Electropermeabilization of Mammalian Cells Visualized with Fluorescent Semiconductor Nanocrystals (Quantum Dots)
Abstract Electroporation/electropermeabilization is a non-viral technique for gene transfection and drug delivery. Here, the transfer mechanisms were studied with fluorescent nanocrystals (quantum dots, QDs) in mammalian cells. Interactions of the cell membrane and nanoscale particles were visualize...
Ausführliche Beschreibung
Autor*in: |
Sun, Yinghua [verfasserIn] Vernier, P. Thomas [verfasserIn] Wang, Jingjing [verfasserIn] Kuthi, Andras [verfasserIn] Marcu, Laura [verfasserIn] Gundersen, Martin A. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2005 |
---|
Übergeordnetes Werk: |
Enthalten in: MRS online proceedings library - Warrendale, Pa. : MRS, 1998, 873(2005), 1 vom: Dez. |
---|---|
Übergeordnetes Werk: |
volume:873 ; year:2005 ; number:1 ; month:12 |
Links: |
---|
DOI / URN: |
10.1557/PROC-873-K6.9 |
---|
Katalog-ID: |
SPR043045804 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR043045804 | ||
003 | DE-627 | ||
005 | 20230519122909.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210206s2005 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1557/PROC-873-K6.9 |2 doi | |
035 | |a (DE-627)SPR043045804 | ||
035 | |a (DE-599)SPRPROC-873-K6.9-e | ||
035 | |a (SPR)PROC-873-K6.9-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q ASE |
100 | 1 | |a Sun, Yinghua |e verfasserin |4 aut | |
245 | 1 | 0 | |a Electropermeabilization of Mammalian Cells Visualized with Fluorescent Semiconductor Nanocrystals (Quantum Dots) |
264 | 1 | |c 2005 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Electroporation/electropermeabilization is a non-viral technique for gene transfection and drug delivery. Here, the transfer mechanisms were studied with fluorescent nanocrystals (quantum dots, QDs) in mammalian cells. Interactions of the cell membrane and nanoscale particles were visualized after electric pulse treatment. Responses of human multiple myeloma cells to nanocrystals were tracked for periods up to 7 days. Large particles do not cross the membrane directly after pulsing, even if the membrane is permeabilized to small molecules. Large QDs were trapped on the cell membrane for hours after electroporation and were gradually either excluded or internalized by cells. QD uptake efficiency depended on both particle size and membrane transport activity. These results, consistent with an electropermeabilization model, suggest that enhancing the interactions between the cell membrane and macromolecules may improve the transfer efficiency. | ||
700 | 1 | |a Vernier, P. Thomas |e verfasserin |4 aut | |
700 | 1 | |a Wang, Jingjing |e verfasserin |4 aut | |
700 | 1 | |a Kuthi, Andras |e verfasserin |4 aut | |
700 | 1 | |a Marcu, Laura |e verfasserin |4 aut | |
700 | 1 | |a Gundersen, Martin A. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t MRS online proceedings library |d Warrendale, Pa. : MRS, 1998 |g 873(2005), 1 vom: Dez. |w (DE-627)57782046X |w (DE-600)2451008-7 |x 1946-4274 |7 nnns |
773 | 1 | 8 | |g volume:873 |g year:2005 |g number:1 |g month:12 |
856 | 4 | 0 | |u https://dx.doi.org/10.1557/PROC-873-K6.9 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_2005 | ||
951 | |a AR | ||
952 | |d 873 |j 2005 |e 1 |c 12 |
author_variant |
y s ys p t v pt ptv j w jw a k ak l m lm m a g ma mag |
---|---|
matchkey_str |
article:19464274:2005----::lcrpreblztoommainelvsaiewtfurseteiodc |
hierarchy_sort_str |
2005 |
publishDate |
2005 |
allfields |
10.1557/PROC-873-K6.9 doi (DE-627)SPR043045804 (DE-599)SPRPROC-873-K6.9-e (SPR)PROC-873-K6.9-e DE-627 ger DE-627 rakwb eng 670 ASE Sun, Yinghua verfasserin aut Electropermeabilization of Mammalian Cells Visualized with Fluorescent Semiconductor Nanocrystals (Quantum Dots) 2005 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Electroporation/electropermeabilization is a non-viral technique for gene transfection and drug delivery. Here, the transfer mechanisms were studied with fluorescent nanocrystals (quantum dots, QDs) in mammalian cells. Interactions of the cell membrane and nanoscale particles were visualized after electric pulse treatment. Responses of human multiple myeloma cells to nanocrystals were tracked for periods up to 7 days. Large particles do not cross the membrane directly after pulsing, even if the membrane is permeabilized to small molecules. Large QDs were trapped on the cell membrane for hours after electroporation and were gradually either excluded or internalized by cells. QD uptake efficiency depended on both particle size and membrane transport activity. These results, consistent with an electropermeabilization model, suggest that enhancing the interactions between the cell membrane and macromolecules may improve the transfer efficiency. Vernier, P. Thomas verfasserin aut Wang, Jingjing verfasserin aut Kuthi, Andras verfasserin aut Marcu, Laura verfasserin aut Gundersen, Martin A. verfasserin aut Enthalten in MRS online proceedings library Warrendale, Pa. : MRS, 1998 873(2005), 1 vom: Dez. (DE-627)57782046X (DE-600)2451008-7 1946-4274 nnns volume:873 year:2005 number:1 month:12 https://dx.doi.org/10.1557/PROC-873-K6.9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_2005 AR 873 2005 1 12 |
