Elliptic entropy of uncertain random variables with application to portfolio selection
Abstract This paper investigates an elliptic entropy of uncertain random variables and its application in the area of portfolio selection. We first define the elliptic entropy to characterize the uncertainty of uncertain random variables and give some mathematical properties of the elliptic entropy....
Ausführliche Beschreibung
Autor*in: |
Chen, Lin [verfasserIn] Gao, Rong [verfasserIn] Bian, Yuxiang [verfasserIn] Di, Huafei [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Soft Computing - Springer-Verlag, 2003, 25(2020), 3 vom: 03. Sept., Seite 1925-1939 |
---|---|
Übergeordnetes Werk: |
volume:25 ; year:2020 ; number:3 ; day:03 ; month:09 ; pages:1925-1939 |
Links: |
---|
DOI / URN: |
10.1007/s00500-020-05266-z |
---|
Katalog-ID: |
SPR043173942 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR043173942 | ||
003 | DE-627 | ||
005 | 20210215092902.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210215s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s00500-020-05266-z |2 doi | |
035 | |a (DE-627)SPR043173942 | ||
035 | |a (DE-599)SPRs00500-020-05266-z-e | ||
035 | |a (SPR)s00500-020-05266-z-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Chen, Lin |e verfasserin |4 aut | |
245 | 1 | 0 | |a Elliptic entropy of uncertain random variables with application to portfolio selection |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract This paper investigates an elliptic entropy of uncertain random variables and its application in the area of portfolio selection. We first define the elliptic entropy to characterize the uncertainty of uncertain random variables and give some mathematical properties of the elliptic entropy. Then we derive a computational formula to calculate the elliptic entropy of function of uncertain random variables. Furthermore, we use the elliptic entropy to characterize the risk of investment and establish a mean-entropy portfolio selection model, in which the future security returns are described by uncertain random variables. Based on the chance theory, the equivalent form of the mean–entropy model is derived. To show the performance of the mean–entropy portfolio selection model, several numerical experiments are presented. We also numerically compare the mean–entropy model with the mean–variance model, the equi-weighted portfolio model, and the most diversified portfolio model by using three kinds of diversification indices. Numerical results show that the mean-entropy model outperforms the mean–variance model in selecting diversified portfolios no matter of using which diversification index. | ||
650 | 4 | |a Uncertainty theory |7 (dpeaa)DE-He213 | |
650 | 4 | |a Elliptic entropy |7 (dpeaa)DE-He213 | |
650 | 4 | |a Uncertain random variable |7 (dpeaa)DE-He213 | |
650 | 4 | |a Chance theory |7 (dpeaa)DE-He213 | |
650 | 4 | |a Mean-entropy model |7 (dpeaa)DE-He213 | |
650 | 4 | |a Diversification index |7 (dpeaa)DE-He213 | |
700 | 1 | |a Gao, Rong |e verfasserin |4 aut | |
700 | 1 | |a Bian, Yuxiang |e verfasserin |4 aut | |
700 | 1 | |a Di, Huafei |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Soft Computing |d Springer-Verlag, 2003 |g 25(2020), 3 vom: 03. Sept., Seite 1925-1939 |w (DE-627)SPR006469531 |7 nnns |
773 | 1 | 8 | |g volume:25 |g year:2020 |g number:3 |g day:03 |g month:09 |g pages:1925-1939 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s00500-020-05266-z |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
951 | |a AR | ||
952 | |d 25 |j 2020 |e 3 |b 03 |c 09 |h 1925-1939 |
author_variant |
l c lc r g rg y b yb h d hd |
---|---|
matchkey_str |
chenlingaorongbianyuxiangdihuafei:2020----:litcnrpoucranadmaibewtapiain |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.1007/s00500-020-05266-z doi (DE-627)SPR043173942 (DE-599)SPRs00500-020-05266-z-e (SPR)s00500-020-05266-z-e DE-627 ger DE-627 rakwb eng Chen, Lin verfasserin aut Elliptic entropy of uncertain random variables with application to portfolio selection 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract This paper investigates an elliptic entropy of uncertain random variables and its application in the area of portfolio selection. We first define the elliptic entropy to characterize the uncertainty of uncertain random variables and give some mathematical properties of the elliptic entropy. Then we derive a computational formula to calculate the elliptic entropy of function of uncertain random variables. Furthermore, we use the elliptic entropy to characterize the risk of investment and establish a mean-entropy portfolio selection model, in which the future security returns are described by