Single-Layer ZnO Hollow Hemispheres Enable High-Performance Self-Powered Perovskite Photodetector for Optical Communication
Highlights Single-layer hollow ZnO hemispherical arrays behaving light trapping effect as the electron transport layer in perovskite photodetectors were first introduced.Our photodetectors showed high self-powered performances with a LDR of 120.3 dB, a detectivity of 4.2 × $ 10^{12} $ Jones, rise/fa...
Ausführliche Beschreibung
Autor*in: |
Pan, Xiyan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: Nano-Micro letters - Berlin : Springer, 2009, 13(2021), 1 vom: 12. Feb. |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2021 ; number:1 ; day:12 ; month:02 |
Links: |
---|
DOI / URN: |
10.1007/s40820-021-00596-5 |
---|
Katalog-ID: |
SPR043154476 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR043154476 | ||
003 | DE-627 | ||
005 | 20230509110809.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210215s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s40820-021-00596-5 |2 doi | |
035 | |a (DE-627)SPR043154476 | ||
035 | |a (SPR)s40820-021-00596-5-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Pan, Xiyan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Single-Layer ZnO Hollow Hemispheres Enable High-Performance Self-Powered Perovskite Photodetector for Optical Communication |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2021 | ||
520 | |a Highlights Single-layer hollow ZnO hemispherical arrays behaving light trapping effect as the electron transport layer in perovskite photodetectors were first introduced.Our photodetectors showed high self-powered performances with a LDR of 120.3 dB, a detectivity of 4.2 × $ 10^{12} $ Jones, rise/fall time of 13/28 µs and the f−3 dB of up to 28 kHz.Benefiting from the high device performance, the photodetector was demonstrated to the directional transmission of encrypted files as the signal receiving port with super high accuracy. | ||
520 | |a Abstract The carrier transport layer with reflection reduction morphology has attracted extensive attention for improving the utilization of light. Herein, we introduced single-layer hollow ZnO hemisphere arrays (ZHAs) behaving light trapping effect as the electron transport layer in perovskite photodetectors (PDs). The single-layer hollow ZHAs can not only reduce the reflection, but also widen the angle of the effective incident light and especially transfer the distribution of the optical field from the ZnO/FTO interface to the perovskite active layer confirmed by the 3D finite-difference time-domain simulation. These merits benefit for the generation, transport and separation of carriers, improving the light utilization efficiency. Finally, our optimized FTO/ZHA/$ CsPbBr_{3} $/carbon structure PDs showed high self-powered performance with a linear dynamic range of 120.3 dB, a detectivity of 4.2 × $ 10^{12} $ Jones, rise/fall time of 13/28 µs and the f−3 dB of up to 28 kHz. Benefiting from the high device performance, the PD was demonstrated to the application in the directional transmission of encrypted files as the signal receiving port with super high accuracy. This work uniquely utilizes the features of high-performance self-powered perovskite PDs in optical communication, paving the path to wide applications of all-inorganic perovskite PDs. | ||
650 | 4 | |a Hemisphere array |7 (dpeaa)DE-He213 | |
650 | 4 | |a Perovskite |7 (dpeaa)DE-He213 | |
650 | 4 | |a Photodetector |7 (dpeaa)DE-He213 | |
650 | 4 | |a Reflection reduction |7 (dpeaa)DE-He213 | |
650 | 4 | |a Optical communication |7 (dpeaa)DE-He213 | |
700 | 1 | |a Zhang, Jianqiang |4 aut | |
700 | 1 | |a Zhou, Hai |4 aut | |
700 | 1 | |a Liu, Ronghuan |4 aut | |
700 | 1 | |a Wu, Dingjun |4 aut | |
700 | 1 | |a Wang, Rui |4 aut | |
700 | 1 | |a Shen, Liangping |4 aut | |
700 | 1 | |a Tao, Li |4 aut | |
700 | 1 | |a Zhang, Jun |4 aut | |
700 | 1 | |a Wang, Hao |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Nano-Micro letters |d Berlin : Springer, 2009 |g 13(2021), 1 vom: 12. Feb. |w (DE-627)680319581 |w (DE-600)2642093-4 |x 2150-5551 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2021 |g number:1 |g day:12 |g month:02 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s40820-021-00596-5 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2021 |e 1 |b 12 |c 02 |
author_variant |
x p xp j z jz h z hz r l rl d w dw r w rw l s ls l t lt j z jz h w hw |
---|---|
matchkey_str |
