Interlaced Sampling Corrupted by Noise
Abstract The problem addressed in this paper is the reconstruction of a continuous-time stationary process from noisy interlaced sampled observations. This work extends the one of Yen who gave an exact reconstruction of a process or a function with spectral support within (−Kπ, Kπ) subjected to inte...
Ausführliche Beschreibung
Autor*in: |
Lacaze, B. [verfasserIn] Mailhes, C. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2002 |
---|
Schlagwörter: |
---|
Anmerkung: |
© SIP 2002 |
---|
Übergeordnetes Werk: |
Enthalten in: Sampling theory, signal processing, and data analysis - [Cham] : Birkhäuser, 2021, 1(2002), 3 vom: 01. Sept., Seite 185-205 |
---|---|
Übergeordnetes Werk: |
volume:1 ; year:2002 ; number:3 ; day:01 ; month:09 ; pages:185-205 |
Links: |
---|
DOI / URN: |
10.1007/BF03549378 |
---|
Katalog-ID: |
SPR043387136 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR043387136 | ||
003 | DE-627 | ||
005 | 20220112055039.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210303s2002 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/BF03549378 |2 doi | |
035 | |a (DE-627)SPR043387136 | ||
035 | |a (SPR)BF03549378-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |a 004 |q ASE |
082 | 0 | 4 | |a 510 |q ASE |
100 | 1 | |a Lacaze, B. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Interlaced Sampling Corrupted by Noise |
264 | 1 | |c 2002 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © SIP 2002 | ||
520 | |a Abstract The problem addressed in this paper is the reconstruction of a continuous-time stationary process from noisy interlaced sampled observations. This work extends the one of Yen who gave an exact reconstruction of a process or a function with spectral support within (−Kπ, Kπ) subjected to interlaced sampling i.e. when sampling times are such that tkn = n + ak, n ∈ Z, k = 1, …, K. In this paper, we derive the linear mean square estimator (LMSE) of a continuous-time process based on the observations of noisy interlaced samples. Two different cases are studied. The first one deals with noise samples coming from a unique stationary process. In the second one, K uncorrelated noises with different spectra are considered. In both cases, the specific sampling leads to technics linked to cyclostationarity properties. | ||
650 | 4 | |a interlaced sampling |7 (dpeaa)DE-He213 | |
650 | 4 | |a Yen’s formula |7 (dpeaa)DE-He213 | |
650 | 4 | |a cyclostationarity |7 (dpeaa)DE-He213 | |
650 | 4 | |a linear mean square reconstruction |7 (dpeaa)DE-He213 | |
700 | 1 | |a Mailhes, C. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Sampling theory, signal processing, and data analysis |d [Cham] : Birkhäuser, 2021 |g 1(2002), 3 vom: 01. Sept., Seite 185-205 |w (DE-627)1735681601 |w (DE-600)3041928-1 |x 2730-5724 |7 nnns |
773 | 1 | 8 | |g volume:1 |g year:2002 |g number:3 |g day:01 |g month:09 |g pages:185-205 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/BF03549378 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
951 | |a AR | ||
952 | |d 1 |j 2002 |e 3 |b 01 |c 09 |h 185-205 |
author_variant |
b l bl c m cm |
---|---|
matchkey_str |
article:27305724:2002----::nelcdapigorp |
hierarchy_sort_str |
2002 |
publishDate |
2002 |
allfields |
10.1007/BF03549378 doi (DE-627)SPR043387136 (SPR)BF03549378-e DE-627 ger DE-627 rakwb eng 510 004 ASE 510 ASE Lacaze, B. verfasserin aut Interlaced Sampling Corrupted by Noise 2002 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © SIP 2002 Abstract The problem addressed in this paper is the reconstruction of a continuous-time stationary process from noisy interlaced sampled observations. This work extends the one of Yen who gave an exact reconstruction of a process or a function with spectral support within (−Kπ, Kπ) subjected to interlaced sampling i.e. when sampling times are such that tkn = n + ak, n ∈ Z, k = 1, …, K. In this paper, we derive the linear mean square estimator (LMSE) of a continuous-time process based on the observations of noisy interlaced samples. Two different cases are studied. The first one deals with noise samples coming from a unique stationary process. In the second one, K uncorrelated noises with different spectra are considered. In both cases, the specific sampling leads to technics linked to cyclostationarity properties. interlaced sampling (dpeaa)DE-He213 Yen’s formula (dpeaa)DE-He213 cyclostationarity (dpeaa)DE-He213 linear mean square reconstruction (dpeaa)DE-He213 Mailhes, C. verfasserin aut Enthalten in Sampling theory, signal processing, and data analysis [Cham] : Birkhäuser, 2021 1(2002), 3 vom: 01. Sept., Seite 185-205 (DE-627)1735681601 (DE-600)3041928-1 2730-5724 nnns volume:1 year:2002 number:3 day:01 month:09 pages:185-205 https://dx.doi.org/10.1007/BF03549378 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 1 2002 3 01 09 185-205 |