uncertain random variables. Based on the chance theory, the equivalent form of the mean–entropy model is derived. To show the performance of the mean–entropy portfolio selection model, several numerical experiments are presented. We also numerically compare the mean–entropy model with the mean–variance model, the equi-weighted portfolio model, and the most diversified portfolio model by using three kinds of diversification indices. Numerical results show that the mean-entropy model outperforms the mean–variance model in selecting diversified portfolios no matter of using which diversification index. Uncertainty theory (dpeaa)DE-He213 Elliptic entropy (dpeaa)DE-He213 Uncertain random variable (dpeaa)DE-He213 Chance theory (dpeaa)DE-He213 Mean-entropy model (dpeaa)DE-He213 Diversification index (dpeaa)DE-He213 Gao, Rong verfasserin aut Bian, Yuxiang verfasserin aut Di, Huafei verfasserin aut Enthalten in Soft Computing Springer-Verlag, 2003 25(2020), 3 vom: 03. Sept., Seite 1925-1939 (DE-627)SPR006469531 nnns volume:25 year:2020 number:3 day:03 month:09 pages:1925-1939 https://dx.doi.org/10.1007/s00500-020-05266-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 25 2020 3 03 09 1925-1939 |
spelling |
10.1007/s00500-020-05266-z doi (DE-627)SPR043173942 (DE-599)SPRs00500-020-05266-z-e (SPR)s00500-020-05266-z-e DE-627 ger DE-627 rakwb eng Chen, Lin verfasserin aut Elliptic entropy of uncertain random variables with application to portfolio selection 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract This paper investigates an elliptic entropy of uncertain random variables and its application in the area of portfolio selection. We first define the elliptic entropy to characterize the uncertainty of uncertain random variables and give some mathematical properties of the elliptic entropy. Then we derive a computational formula to calculate the elliptic entropy of function of uncertain random variables. Furthermore, we use the elliptic entropy to characterize the risk of investment and establish a mean-entropy portfolio selection model, in which the future security returns are described by uncertain random variables. Based on the chance theory, the equivalent form of the mean–entropy model is derived. To show the performance of the mean–entropy portfolio selection model, several numerical experiments are presented. We also numerically compare the mean–entropy model with the mean–variance model, the equi-weighted portfolio model, and the most diversified portfolio model by using three kinds of diversification indices. Numerical results show that the mean-entropy model outperforms the mean–variance model in selecting diversified portfolios no matter of using which diversification index. Uncertainty theory (dpeaa)DE-He213 Elliptic entropy (dpeaa)DE-He213 Uncertain random variable (dpeaa)DE-He213 Chance theory (dpeaa)DE-He213 Mean-entropy model (dpeaa)DE-He213 Diversification index (dpeaa)DE-He213 Gao, Rong verfasserin aut Bian, Yuxiang verfasserin aut Di, Huafei verfasserin aut Enthalten in Soft Computing Springer-Verlag, 2003 25(2020), 3 vom: 03. Sept., Seite 1925-1939 (DE-627)SPR006469531 nnns volume:25 year:2020 number:3 day:03 month:09 pages:1925-1939 https://dx.doi.org/10.1007/s00500-020-05266-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 25 2020 3 03 09 1925-1939 |
allfields_unstemmed |
10.1007/s00500-020-05266-z doi (DE-627)SPR043173942 (DE-599)SPRs00500-020-05266-z-e (SPR)s00500-020-05266-z-e DE-627 ger DE-627 rakwb eng Chen, Lin verfasserin aut Elliptic entropy of uncertain random variables with application to portfolio selection 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract This paper investigates an elliptic entropy of uncertain random variables and its application in the area of portfolio selection. We first define the elliptic entropy to characterize the uncertainty of uncertain random variables and give some mathematical properties of the elliptic entropy. Then we derive a computational formula to calculate the elliptic entropy of function of uncertain random variables. Furthermore, we use the elliptic entropy to characterize the risk of investment and establish a mean-entropy portfolio selection model, in which the future security returns are described by uncertain random variables. Based on the chance theory, the equivalent form of the mean–entropy model is derived. To show the performance of the mean–entropy portfolio selection model, several numerical experiments are presented. We also numerically compare the mean–entropy model with the mean–variance model, the equi-weighted portfolio model, and the most diversified portfolio model by using three kinds of diversification indices. Numerical