article:21505551:2021----::igeaezoolweipeeealhgpromneefoeeprvktpooe |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1007/s40820-021-00596-5 doi (DE-627)SPR043154476 (SPR)s40820-021-00596-5-e DE-627 ger DE-627 rakwb eng Pan, Xiyan verfasserin aut Single-Layer ZnO Hollow Hemispheres Enable High-Performance Self-Powered Perovskite Photodetector for Optical Communication 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2021 Highlights Single-layer hollow ZnO hemispherical arrays behaving light trapping effect as the electron transport layer in perovskite photodetectors were first introduced.Our photodetectors showed high self-powered performances with a LDR of 120.3 dB, a detectivity of 4.2 × $ 10^{12} $ Jones, rise/fall time of 13/28 µs and the f−3 dB of up to 28 kHz.Benefiting from the high device performance, the photodetector was demonstrated to the directional transmission of encrypted files as the signal receiving port with super high accuracy. Abstract The carrier transport layer with reflection reduction morphology has attracted extensive attention for improving the utilization of light. Herein, we introduced single-layer hollow ZnO hemisphere arrays (ZHAs) behaving light trapping effect as the electron transport layer in perovskite photodetectors (PDs). The single-layer hollow ZHAs can not only reduce the reflection, but also widen the angle of the effective incident light and especially transfer the distribution of the optical field from the ZnO/FTO interface to the perovskite active layer confirmed by the 3D finite-difference time-domain simulation. These merits benefit for the generation, transport and separation of carriers, improving the light utilization efficiency. Finally, our optimized FTO/ZHA/$ CsPbBr_{3} $/carbon structure PDs showed high self-powered performance with a linear dynamic range of 120.3 dB, a detectivity of 4.2 × $ 10^{12} $ Jones, rise/fall time of 13/28 µs and the f−3 dB of up to 28 kHz. Benefiting from the high device performance, the PD was demonstrated to the application in the directional transmission of encrypted files as the signal receiving port with super high accuracy. This work uniquely utilizes the features of high-performance self-powered perovskite PDs in optical communication, paving the path to wide applications of all-inorganic perovskite PDs. Hemisphere array (dpeaa)DE-He213 Perovskite (dpeaa)DE-He213 Photodetector (dpeaa)DE-He213 Reflection reduction (dpeaa)DE-He213 Optical communication (dpeaa)DE-He213 Zhang, Jianqiang aut Zhou, Hai aut Liu, Ronghuan aut Wu, Dingjun aut Wang, Rui aut Shen, Liangping aut Tao, Li aut Zhang, Jun aut Wang, Hao aut Enthalten in Nano-Micro letters Berlin : Springer, 2009 13(2021), 1 vom: 12. Feb. (DE-627)680319581 (DE-600)2642093-4 2150-5551 nnns volume:13 year:2021 number:1 day:12 month:02 https://dx.doi.org/10.1007/s40820-021-00596-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 1 12 02 |
spelling |
10.1007/s40820-021-00596-5 doi (DE-627)SPR043154476 (SPR)s40820-021-00596-5-e DE-627 ger DE-627 rakwb eng Pan, Xiyan verfasserin aut Single-Layer ZnO Hollow Hemispheres Enable High-Performance Self-Powered Perovskite Photodetector for Optical Communication 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2021 Highlights Single-layer hollow ZnO hemispherical arrays behaving light trapping effect as the electron transport layer in perovskite photodetectors were first introduced.Our photodetectors showed high self-powered performances with a LDR of 120.3 dB, a detectivity of 4.2 × $ 10^{12} $ Jones, rise/fall time of 13/28 µs and the f−3 dB of up to 28 kHz.Benefiting from the high device performance, the photodetector was demonstrated to the directional transmission of encrypted files as the signal receiving port with super high accuracy. Abstract The carrier transport layer with reflection reduction morphology has attracted extensive attention for improving the utilization of light. Herein, we introduced single-layer hollow ZnO hemisphere arrays (ZHAs) behaving light trapping effect as the electron transport layer in perovskite photodetectors (PDs). The single-layer hollow ZHAs can not only reduce the reflection, but also widen the angle of the effective incident light and especially transfer the distribution of the optical field from the ZnO/FTO interface to the perovskite active layer confirmed by the 3D finite-difference time-domain simulation. These merits benefit for the generation, transport and separation of carriers, improving the light utilization efficiency. Finally, our optimized FTO/ZHA/$ CsPbBr_{3} $/carbon structure PDs showed high self-powered performance with a linear dynamic range of 120.3 dB, a detectivity of 4.2 × $ 