spelling |
10.1007/BF03549378 doi (DE-627)SPR043387136 (SPR)BF03549378-e DE-627 ger DE-627 rakwb eng 510 004 ASE 510 ASE Lacaze, B. verfasserin aut Interlaced Sampling Corrupted by Noise 2002 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © SIP 2002 Abstract The problem addressed in this paper is the reconstruction of a continuous-time stationary process from noisy interlaced sampled observations. This work extends the one of Yen who gave an exact reconstruction of a process or a function with spectral support within (−Kπ, Kπ) subjected to interlaced sampling i.e. when sampling times are such that tkn = n + ak, n ∈ Z, k = 1, …, K. In this paper, we derive the linear mean square estimator (LMSE) of a continuous-time process based on the observations of noisy interlaced samples. Two different cases are studied. The first one deals with noise samples coming from a unique stationary process. In the second one, K uncorrelated noises with different spectra are considered. In both cases, the specific sampling leads to technics linked to cyclostationarity properties. interlaced sampling (dpeaa)DE-He213 Yen’s formula (dpeaa)DE-He213 cyclostationarity (dpeaa)DE-He213 linear mean square reconstruction (dpeaa)DE-He213 Mailhes, C. verfasserin aut Enthalten in Sampling theory, signal processing, and data analysis [Cham] : Birkhäuser, 2021 1(2002), 3 vom: 01. Sept., Seite 185-205 (DE-627)1735681601 (DE-600)3041928-1 2730-5724 nnns volume:1 year:2002 number:3 day:01 month:09 pages:185-205 https://dx.doi.org/10.1007/BF03549378 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 1 2002 3 01 09 185-205 |
allfields_unstemmed |
10.1007/BF03549378 doi (DE-627)SPR043387136 (SPR)BF03549378-e DE-627 ger DE-627 rakwb eng 510 004 ASE 510 ASE Lacaze, B. verfasserin aut Interlaced Sampling Corrupted by Noise 2002 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © SIP 2002 Abstract The problem addressed in this paper is the reconstruction of a continuous-time stationary process from noisy interlaced sampled observations. This work extends the one of Yen who gave an exact reconstruction of a process or a function with spectral support within (−Kπ, Kπ) subjected to interlaced sampling i.e. when sampling times are such that tkn = n + ak, n ∈ Z, k = 1, …, K. In this paper, we derive the linear mean square estimator (LMSE) of a continuous-time process based on the observations of noisy interlaced samples. Two different cases are studied. The first one deals with noise samples coming from a unique stationary process. In the second one, K uncorrelated noises with different spectra are considered. In both cases, the specific sampling leads to technics linked to cyclostationarity properties. interlaced sampling (dpeaa)DE-He213 Yen’s formula (dpeaa)DE-He213 cyclostationarity (dpeaa)DE-He213 linear mean square reconstruction (dpeaa)DE-He213 Mailhes, C. verfasserin aut Enthalten in Sampling theory, signal processing, and data analysis [Cham] : Birkhäuser, 2021 1(2002), 3 vom: 01. Sept., Seite 185-205 (DE-627)1735681601 (DE-600)3041928-1 2730-5724 nnns volume:1 year:2002 number:3 day:01 month:09 pages:185-205 https://dx.doi.org/10.1007/BF03549378 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 1 2002 3 01 09 185-205 |
allfieldsGer |
10.1007/BF03549378 doi (DE-627)SPR043387136 (SPR)BF03549378-e DE-627 ger DE-627 rakwb eng 510 004 ASE 510 ASE Lacaze, B. verfasserin aut Interlaced Sampling Corrupted by Noise 2002 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © SIP 2002 Abstract The problem addressed in this paper is the reconstruction of a continuous-time stationary process from noisy interlaced sampled observations. This work extends the one of Yen who gave an exact reconstruction of a process or a function with spectral support within (−Kπ, Kπ) subjected to interlaced sampling i.e. when sampling times are such that tkn = n + ak, n ∈ Z, k = 1, …, K. In this paper, we derive the linear mean square estimator (LMSE) of a continuous-time process based on the observations of noisy interlaced samples. Two different cases are studied. The first one deals with noise samples coming from a unique stationary process. In the second one, K uncorrelated noises with different spectra are considered. In both cases, the specific sampling leads to technics linked to cyclostationarity properties. interlaced sampling (dpeaa)DE-He213 Yen’s formula (dpeaa)DE-He213 cyclostationarity (dpeaa)DE-He213 linear mean square reconstruction (dpeaa)DE-He213 Mailhes, C. verfasserin aut Enthalten in Sampling theory, signal processing, and data analysis [Cham] : Birkhäuser, 2021 1(2002), 3 vom: 01. Sept., Seite 185-205 (DE-627)1735681601 (DE-600)3041928-1 2730-5724 nnns volume:1 year:2002 number:3 day:01 month:09 pages:185-205 https://dx.doi.org/10.1007/BF03549378 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 1 2002 3 01 09 185-205 |