spelling |
10.1557/PROC-873-K6.9 doi (DE-627)SPR043045804 (DE-599)SPRPROC-873-K6.9-e (SPR)PROC-873-K6.9-e DE-627 ger DE-627 rakwb eng 670 ASE Sun, Yinghua verfasserin aut Electropermeabilization of Mammalian Cells Visualized with Fluorescent Semiconductor Nanocrystals (Quantum Dots) 2005 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Electroporation/electropermeabilization is a non-viral technique for gene transfection and drug delivery. Here, the transfer mechanisms were studied with fluorescent nanocrystals (quantum dots, QDs) in mammalian cells. Interactions of the cell membrane and nanoscale particles were visualized after electric pulse treatment. Responses of human multiple myeloma cells to nanocrystals were tracked for periods up to 7 days. Large particles do not cross the membrane directly after pulsing, even if the membrane is permeabilized to small molecules. Large QDs were trapped on the cell membrane for hours after electroporation and were gradually either excluded or internalized by cells. QD uptake efficiency depended on both particle size and membrane transport activity. These results, consistent with an electropermeabilization model, suggest that enhancing the interactions between the cell membrane and macromolecules may improve the transfer efficiency. Vernier, P. Thomas verfasserin aut Wang, Jingjing verfasserin aut Kuthi, Andras verfasserin aut Marcu, Laura verfasserin aut Gundersen, Martin A. verfasserin aut Enthalten in MRS online proceedings library Warrendale, Pa. : MRS, 1998 873(2005), 1 vom: Dez. (DE-627)57782046X (DE-600)2451008-7 1946-4274 nnns volume:873 year:2005 number:1 month:12 https://dx.doi.org/10.1557/PROC-873-K6.9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_2005 AR 873 2005 1 12 |
allfields_unstemmed |
10.1557/PROC-873-K6.9 doi (DE-627)SPR043045804 (DE-599)SPRPROC-873-K6.9-e (SPR)PROC-873-K6.9-e DE-627 ger DE-627 rakwb eng 670 ASE Sun, Yinghua verfasserin aut Electropermeabilization of Mammalian Cells Visualized with Fluorescent Semiconductor Nanocrystals (Quantum Dots) 2005 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Electroporation/electropermeabilization is a non-viral technique for gene transfection and drug delivery. Here, the transfer mechanisms were studied with fluorescent nanocrystals (quantum dots, QDs) in mammalian cells. Interactions of the cell membrane and nanoscale particles were visualized after electric pulse treatment. Responses of human multiple myeloma cells to nanocrystals were tracked for periods up to 7 days. Large particles do not cross the membrane directly after pulsing, even if the membrane is permeabilized to small molecules. Large QDs were trapped on the cell membrane for hours after electroporation and were gradually either excluded or internalized by cells. QD uptake efficiency depended on both particle size and membrane transport activity. These results, consistent with an electropermeabilization model, suggest that enhancing the interactions between the cell membrane and macromolecules may improve the transfer efficiency. Vernier, P. Thomas verfasserin aut Wang, Jingjing verfasserin aut Kuthi, Andras verfasserin aut Marcu, Laura verfasserin aut Gundersen, Martin A. verfasserin aut Enthalten in MRS online proceedings library Warrendale, Pa. : MRS, 1998 873(2005), 1 vom: Dez. (DE-627)57782046X (DE-600)2451008-7 1946-4274 nnns volume:873 year:2005 number:1 month:12 https://dx.doi.org/10.1557/PROC-873-K6.9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_2005 AR 873 2005 1 12 |
allfieldsGer |
10.1557/PROC-873-K6.9 doi (DE-627)SPR043045804 (DE-599)SPRPROC-873-K6.9-e (SPR)PROC-873-K6.9-e DE-627 ger DE-627 rakwb eng 670 ASE Sun, Yinghua verfasserin aut Electropermeabilization of Mammalian Cells Visualized with Fluorescent Semiconductor Nanocrystals (Quantum Dots) 2005 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Electroporation/electropermeabilization is a non-viral technique for gene transfection and drug delivery. Here, the transfer mechanisms were studied with fluorescent nanocrystals (quantum dots, QDs) in mammalian cells. Interactions of the cell membrane and nanoscale particles were visualized after electric pulse treatment. Responses of human multiple myeloma cells to nanocrystals were tracked for periods up to 7 days. Large particles do not cross the membrane directly after pulsing, even if the membrane is permeabilized to small molecules. Large