results show that the mean-entropy model outperforms the mean–variance model in selecting diversified portfolios no matter of using which diversification index. Uncertainty theory (dpeaa)DE-He213 Elliptic entropy (dpeaa)DE-He213 Uncertain random variable (dpeaa)DE-He213 Chance theory (dpeaa)DE-He213 Mean-entropy model (dpeaa)DE-He213 Diversification index (dpeaa)DE-He213 Gao, Rong verfasserin aut Bian, Yuxiang verfasserin aut Di, Huafei verfasserin aut Enthalten in Soft Computing Springer-Verlag, 2003 25(2020), 3 vom: 03. Sept., Seite 1925-1939 (DE-627)SPR006469531 nnns volume:25 year:2020 number:3 day:03 month:09 pages:1925-1939 https://dx.doi.org/10.1007/s00500-020-05266-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 25 2020 3 03 09 1925-1939 |
allfieldsGer |
10.1007/s00500-020-05266-z doi (DE-627)SPR043173942 (DE-599)SPRs00500-020-05266-z-e (SPR)s00500-020-05266-z-e DE-627 ger DE-627 rakwb eng Chen, Lin verfasserin aut Elliptic entropy of uncertain random variables with application to portfolio selection 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract This paper investigates an elliptic entropy of uncertain random variables and its application in the area of portfolio selection. We first define the elliptic entropy to characterize the uncertainty of uncertain random variables and give some mathematical properties of the elliptic entropy. Then we derive a computational formula to calculate the elliptic entropy of function of uncertain random variables. Furthermore, we use the elliptic entropy to characterize the risk of investment and establish a mean-entropy portfolio selection model, in which the future security returns are described by uncertain random variables. Based on the chance theory, the equivalent form of the mean–entropy model is derived. To show the performance of the mean–entropy portfolio selection model, several numerical experiments are presented. We also numerically compare the mean–entropy model with the mean–variance model, the equi-weighted portfolio model, and the most diversified portfolio model by using three kinds of diversification indices. Numerical results show that the mean-entropy model outperforms the mean–variance model in selecting diversified portfolios no matter of using which diversification index. Uncertainty theory (dpeaa)DE-He213 Elliptic entropy (dpeaa)DE-He213 Uncertain random variable (dpeaa)DE-He213 Chance theory (dpeaa)DE-He213 Mean-entropy model (dpeaa)DE-He213 Diversification index (dpeaa)DE-He213 Gao, Rong verfasserin aut Bian, Yuxiang verfasserin aut Di, Huafei verfasserin aut Enthalten in Soft Computing Springer-Verlag, 2003 25(2020), 3 vom: 03. Sept., Seite 1925-1939 (DE-627)SPR006469531 nnns volume:25 year:2020 number:3 day:03 month:09 pages:1925-1939 https://dx.doi.org/10.1007/s00500-020-05266-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 25 2020 3 03 09 1925-1939 |
allfieldsSound |
10.1007/s00500-020-05266-z doi (DE-627)SPR043173942 (DE-599)SPRs00500-020-05266-z-e (SPR)s00500-020-05266-z-e DE-627 ger DE-627 rakwb eng Chen, Lin verfasserin aut Elliptic entropy of uncertain random variables with application to portfolio selection 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract This paper investigates an elliptic entropy of uncertain random variables and its application in the area of portfolio selection. We first define the elliptic entropy to characterize the uncertainty of uncertain random variables and give some mathematical properties of the elliptic entropy. Then we derive a computational formula to calculate the elliptic entropy of function of uncertain random variables. Furthermore, we use the elliptic entropy to characterize the risk of investment and establish a mean-entropy portfolio selection model, in which the future security returns are described by uncertain random variables. Based on the chance theory, the equivalent form of the mean–entropy model is derived. To show the performance of the mean–entropy portfolio selection model, several numerical experiments are presented. We also numerically compare the mean–entropy model with the mean–variance model, the equi-weighted portfolio model, and the most diversified portfolio model by using three kinds of diversification indices. Numerical results show that the mean-entropy model outperforms the mean–variance model in selecting diversified portfolios no matter of using which diversification index. Uncertainty theory (dpeaa)DE-He213 Elliptic entropy (dpeaa)DE-He213 Uncertain random variable (dpeaa)DE-He213 Chance theory (dpeaa)DE-He213 Mean-entropy model (dpeaa)DE-He213 Diversification index (dpeaa)DE-He213 Gao, Rong verfasserin aut Bian, Yuxiang verfasserin aut Di, Huafei verfasserin aut Enthalten in Soft Computing Springer-Verlag, 2003 25(2020), 3 vom: 03. Sept., Seite 1925-1939 (DE-627)SPR006469531 nnns volume:25 year:2020 number:3 day:03 month:09 pages:1925-1939 https://dx.doi.org/10.1007/s00500-020-05266-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 25 2020 3 03 09 1925-1939 |