10^{12} $ Jones, rise/fall time of 13/28 µs and the f−3 dB of up to 28 kHz. Benefiting from the high device performance, the PD was demonstrated to the application in the directional transmission of encrypted files as the signal receiving port with super high accuracy. This work uniquely utilizes the features of high-performance self-powered perovskite PDs in optical communication, paving the path to wide applications of all-inorganic perovskite PDs. Hemisphere array (dpeaa)DE-He213 Perovskite (dpeaa)DE-He213 Photodetector (dpeaa)DE-He213 Reflection reduction (dpeaa)DE-He213 Optical communication (dpeaa)DE-He213 Zhang, Jianqiang aut Zhou, Hai aut Liu, Ronghuan aut Wu, Dingjun aut Wang, Rui aut Shen, Liangping aut Tao, Li aut Zhang, Jun aut Wang, Hao aut Enthalten in Nano-Micro letters Berlin : Springer, 2009 13(2021), 1 vom: 12. Feb. (DE-627)680319581 (DE-600)2642093-4 2150-5551 nnns volume:13 year:2021 number:1 day:12 month:02 https://dx.doi.org/10.1007/s40820-021-00596-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 1 12 02 |
allfields_unstemmed |
10.1007/s40820-021-00596-5 doi (DE-627)SPR043154476 (SPR)s40820-021-00596-5-e DE-627 ger DE-627 rakwb eng Pan, Xiyan verfasserin aut Single-Layer ZnO Hollow Hemispheres Enable High-Performance Self-Powered Perovskite Photodetector for Optical Communication 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2021 Highlights Single-layer hollow ZnO hemispherical arrays behaving light trapping effect as the electron transport layer in perovskite photodetectors were first introduced.Our photodetectors showed high self-powered performances with a LDR of 120.3 dB, a detectivity of 4.2 × $ 10^{12} $ Jones, rise/fall time of 13/28 µs and the f−3 dB of up to 28 kHz.Benefiting from the high device performance, the photodetector was demonstrated to the directional transmission of encrypted files as the signal receiving port with super high accuracy. Abstract The carrier transport layer with reflection reduction morphology has attracted extensive attention for improving the utilization of light. Herein, we introduced single-layer hollow ZnO hemisphere arrays (ZHAs) behaving light trapping effect as the electron transport layer in perovskite photodetectors (PDs). The single-layer hollow ZHAs can not only reduce the reflection, but also widen the angle of the effective incident light and especially transfer the distribution of the optical field from the ZnO/FTO interface to the perovskite active layer confirmed by the 3D finite-difference time-domain simulation. These merits benefit for the generation, transport and separation of carriers, improving the light utilization efficiency. Finally, our optimized FTO/ZHA/$ CsPbBr_{3} $/carbon structure PDs showed high self-powered performance with a linear dynamic range of 120.3 dB, a detectivity of 4.2 × $ 10^{12} $ Jones, rise/fall time of 13/28 µs and the f−3 dB of up to 28 kHz. Benefiting from the high device performance, the PD was demonstrated to the application in the directional transmission of encrypted files as the signal receiving port with super high accuracy. This work uniquely utilizes the features of high-performance self-powered perovskite PDs in optical communication, paving the path to wide applications of all-inorganic perovskite PDs. Hemisphere array (dpeaa)DE-He213 Perovskite (dpeaa)DE-He213 Photodetector (dpeaa)DE-He213 Reflection reduction (dpeaa)DE-He213 Optical communication (dpeaa)DE-He213 Zhang, Jianqiang aut Zhou, Hai aut Liu, Ronghuan aut Wu, Dingjun aut Wang, Rui aut Shen, Liangping aut Tao, Li aut Zhang, Jun aut Wang, Hao aut Enthalten in Nano-Micro letters Berlin : Springer, 2009 13(2021), 1 vom: 12. Feb. (DE-627)680319581 (DE-600)2642093-4 2150-5551 nnns volume:13 year:2021 number:1 day:12 month:02 https://dx.doi.org/10.1007/s40820-021-00596-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 1 12 02 |
allfieldsGer |