QDs were trapped on the cell membrane for hours after electroporation and were gradually either excluded or internalized by cells. QD uptake efficiency depended on both particle size and membrane transport activity. These results, consistent with an electropermeabilization model, suggest that enhancing the interactions between the cell membrane and macromolecules may improve the transfer efficiency. Vernier, P. Thomas verfasserin aut Wang, Jingjing verfasserin aut Kuthi, Andras verfasserin aut Marcu, Laura verfasserin aut Gundersen, Martin A. verfasserin aut Enthalten in MRS online proceedings library Warrendale, Pa. : MRS, 1998 873(2005), 1 vom: Dez. (DE-627)57782046X (DE-600)2451008-7 1946-4274 nnns volume:873 year:2005 number:1 month:12 https://dx.doi.org/10.1557/PROC-873-K6.9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_2005 AR 873 2005 1 12 |
allfieldsSound |
10.1557/PROC-873-K6.9 doi (DE-627)SPR043045804 (DE-599)SPRPROC-873-K6.9-e (SPR)PROC-873-K6.9-e DE-627 ger DE-627 rakwb eng 670 ASE Sun, Yinghua verfasserin aut Electropermeabilization of Mammalian Cells Visualized with Fluorescent Semiconductor Nanocrystals (Quantum Dots) 2005 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Electroporation/electropermeabilization is a non-viral technique for gene transfection and drug delivery. Here, the transfer mechanisms were studied with fluorescent nanocrystals (quantum dots, QDs) in mammalian cells. Interactions of the cell membrane and nanoscale particles were visualized after electric pulse treatment. Responses of human multiple myeloma cells to nanocrystals were tracked for periods up to 7 days. Large particles do not cross the membrane directly after pulsing, even if the membrane is permeabilized to small molecules. Large QDs were trapped on the cell membrane for hours after electroporation and were gradually either excluded or internalized by cells. QD uptake efficiency depended on both particle size and membrane transport activity. These results, consistent with an electropermeabilization model, suggest that enhancing the interactions between the cell membrane and macromolecules may improve the transfer efficiency. Vernier, P. Thomas verfasserin aut Wang, Jingjing verfasserin aut Kuthi, Andras verfasserin aut Marcu, Laura verfasserin aut Gundersen, Martin A. verfasserin aut Enthalten in MRS online proceedings library Warrendale, Pa. : MRS, 1998 873(2005), 1 vom: Dez. (DE-627)57782046X (DE-600)2451008-7 1946-4274 nnns volume:873 year:2005 number:1 month:12 https://dx.doi.org/10.1557/PROC-873-K6.9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_2005 AR 873 2005 1 12 |
language |
English |
source |
Enthalten in MRS online proceedings library 873(2005), 1 vom: Dez. volume:873 year:2005 number:1 month:12 |
sourceStr |
Enthalten in MRS online proceedings library 873(2005), 1 vom: Dez. volume:873 year:2005 number:1 month:12 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
MRS online proceedings library |
authorswithroles_txt_mv |
Sun, Yinghua @@aut@@ Vernier, P. Thomas @@aut@@ Wang, Jingjing @@aut@@ Kuthi, Andras @@aut@@ Marcu, Laura @@aut@@ Gundersen, Martin A. @@aut@@ |
publishDateDaySort_date |
2005-12-01T00:00:00Z |
hierarchy_top_id |
57782046X |
dewey-sort |
3670 |
id |
SPR043045804 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR043045804</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519122909.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210206s2005 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1557/PROC-873-K6.9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR043045804</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)SPRPROC-873-K6.9-e</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)PROC-873-K6.9-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sun, Yinghua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Electropermeabilization of Mammalian Cells Visualized with Fluorescent Semiconductor Nanocrystals (Quantum Dots)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2005</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Electroporation/electropermeabilization is a non-viral technique for gene transfection and drug delivery. Here, the transfer mechanisms were studied with fluorescent nanocrystals (quantum dots, QDs) in mammalian cells. Interactions of the cell membrane and nanoscale particles were visualized after electric pulse treatment. Responses of human multiple myeloma cells to nanocrystals were tracked for periods up to 7 days. Large particles do not cross the membrane directly after pulsing, even if the membrane is permeabilized to small molecules. Large QDs were trapped on the cell membrane for hours after electroporation and were gradually either excluded or internalized by cells. QD uptake efficiency depended on both particle size and membrane transport activity. These results, consistent with an electropermeabilization model, suggest that enhancing the interactions between the cell membrane and macromolecules may improve the transfer efficiency.