language |
English |
source |
Enthalten in Soft Computing 25(2020), 3 vom: 03. Sept., Seite 1925-1939 volume:25 year:2020 number:3 day:03 month:09 pages:1925-1939 |
sourceStr |
Enthalten in Soft Computing 25(2020), 3 vom: 03. Sept., Seite 1925-1939 volume:25 year:2020 number:3 day:03 month:09 pages:1925-1939 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Uncertainty theory Elliptic entropy Uncertain random variable Chance theory Mean-entropy model Diversification index |
isfreeaccess_bool |
false |
container_title |
Soft Computing |
authorswithroles_txt_mv |
Chen, Lin @@aut@@ Gao, Rong @@aut@@ Bian, Yuxiang @@aut@@ Di, Huafei @@aut@@ |
publishDateDaySort_date |
2020-09-03T00:00:00Z |
hierarchy_top_id |
SPR006469531 |
id |
SPR043173942 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR043173942</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210215092902.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210215s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00500-020-05266-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR043173942</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)SPRs00500-020-05266-z-e</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00500-020-05266-z-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Lin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Elliptic entropy of uncertain random variables with application to portfolio selection</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper investigates an elliptic entropy of uncertain random variables and its application in the area of portfolio selection. We first define the elliptic entropy to characterize the uncertainty of uncertain random variables and give some mathematical properties of the elliptic entropy. Then we derive a computational formula to calculate the elliptic entropy of function of uncertain random variables. Furthermore, we use the elliptic entropy to characterize the risk of investment and establish a mean-entropy portfolio selection model, in which the future security returns are described by uncertain random variables. Based on the chance theory, the equivalent form of the mean–entropy model is derived. To show the performance of the mean–entropy portfolio selection model, several numerical experiments are presented. We also numerically compare the mean–entropy model with the mean–variance model, the equi-weighted portfolio model, and the most diversified portfolio model by using three kinds of diversification indices. Numerical results show that the mean-entropy model outperforms the mean–variance model in selecting diversified portfolios no matter of using which diversification index.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Uncertainty theory</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Elliptic entropy</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Uncertain random variable</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chance theory</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mean-entropy model</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Diversification index</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Rong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bian, Yuxiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Di, Huafei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Soft Computing</subfield><subfield code="d">Springer-Verlag, 2003</subfield><subfield code="g">25(2020), 3 vom: 03. Sept., Seite 1925-1939</subfield><subfield code="w">(DE-627)SPR006469531</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:3</subfield><subfield code="g">day:03</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:1925-1939</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00500-020-05266-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2020</subfield><subfield code="e">3</subfield><subfield code="b">03</subfield><subfield code="c">09</subfield><subfield code="h">1925-1939</subfield></datafield></record></collection>
|
author |
Chen, Lin |
spellingShingle |
Chen, Lin misc Uncertainty theory misc Elliptic entropy misc Uncertain random variable misc Chance theory misc Mean-entropy model misc Diversification index Elliptic entropy of uncertain random variables with application to portfolio selection |
authorStr |
Chen, Lin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)SPR006469531 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