10.1007/s40820-021-00596-5 doi (DE-627)SPR043154476 (SPR)s40820-021-00596-5-e DE-627 ger DE-627 rakwb eng Pan, Xiyan verfasserin aut Single-Layer ZnO Hollow Hemispheres Enable High-Performance Self-Powered Perovskite Photodetector for Optical Communication 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2021 Highlights Single-layer hollow ZnO hemispherical arrays behaving light trapping effect as the electron transport layer in perovskite photodetectors were first introduced.Our photodetectors showed high self-powered performances with a LDR of 120.3 dB, a detectivity of 4.2 × $ 10^{12} $ Jones, rise/fall time of 13/28 µs and the f−3 dB of up to 28 kHz.Benefiting from the high device performance, the photodetector was demonstrated to the directional transmission of encrypted files as the signal receiving port with super high accuracy. Abstract The carrier transport layer with reflection reduction morphology has attracted extensive attention for improving the utilization of light. Herein, we introduced single-layer hollow ZnO hemisphere arrays (ZHAs) behaving light trapping effect as the electron transport layer in perovskite photodetectors (PDs). The single-layer hollow ZHAs can not only reduce the reflection, but also widen the angle of the effective incident light and especially transfer the distribution of the optical field from the ZnO/FTO interface to the perovskite active layer confirmed by the 3D finite-difference time-domain simulation. These merits benefit for the generation, transport and separation of carriers, improving the light utilization efficiency. Finally, our optimized FTO/ZHA/$ CsPbBr_{3} $/carbon structure PDs showed high self-powered performance with a linear dynamic range of 120.3 dB, a detectivity of 4.2 × $ 10^{12} $ Jones, rise/fall time of 13/28 µs and the f−3 dB of up to 28 kHz. Benefiting from the high device performance, the PD was demonstrated to the application in the directional transmission of encrypted files as the signal receiving port with super high accuracy. This work uniquely utilizes the features of high-performance self-powered perovskite PDs in optical communication, paving the path to wide applications of all-inorganic perovskite PDs. Hemisphere array (dpeaa)DE-He213 Perovskite (dpeaa)DE-He213 Photodetector (dpeaa)DE-He213 Reflection reduction (dpeaa)DE-He213 Optical communication (dpeaa)DE-He213 Zhang, Jianqiang aut Zhou, Hai aut Liu, Ronghuan aut Wu, Dingjun aut Wang, Rui aut Shen, Liangping aut Tao, Li aut Zhang, Jun aut Wang, Hao aut Enthalten in Nano-Micro letters Berlin : Springer, 2009 13(2021), 1 vom: 12. Feb. (DE-627)680319581 (DE-600)2642093-4 2150-5551 nnns volume:13 year:2021 number:1 day:12 month:02 https://dx.doi.org/10.1007/s40820-021-00596-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 1 12 02 |
allfieldsSound |
10.1007/s40820-021-00596-5 doi (DE-627)SPR043154476 (SPR)s40820-021-00596-5-e DE-627 ger DE-627 rakwb eng Pan, Xiyan verfasserin aut Single-Layer ZnO Hollow Hemispheres Enable High-Performance Self-Powered Perovskite Photodetector for Optical Communication 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2021 Highlights Single-layer hollow ZnO hemispherical arrays behaving light trapping effect as the electron transport layer in perovskite photodetectors were first introduced.Our photodetectors showed high self-powered performances with a LDR of 120.3 dB, a detectivity of 4.2 × $ 10^{12} $ Jones, rise/fall time of 13/28 µs and the f−3 dB of up to 28 kHz.Benefiting from the high device performance, the photodetector was demonstrated to the directional transmission of encrypted files as the signal receiving port with super high accuracy. Abstract The carrier transport layer with reflection reduction morphology has attracted extensive attention for improving the utilization of light. Herein, we introduced single-layer hollow ZnO hemisphere arrays (ZHAs) behaving light trapping effect as the electron transport layer in perovskite photodetectors (PDs). The single-layer hollow ZHAs can not only reduce the reflection, but also widen the angle of the effective incident light and especially transfer the distribution of the optical field from the ZnO/FTO interface to the perovskite active layer confirmed by the 3D finite-difference time-domain simulation. These merits benefit for the generation, transport and separation of carriers, improving the light utilization efficiency. Finally, our optimized FTO/ZHA/$ CsPbBr_{3} $/carbon structure PDs showed high self-powered performance with a linear dynamic range of 120.3 dB, a detectivity of 4.2 × $ 10^{12} $ Jones, rise/fall time of 13/28 µs and the f−3 dB of up to 28 kHz. Benefiting from the high device performance, the PD was demonstrated to the application in the directional transmission of encrypted files as the signal receiving port with super high accuracy. This work uniquely utilizes the features of high-performance self-powered perovskite PDs in optical communication, paving the path to wide applications of all-inorganic perovskite PDs. Hemisphere array (dpeaa)DE-He213 Perovskite (dpeaa)DE-He213 Photodetector (dpeaa)DE-He213 Reflection reduction (dpeaa)DE-He213 Optical communication (dpeaa)DE-He213 Zhang, Jianqiang aut Zhou, Hai aut Liu, Ronghuan aut Wu, Dingjun aut Wang, Rui aut Shen, Liangping aut Tao, Li aut Zhang, Jun aut Wang, Hao aut Enthalten in Nano-Micro letters Berlin : Springer, 2009 13(2021), 1 vom: 12. Feb. (DE-627)680319581 (DE-600)2642093-4 2150-5551 nnns volume:13 year:2021 number:1 day:12 month:02 https://dx.doi.org/10.1007/s40820-021-00596-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 1 12 02 |