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vernier, P. Thomas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jingjing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kuthi, Andras</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marcu, Laura</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gundersen, Martin A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">MRS online proceedings library</subfield><subfield code="d">Warrendale, Pa. : MRS, 1998</subfield><subfield code="g">873(2005), 1 vom: Dez.</subfield><subfield code="w">(DE-627)57782046X</subfield><subfield code="w">(DE-600)2451008-7</subfield><subfield code="x">1946-4274</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:873</subfield><subfield code="g">year:2005</subfield><subfield code="g">number:1</subfield><subfield code="g">month:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1557/PROC-873-K6.9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">873</subfield><subfield code="j">2005</subfield><subfield code="e">1</subfield><subfield code="c">12</subfield></datafield></record></collection>
|
author |
Sun, Yinghua |
spellingShingle |
Sun, Yinghua ddc 670 Electropermeabilization of Mammalian Cells Visualized with Fluorescent Semiconductor Nanocrystals (Quantum Dots) |
authorStr |
Sun, Yinghua |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)57782046X |
format |
electronic Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1946-4274 |
topic_title |
670 ASE Electropermeabilization of Mammalian Cells Visualized with Fluorescent Semiconductor Nanocrystals (Quantum Dots) |
topic |
ddc 670 |
topic_unstemmed |
ddc 670 |
topic_browse |
ddc 670 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
MRS online proceedings library |
hierarchy_parent_id |
57782046X |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
MRS online proceedings library |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)57782046X (DE-600)2451008-7 |
title |
Electropermeabilization of Mammalian Cells Visualized with Fluorescent Semiconductor Nanocrystals (Quantum Dots) |
ctrlnum |
(DE-627)SPR043045804 (DE-599)SPRPROC-873-K6.9-e (SPR)PROC-873-K6.9-e |
title_full |
Electropermeabilization of Mammalian Cells Visualized with Fluorescent Semiconductor Nanocrystals (Quantum Dots) |
author_sort |
Sun, Yinghua |
journal |
MRS online proceedings library |
journalStr |
MRS online proceedings library |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2005 |
contenttype_str_mv |
txt |
author_browse |
Sun, Yinghua Vernier, P. Thomas Wang, Jingjing Kuthi, Andras Marcu, Laura Gundersen, Martin A. |
container_volume |
873 |
class |
670 ASE |
format_se |
Elektronische Aufsätze |
author-letter |
Sun, Yinghua |
doi_str_mv |
10.1557/PROC-873-K6.9 |
dewey-full |
670 |
author2-role |
verfasserin |
title_sort |
electropermeabilization of mammalian cells visualized with fluorescent semiconductor nanocrystals (quantum dots) |
title_auth |
Electropermeabilization of Mammalian Cells Visualized with Fluorescent Semiconductor Nanocrystals (Quantum Dots) |
abstract |
Abstract Electroporation/electropermeabilization is a non-viral technique for gene transfection and drug delivery. Here, the transfer mechanisms were studied with fluorescent nanocrystals (quantum dots, QDs) in mammalian cells. Interactions of the cell membrane and nanoscale particles were visualized after electric pulse treatment. Responses of human multiple myeloma cells to nanocrystals were tracked for periods up to 7 days. Large particles do not cross the membrane directly after pulsing, even if the membrane is permeabilized to small molecules. Large QDs were trapped on the cell membrane for hours after electroporation and were gradually either excluded or internalized by cells. QD uptake efficiency depended on both particle size and membrane transport activity. These results, consistent with an electropermeabilization model, suggest that enhancing the interactions between the cell membrane and macromolecules may improve the transfer efficiency. |
abstractGer |
Abstract Electroporation/electropermeabilization is a non-viral technique for gene transfection and drug delivery. Here, the transfer mechanisms were studied with fluorescent nanocrystals (quantum dots, QDs) in mammalian cells. Interactions of the cell membrane and nanoscale particles were visualized after electric pulse treatment. Responses of human multiple myeloma cells to nanocrystals were tracked for periods up to 7 days. Large particles do not cross the membrane directly after pulsing, even if the membrane is permeabilized to small molecules. Large QDs were trapped on the cell membrane for hours after electroporation and were gradually either excluded or internalized by cells. QD uptake efficiency depended on both particle size and membrane transport activity. These results, consistent with an electropermeabilization model, suggest that enhancing the interactions between the cell membrane and macromolecules may improve the transfer efficiency. |
