bkl 31.49 misc Double controlled metric spaces misc 2D Volterra integral equations misc Riemann–Liouville fractional integrals misc Atangana–Baleanu integral operators Contributions of the fixed point technique to solve the 2D Volterra integral equations, Riemann–Liouville fractional integrals, and Atangana–Baleanu integral operators |
authorStr |
Hammad, Hasanen A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)377755699 |
format |
electronic Article |
dewey-ones |
510 - Mathematics 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1687-1847 |
topic_title |
510 610 ASE 31.49 bkl Contributions of the fixed point technique to solve the 2D Volterra integral equations, Riemann–Liouville fractional integrals, and Atangana–Baleanu integral operators Double controlled metric spaces (dpeaa)DE-He213 2D Volterra integral equations (dpeaa)DE-He213 Riemann–Liouville fractional integrals (dpeaa)DE-He213 Atangana–Baleanu integral operators (dpeaa)DE-He213 |
topic |
ddc 510 bkl 31.49 misc Double controlled metric spaces misc 2D Volterra integral equations misc Riemann–Liouville fractional integrals misc Atangana–Baleanu integral operators |
topic_unstemmed |
ddc 510 bkl 31.49 misc Double controlled metric spaces misc 2D Volterra integral equations misc Riemann–Liouville fractional integrals misc Atangana–Baleanu integral operators |
topic_browse |
ddc 510 bkl 31.49 misc Double controlled metric spaces misc 2D Volterra integral equations misc Riemann–Liouville fractional integrals misc Atangana–Baleanu integral operators |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Advances in difference equations |
hierarchy_parent_id |
377755699 |
dewey-tens |
510 - Mathematics 610 - Medicine & health |
hierarchy_top_title |
Advances in difference equations |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)377755699 (DE-600)2132815-8 |
title |
Contributions of the fixed point technique to solve the 2D Volterra integral equations, Riemann–Liouville fractional integrals, and Atangana–Baleanu integral operators |
ctrlnum |
(DE-627)SPR042979935 (DE-599)SPRs13662-021-03255-6-e (SPR)s13662-021-03255-6-e |
title_full |
Contributions of the fixed point technique to solve the 2D Volterra integral equations, Riemann–Liouville fractional integrals, and Atangana–Baleanu integral operators |
author_sort |
Hammad, Hasanen A. |
journal |
Advances in difference equations |
journalStr |
Advances in difference equations |
lang_code |
eng |
isOA_bool |
true |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Hammad, Hasanen A. Aydi, Hassen Mlaiki, Nabil |
container_volume |
2021 |
class |
510 610 ASE 31.49 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Hammad, Hasanen A. |
doi_str_mv |
10.1186/s13662-021-03255-6 |
dewey-full |
510 610 |
author2-role |
verfasserin |
title_sort |
contributions of the fixed point technique to solve the 2d volterra integral equations, riemann–liouville fractional integrals, and atangana–baleanu integral operators |
title_auth |
Contributions of the fixed point technique to solve the 2D Volterra integral equations, Riemann–Liouville fractional integrals, and Atangana–Baleanu integral operators |
abstract |
Abstract In this manuscript, some fixed point results for generalized contractive type mappings under mild conditions in the setting of double controlled metric spaces (in short, $\eta _{\gimel }^{\nu }$-metric spaces) are obtained. Moreover, some related consequences dealing with a common fixed point concept and nontrivial examples to support our results are presented. Ultimately, we use the theoretical results to discuss the existence and uniqueness of solutions of 2D Volterra integral equations, Riemann–Liouville integrals and Atangana–Baleanu integral operators are given. |
abstractGer |
Abstract In this manuscript, some fixed point results for generalized contractive type mappings under mild conditions in the setting of double controlled metric spaces (in short, $\eta _{\gimel }^{\nu }$-metric spaces) are obtained. Moreover, some related consequences dealing with a common fixed point concept and nontrivial examples to support our results are presented. Ultimately, we use the theoretical results to discuss the existence and uniqueness of solutions of 2D Volterra integral equations, Riemann–Liouville integrals and Atangana–Baleanu integral operators are given. |
abstract_unstemmed |
Abstract In this manuscript, some fixed point results for generalized contractive type mappings under mild conditions in the setting of double controlled metric spaces (in short, $\eta _{\gimel }^{\nu }$-metric spaces) are obtained. Moreover, some related consequences dealing with a common fixed point concept and nontrivial examples to support our results are presented. Ultimately, we use the theoretical results to discuss the existence and uniqueness of solutions of 2D Volterra integral equations, Riemann–Liouville integrals and Atangana–Baleanu integral operators are given. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Contributions of the fixed point technique to solve the 2D Volterra integral equations, Riemann–Liouville fractional integrals, and Atangana–Baleanu integral operators |
url |
https://dx.doi.org/10.1186/s13662-021-03255-6 |
remote_bool |
true |
author2 |
Aydi, Hassen Mlaiki, Nabil |
author2Str |
Aydi, Hassen Mlaiki, Nabil |
ppnlink |
377755699 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s13662-021-03255-6 |
up_date |
2024-07-03T15:57:42.873Z |
_version_ |
1803574064320610305 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR042979935</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519223618.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210203s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13662-021-03255-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR042979935</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)SPRs13662-021-03255-6-e</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13662-021-03255-6-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">610</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.49</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hammad, Hasanen A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Contributions of the fixed point technique to solve the 2D Volterra integral equations, Riemann–Liouville fractional integrals, and Atangana–Baleanu integral operators</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this manuscript, some fixed point results for generalized contractive type mappings under mild conditions in the setting of double controlled metric spaces (in short, $\eta _{\gimel }^{\nu }$-metric spaces) are obtained. Moreover, some related consequences dealing with a common fixed point concept and nontrivial examples to support our results are presented. Ultimately, we use the theoretical results to discuss the existence and uniqueness of solutions of 2D Volterra integral equations, Riemann–Liouville integrals and Atangana–Baleanu integral operators are given.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Double controlled metric spaces</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">2D Volterra integral equations</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Riemann–Liouville fractional integrals</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Atangana–Baleanu integral operators</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Aydi, Hassen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mlaiki, Nabil</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Advances in difference equations</subfield><subfield code="d">[S.l.] : Springer International, 2004</subfield><subfield code="g">2021(2021), 1 vom: 02. Feb.</subfield><subfield code="w">(DE-627)377755699</subfield><subfield code="w">(DE-600)2132815-8</subfield><subfield code="x">1687-1847</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2021</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">day:02</subfield><subfield code="g">month:02</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13662-021-03255-6</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.49</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2021</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="b">02</subfield><subfield code="c">02</subfield></datafield></record></collection>
|
score |
7.401164 |