language |
English |
source |
Enthalten in Nano-Micro letters 13(2021), 1 vom: 12. Feb. volume:13 year:2021 number:1 day:12 month:02 |
sourceStr |
Enthalten in Nano-Micro letters 13(2021), 1 vom: 12. Feb. volume:13 year:2021 number:1 day:12 month:02 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Hemisphere array Perovskite Photodetector Reflection reduction Optical communication |
isfreeaccess_bool |
true |
container_title |
Nano-Micro letters |
authorswithroles_txt_mv |
Pan, Xiyan @@aut@@ Zhang, Jianqiang @@aut@@ Zhou, Hai @@aut@@ Liu, Ronghuan @@aut@@ Wu, Dingjun @@aut@@ Wang, Rui @@aut@@ Shen, Liangping @@aut@@ Tao, Li @@aut@@ Zhang, Jun @@aut@@ Wang, Hao @@aut@@ |
publishDateDaySort_date |
2021-02-12T00:00:00Z |
hierarchy_top_id |
680319581 |
id |
SPR043154476 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR043154476</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509110809.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210215s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40820-021-00596-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR043154476</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40820-021-00596-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pan, Xiyan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Single-Layer ZnO Hollow Hemispheres Enable High-Performance Self-Powered Perovskite Photodetector for Optical Communication</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Highlights Single-layer hollow ZnO hemispherical arrays behaving light trapping effect as the electron transport layer in perovskite photodetectors were first introduced.Our photodetectors showed high self-powered performances with a LDR of 120.3 dB, a detectivity of 4.2 × $ 10^{12} $ Jones, rise/fall time of 13/28 µs and the f−3 dB of up to 28 kHz.Benefiting from the high device performance, the photodetector was demonstrated to the directional transmission of encrypted files as the signal receiving port with super high accuracy.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The carrier transport layer with reflection reduction morphology has attracted extensive attention for improving the utilization of light. Herein, we introduced single-layer hollow ZnO hemisphere arrays (ZHAs) behaving light trapping effect as the electron transport layer in perovskite photodetectors (PDs). The single-layer hollow ZHAs can not only reduce the reflection, but also widen the angle of the effective incident light and especially transfer the distribution of the optical field from the ZnO/FTO interface to the perovskite active layer confirmed by the 3D finite-difference time-domain simulation. These merits benefit for the generation, transport and separation of carriers, improving the light utilization efficiency. Finally, our optimized FTO/ZHA/$ CsPbBr_{3} $/carbon structure PDs showed high self-powered performance with a linear dynamic range of 120.3 dB, a detectivity of 4.2 × $ 10^{12} $ Jones, rise/fall time of 13/28 µs and the f−3 dB of up to 28 kHz. Benefiting from the high device performance, the PD was demonstrated to the application in the directional transmission of encrypted files as the signal receiving port with super high accuracy. This work uniquely utilizes the features of high-performance self-powered perovskite PDs in optical communication, paving the path to wide applications of all-inorganic perovskite PDs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hemisphere array</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Perovskite</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photodetector</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reflection reduction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical communication</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Jianqiang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Hai</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Ronghuan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Dingjun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Rui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shen, Liangping</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tao, Li</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Jun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Hao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nano-Micro letters</subfield><subfield code="d">Berlin : Springer, 2009</subfield><subfield code="g">13(2021), 1 vom: 12. Feb.