Elliptic entropy of uncertain random variables with application to portfolio selection Uncertainty theory (dpeaa)DE-He213 Elliptic entropy (dpeaa)DE-He213 Uncertain random variable (dpeaa)DE-He213 Chance theory (dpeaa)DE-He213 Mean-entropy model (dpeaa)DE-He213 Diversification index (dpeaa)DE-He213 |
topic |
misc Uncertainty theory misc Elliptic entropy misc Uncertain random variable misc Chance theory misc Mean-entropy model misc Diversification index |
topic_unstemmed |
misc Uncertainty theory misc Elliptic entropy misc Uncertain random variable misc Chance theory misc Mean-entropy model misc Diversification index |
topic_browse |
misc Uncertainty theory misc Elliptic entropy misc Uncertain random variable misc Chance theory misc Mean-entropy model misc Diversification index |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Soft Computing |
hierarchy_parent_id |
SPR006469531 |
hierarchy_top_title |
Soft Computing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)SPR006469531 |
title |
Elliptic entropy of uncertain random variables with application to portfolio selection |
ctrlnum |
(DE-627)SPR043173942 (DE-599)SPRs00500-020-05266-z-e (SPR)s00500-020-05266-z-e |
title_full |
Elliptic entropy of uncertain random variables with application to portfolio selection |
author_sort |
Chen, Lin |
journal |
Soft Computing |
journalStr |
Soft Computing |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
1925 |
author_browse |
Chen, Lin Gao, Rong Bian, Yuxiang Di, Huafei |
container_volume |
25 |
format_se |
Elektronische Aufsätze |
author-letter |
Chen, Lin |
doi_str_mv |
10.1007/s00500-020-05266-z |
author2-role |
verfasserin |
title_sort |
elliptic entropy of uncertain random variables with application to portfolio selection |
title_auth |
Elliptic entropy of uncertain random variables with application to portfolio selection |
abstract |
Abstract This paper investigates an elliptic entropy of uncertain random variables and its application in the area of portfolio selection. We first define the elliptic entropy to characterize the uncertainty of uncertain random variables and give some mathematical properties of the elliptic entropy. Then we derive a computational formula to calculate the elliptic entropy of function of uncertain random variables. Furthermore, we use the elliptic entropy to characterize the risk of investment and establish a mean-entropy portfolio selection model, in which the future security returns are described by uncertain random variables. Based on the chance theory, the equivalent form of the mean–entropy model is derived. To show the performance of the mean–entropy portfolio selection model, several numerical experiments are presented. We also numerically compare the mean–entropy model with the mean–variance model, the equi-weighted portfolio model, and the most diversified portfolio model by using three kinds of diversification indices. Numerical results show that the mean-entropy model outperforms the mean–variance model in selecting diversified portfolios no matter of using which diversification index. |
abstractGer |
Abstract This paper investigates an elliptic entropy of uncertain random variables and its application in the area of portfolio selection. We first define the elliptic entropy to characterize the uncertainty of uncertain random variables and give some mathematical properties of the elliptic entropy. Then we derive a computational formula to calculate the elliptic entropy of function of uncertain random variables. Furthermore, we use the elliptic entropy to characterize the risk of investment and establish a mean-entropy portfolio selection model, in which the future security returns are described by uncertain random variables. Based on the chance theory, the equivalent form of the mean–entropy model is derived. To show the performance of the mean–entropy portfolio selection model, several numerical experiments are presented. We also numerically compare the mean–entropy model with the mean–variance model, the equi-weighted portfolio model, and the most diversified portfolio model by using three kinds of diversification indices. Numerical results show that the mean-entropy model outperforms the mean–variance model in selecting diversified portfolios no matter of using which diversification index. |
abstract_unstemmed |