abstract_unstemmed |
Abstract Electroporation/electropermeabilization is a non-viral technique for gene transfection and drug delivery. Here, the transfer mechanisms were studied with fluorescent nanocrystals (quantum dots, QDs) in mammalian cells. Interactions of the cell membrane and nanoscale particles were visualized after electric pulse treatment. Responses of human multiple myeloma cells to nanocrystals were tracked for periods up to 7 days. Large particles do not cross the membrane directly after pulsing, even if the membrane is permeabilized to small molecules. Large QDs were trapped on the cell membrane for hours after electroporation and were gradually either excluded or internalized by cells. QD uptake efficiency depended on both particle size and membrane transport activity. These results, consistent with an electropermeabilization model, suggest that enhancing the interactions between the cell membrane and macromolecules may improve the transfer efficiency. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_2005 |
container_issue |
1 |
title_short |
Electropermeabilization of Mammalian Cells Visualized with Fluorescent Semiconductor Nanocrystals (Quantum Dots) |
url |
https://dx.doi.org/10.1557/PROC-873-K6.9 |
remote_bool |
true |
author2 |
Vernier, P. Thomas Wang, Jingjing Kuthi, Andras Marcu, Laura Gundersen, Martin A. |
author2Str |
Vernier, P. Thomas Wang, Jingjing Kuthi, Andras Marcu, Laura Gundersen, Martin A. |
ppnlink |
57782046X |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1557/PROC-873-K6.9 |
up_date |
2024-07-03T16:19:03.867Z |
_version_ |
1803575407533883392 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR043045804</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519122909.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210206s2005 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1557/PROC-873-K6.9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR043045804</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)SPRPROC-873-K6.9-e</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)PROC-873-K6.9-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sun, Yinghua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Electropermeabilization of Mammalian Cells Visualized with Fluorescent Semiconductor Nanocrystals (Quantum Dots)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2005</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Electroporation/electropermeabilization is a non-viral technique for gene transfection and drug delivery. Here, the transfer mechanisms were studied with fluorescent nanocrystals (quantum dots, QDs) in mammalian cells. Interactions of the cell membrane and nanoscale particles were visualized after electric pulse treatment. Responses of human multiple myeloma cells to nanocrystals were tracked for periods up to 7 days. Large particles do not cross the membrane directly after pulsing, even if the membrane is permeabilized to small molecules. Large QDs were trapped on the cell membrane for hours after electroporation and were gradually either excluded or internalized by cells. QD uptake efficiency depended on both particle size and membrane transport activity. These results, consistent with an electropermeabilization model, suggest that enhancing the interactions between the cell membrane and macromolecules may improve the transfer efficiency.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vernier, P. Thomas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jingjing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kuthi, Andras</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marcu, Laura</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gundersen, Martin A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">MRS online proceedings library</subfield><subfield code="d">Warrendale, Pa. : MRS, 1998</subfield><subfield code="g">873(2005), 1 vom: Dez.</subfield><subfield code="w">(DE-627)57782046X</subfield><subfield code="w">(DE-600)2451008-7</subfield><subfield code="x">1946-4274</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:873</subfield><subfield code="g">year:2005</subfield><subfield code="g">number:1</subfield><subfield code="g">month:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1557/PROC-873-K6.9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">873</subfield><subfield code="j">2005</subfield><subfield code="e">1</subfield><subfield code="c">12</subfield></datafield></record></collection>
|
score |
7.402669 |