</subfield><subfield code="w">(DE-627)680319581</subfield><subfield code="w">(DE-600)2642093-4</subfield><subfield code="x">2150-5551</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">day:12</subfield><subfield code="g">month:02</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40820-021-00596-5</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="b">12</subfield><subfield code="c">02</subfield></datafield></record></collection>
|
author |
Pan, Xiyan |
spellingShingle |
Pan, Xiyan misc Hemisphere array misc Perovskite misc Photodetector misc Reflection reduction misc Optical communication Single-Layer ZnO Hollow Hemispheres Enable High-Performance Self-Powered Perovskite Photodetector for Optical Communication |
authorStr |
Pan, Xiyan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)680319581 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2150-5551 |
topic_title |
Single-Layer ZnO Hollow Hemispheres Enable High-Performance Self-Powered Perovskite Photodetector for Optical Communication Hemisphere array (dpeaa)DE-He213 Perovskite (dpeaa)DE-He213 Photodetector (dpeaa)DE-He213 Reflection reduction (dpeaa)DE-He213 Optical communication (dpeaa)DE-He213 |
topic |
misc Hemisphere array misc Perovskite misc Photodetector misc Reflection reduction misc Optical communication |
topic_unstemmed |
misc Hemisphere array misc Perovskite misc Photodetector misc Reflection reduction misc Optical communication |
topic_browse |
misc Hemisphere array misc Perovskite misc Photodetector misc Reflection reduction misc Optical communication |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Nano-Micro letters |
hierarchy_parent_id |
680319581 |
hierarchy_top_title |
Nano-Micro letters |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)680319581 (DE-600)2642093-4 |
title |
Single-Layer ZnO Hollow Hemispheres Enable High-Performance Self-Powered Perovskite Photodetector for Optical Communication |
ctrlnum |
(DE-627)SPR043154476 (SPR)s40820-021-00596-5-e |
title_full |
Single-Layer ZnO Hollow Hemispheres Enable High-Performance Self-Powered Perovskite Photodetector for Optical Communication |
author_sort |
Pan, Xiyan |
journal |
Nano-Micro letters |
journalStr |
Nano-Micro letters |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Pan, Xiyan Zhang, Jianqiang Zhou, Hai Liu, Ronghuan Wu, Dingjun Wang, Rui Shen, Liangping Tao, Li Zhang, Jun Wang, Hao |
container_volume |
13 |
format_se |
Elektronische Aufsätze |
author-letter |
Pan, Xiyan |
doi_str_mv |
10.1007/s40820-021-00596-5 |
title_sort |
single-layer zno hollow hemispheres enable high-performance self-powered perovskite photodetector for optical communication |
title_auth |
Single-Layer ZnO Hollow Hemispheres Enable High-Performance Self-Powered Perovskite Photodetector for Optical Communication |
abstract |
Highlights Single-layer hollow ZnO hemispherical arrays behaving light trapping effect as the electron transport layer in perovskite photodetectors were first introduced.Our photodetectors showed high self-powered performances with a LDR of 120.3 dB, a detectivity of 4.2 × $ 10^{12} $ Jones, rise/fall time of 13/28 µs and the f−3 dB of up to 28 kHz.Benefiting from the high device performance, the photodetector was demonstrated to the directional transmission of encrypted files as the signal receiving port with super high accuracy. Abstract The carrier transport layer with reflection reduction morphology has attracted extensive attention for improving the utilization of light. Herein, we introduced single-layer hollow ZnO hemisphere arrays (ZHAs) behaving light trapping effect as the electron transport layer in perovskite photodetectors (PDs). The single-layer hollow ZHAs can not only reduce the reflection, but also widen the angle of the effective incident light and especially transfer the distribution of the optical field from the ZnO/FTO interface to the perovskite active layer confirmed by the 3D finite-difference time-domain simulation. These merits benefit for the generation, transport and separation of carriers, improving the light utilization efficiency. Finally, our optimized FTO/ZHA/$ CsPbBr_{3} $/carbon structure PDs showed high self-powered performance with a linear dynamic range of 120.3 dB, a detectivity of 4.2 × $ 10^{12} $ Jones, rise/fall time of 13/28 µs and the f−3 dB of up to 28 kHz. Benefiting from the high device performance, the PD was demonstrated to the application in the directional transmission of encrypted files as the signal receiving port with super high accuracy. This work uniquely utilizes the features of high-performance self-powered perovskite PDs in optical communication, paving the path to wide applications of all-inorganic perovskite PDs. © The Author(s) 2021 |