Abstract This paper investigates an elliptic entropy of uncertain random variables and its application in the area of portfolio selection. We first define the elliptic entropy to characterize the uncertainty of uncertain random variables and give some mathematical properties of the elliptic entropy. Then we derive a computational formula to calculate the elliptic entropy of function of uncertain random variables. Furthermore, we use the elliptic entropy to characterize the risk of investment and establish a mean-entropy portfolio selection model, in which the future security returns are described by uncertain random variables. Based on the chance theory, the equivalent form of the mean–entropy model is derived. To show the performance of the mean–entropy portfolio selection model, several numerical experiments are presented. We also numerically compare the mean–entropy model with the mean–variance model, the equi-weighted portfolio model, and the most diversified portfolio model by using three kinds of diversification indices. Numerical results show that the mean-entropy model outperforms the mean–variance model in selecting diversified portfolios no matter of using which diversification index. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER |
container_issue |
3 |
title_short |
Elliptic entropy of uncertain random variables with application to portfolio selection |
url |
https://dx.doi.org/10.1007/s00500-020-05266-z |
remote_bool |
true |
author2 |
Gao, Rong Bian, Yuxiang Di, Huafei |
author2Str |
Gao, Rong Bian, Yuxiang Di, Huafei |
ppnlink |
SPR006469531 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00500-020-05266-z |
up_date |
2024-07-03T17:00:49.719Z |
_version_ |
1803578035112247296 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR043173942</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210215092902.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210215s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00500-020-05266-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR043173942</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)SPRs00500-020-05266-z-e</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00500-020-05266-z-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Lin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Elliptic entropy of uncertain random variables with application to portfolio selection</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper investigates an elliptic entropy of uncertain random variables and its application in the area of portfolio selection. We first define the elliptic entropy to characterize the uncertainty of uncertain random variables and give some mathematical properties of the elliptic entropy. Then we derive a computational formula to calculate the elliptic entropy of function of uncertain random variables. Furthermore, we use the elliptic entropy to characterize the risk of investment and establish a mean-entropy portfolio selection model, in which the future security returns are described by uncertain random variables. Based on the chance theory, the equivalent form of the mean–entropy model is derived. To show the performance of the mean–entropy portfolio selection model, several numerical experiments are presented. We also numerically compare the mean–entropy model with the mean–variance model, the equi-weighted portfolio model, and the most diversified portfolio model by using three kinds of diversification indices. Numerical results show that the mean-entropy model outperforms the mean–variance model in selecting diversified portfolios no matter of using which diversification index.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Uncertainty theory</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Elliptic entropy</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Uncertain random variable</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chance theory</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mean-entropy model</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Diversification index</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Rong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bian, Yuxiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Di, Huafei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Soft Computing</subfield><subfield code="d">Springer-Verlag, 2003</subfield><subfield code="g">25(2020), 3 vom: 03. Sept., Seite 1925-1939</subfield><subfield code="w">(DE-627)SPR006469531</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:3</subfield><subfield code="g">day:03</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:1925-1939</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00500-020-05266-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2020</subfield><subfield code="e">3</subfield><subfield code="b">03</subfield><subfield code="c">09</subfield><subfield code="h">1925-1939</subfield></datafield></record></collection>
|
score |
7.4019136 |