abstractGer |
Highlights Single-layer hollow ZnO hemispherical arrays behaving light trapping effect as the electron transport layer in perovskite photodetectors were first introduced.Our photodetectors showed high self-powered performances with a LDR of 120.3 dB, a detectivity of 4.2 × $ 10^{12} $ Jones, rise/fall time of 13/28 µs and the f−3 dB of up to 28 kHz.Benefiting from the high device performance, the photodetector was demonstrated to the directional transmission of encrypted files as the signal receiving port with super high accuracy. Abstract The carrier transport layer with reflection reduction morphology has attracted extensive attention for improving the utilization of light. Herein, we introduced single-layer hollow ZnO hemisphere arrays (ZHAs) behaving light trapping effect as the electron transport layer in perovskite photodetectors (PDs). The single-layer hollow ZHAs can not only reduce the reflection, but also widen the angle of the effective incident light and especially transfer the distribution of the optical field from the ZnO/FTO interface to the perovskite active layer confirmed by the 3D finite-difference time-domain simulation. These merits benefit for the generation, transport and separation of carriers, improving the light utilization efficiency. Finally, our optimized FTO/ZHA/$ CsPbBr_{3} $/carbon structure PDs showed high self-powered performance with a linear dynamic range of 120.3 dB, a detectivity of 4.2 × $ 10^{12} $ Jones, rise/fall time of 13/28 µs and the f−3 dB of up to 28 kHz. Benefiting from the high device performance, the PD was demonstrated to the application in the directional transmission of encrypted files as the signal receiving port with super high accuracy. This work uniquely utilizes the features of high-performance self-powered perovskite PDs in optical communication, paving the path to wide applications of all-inorganic perovskite PDs. © The Author(s) 2021 |
abstract_unstemmed |
Highlights Single-layer hollow ZnO hemispherical arrays behaving light trapping effect as the electron transport layer in perovskite photodetectors were first introduced.Our photodetectors showed high self-powered performances with a LDR of 120.3 dB, a detectivity of 4.2 × $ 10^{12} $ Jones, rise/fall time of 13/28 µs and the f−3 dB of up to 28 kHz.Benefiting from the high device performance, the photodetector was demonstrated to the directional transmission of encrypted files as the signal receiving port with super high accuracy. Abstract The carrier transport layer with reflection reduction morphology has attracted extensive attention for improving the utilization of light. Herein, we introduced single-layer hollow ZnO hemisphere arrays (ZHAs) behaving light trapping effect as the electron transport layer in perovskite photodetectors (PDs). The single-layer hollow ZHAs can not only reduce the reflection, but also widen the angle of the effective incident light and especially transfer the distribution of the optical field from the ZnO/FTO interface to the perovskite active layer confirmed by the 3D finite-difference time-domain simulation. These merits benefit for the generation, transport and separation of carriers, improving the light utilization efficiency. Finally, our optimized FTO/ZHA/$ CsPbBr_{3} $/carbon structure PDs showed high self-powered performance with a linear dynamic range of 120.3 dB, a detectivity of 4.2 × $ 10^{12} $ Jones, rise/fall time of 13/28 µs and the f−3 dB of up to 28 kHz. Benefiting from the high device performance, the PD was demonstrated to the application in the directional transmission of encrypted files as the signal receiving port with super high accuracy. This work uniquely utilizes the features of high-performance self-powered perovskite PDs in optical communication, paving the path to wide applications of all-inorganic perovskite PDs. © The Author(s) 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Single-Layer ZnO Hollow Hemispheres Enable High-Performance Self-Powered Perovskite Photodetector for Optical Communication |
url |
https://dx.doi.org/10.1007/s40820-021-00596-5 |
remote_bool |
true |
author2 |
Zhang, Jianqiang Zhou, Hai Liu, Ronghuan Wu, Dingjun Wang, Rui Shen, Liangping Tao, Li Zhang, Jun Wang, Hao |
author2Str |
Zhang, Jianqiang Zhou, Hai Liu, Ronghuan Wu, Dingjun Wang, Rui Shen, Liangping Tao, Li Zhang, Jun Wang, Hao |
ppnlink |
680319581 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s40820-021-00596-5 |
up_date |
2024-07-03T16:55:19.620Z |
_version_ |
1803577688977309696 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR043154476</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509110809.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210215s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40820-021-00596-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR043154476</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40820-021-00596-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pan, Xiyan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Single-Layer ZnO Hollow Hemispheres Enable High-Performance Self-Powered Perovskite Photodetector for Optical Communication</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Highlights Single-layer hollow ZnO hemispherical arrays behaving light trapping effect as the electron transport layer in perovskite photodetectors were first introduced.Our photodetectors showed high self-powered performances with a LDR of 120.3 dB, a detectivity of 4.2 × $ 10^{12} $ Jones, rise/fall time of 13/28 µs and the f−3 dB of up to 28 kHz.Benefiting from the high device performance, the photodetector was demonstrated to the directional transmission of encrypted files as the signal receiving port with super high accuracy.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The carrier transport layer with reflection reduction morphology has attracted extensive attention for improving the utilization of light. Herein, we introduced single-layer hollow ZnO hemisphere arrays (ZHAs) behaving light trapping effect as the electron transport layer in perovskite photodetectors (PDs). The single-layer hollow ZHAs can not only reduce the reflection, but also widen the angle of the effective incident light and especially transfer the distribution of the optical field from the ZnO/FTO interface to the perovskite active layer confirmed by the 3D finite-difference time-domain simulation. These merits benefit for the generation, transport and separation of carriers, improving the light utilization efficiency. Finally, our optimized FTO/ZHA/$ CsPbBr_{3} $/carbon structure PDs showed high self-powered performance with a linear dynamic range of 120.3 dB, a detectivity of 4.2 × $ 10^{12} $ Jones, rise/fall time of 13/28 µs and the f−3 dB of up to 28 kHz. Benefiting from the high device performance, the PD was demonstrated to the application in the directional transmission of encrypted files as the signal receiving port with super high accuracy. This work uniquely utilizes the features of high-performance self-powered perovskite PDs in optical communication, paving the path to wide applications of all-inorganic perovskite PDs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hemisphere array</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Perovskite</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photodetector</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reflection reduction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical communication</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Jianqiang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Hai</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Ronghuan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Dingjun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Rui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shen, Liangping</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tao, Li</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Jun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Hao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nano-Micro letters</subfield><subfield code="d">Berlin : Springer, 2009</subfield><subfield code="g">13(2021), 1 vom: 12. Feb.</subfield><subfield code="w">(DE-627)680319581</subfield><subfield code="w">(DE-600)2642093-4</subfield><subfield code="x">2150-5551</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">day:12</subfield><subfield code="g">month:02</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40820-021-00596-5</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="b">12</subfield><subfield code="c">02</subfield></datafield></record></collection>
|
score |
7.4014387 |