allfieldsSound |
10.1007/BF03549378 doi (DE-627)SPR043387136 (SPR)BF03549378-e DE-627 ger DE-627 rakwb eng 510 004 ASE 510 ASE Lacaze, B. verfasserin aut Interlaced Sampling Corrupted by Noise 2002 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © SIP 2002 Abstract The problem addressed in this paper is the reconstruction of a continuous-time stationary process from noisy interlaced sampled observations. This work extends the one of Yen who gave an exact reconstruction of a process or a function with spectral support within (−Kπ, Kπ) subjected to interlaced sampling i.e. when sampling times are such that tkn = n + ak, n ∈ Z, k = 1, …, K. In this paper, we derive the linear mean square estimator (LMSE) of a continuous-time process based on the observations of noisy interlaced samples. Two different cases are studied. The first one deals with noise samples coming from a unique stationary process. In the second one, K uncorrelated noises with different spectra are considered. In both cases, the specific sampling leads to technics linked to cyclostationarity properties. interlaced sampling (dpeaa)DE-He213 Yen’s formula (dpeaa)DE-He213 cyclostationarity (dpeaa)DE-He213 linear mean square reconstruction (dpeaa)DE-He213 Mailhes, C. verfasserin aut Enthalten in Sampling theory, signal processing, and data analysis [Cham] : Birkhäuser, 2021 1(2002), 3 vom: 01. Sept., Seite 185-205 (DE-627)1735681601 (DE-600)3041928-1 2730-5724 nnns volume:1 year:2002 number:3 day:01 month:09 pages:185-205 https://dx.doi.org/10.1007/BF03549378 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 1 2002 3 01 09 185-205 |
language |
English |
source |
Enthalten in Sampling theory, signal processing, and data analysis 1(2002), 3 vom: 01. Sept., Seite 185-205 volume:1 year:2002 number:3 day:01 month:09 pages:185-205 |
sourceStr |
Enthalten in Sampling theory, signal processing, and data analysis 1(2002), 3 vom: 01. Sept., Seite 185-205 volume:1 year:2002 number:3 day:01 month:09 pages:185-205 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
interlaced sampling Yen’s formula cyclostationarity linear mean square reconstruction |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Sampling theory, signal processing, and data analysis |
authorswithroles_txt_mv |
Lacaze, B. @@aut@@ Mailhes, C. @@aut@@ |
publishDateDaySort_date |
2002-09-01T00:00:00Z |
hierarchy_top_id |
1735681601 |
dewey-sort |
3510 |
id |
SPR043387136 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR043387136</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220112055039.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210303s2002 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF03549378</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR043387136</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)BF03549378-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">004</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lacaze, B.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Interlaced Sampling Corrupted by Noise</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2002</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© SIP 2002</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The problem addressed in this paper is the reconstruction of a continuous-time stationary process from noisy interlaced sampled observations. This work extends the one of Yen who gave an exact reconstruction of a process or a function with spectral support within (−Kπ, Kπ) subjected to interlaced sampling i.e. when sampling times are such that tkn = n + ak, n ∈ Z, k = 1, …, K. In this paper, we derive the linear mean square estimator (LMSE) of a continuous-time process based on the observations of noisy interlaced samples. Two different cases are studied. The first one deals with noise samples coming from a unique stationary process. In the second one, K uncorrelated noises with different spectra are considered. In both cases, the specific sampling leads to technics linked to cyclostationarity properties.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">interlaced sampling</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Yen’s formula</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cyclostationarity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">linear mean square reconstruction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mailhes, C.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Sampling theory, signal processing, and data analysis</subfield><subfield code="d">[Cham] : Birkhäuser, 2021</subfield><subfield code="g">1(2002), 3 vom: 01. Sept., Seite 185-205</subfield><subfield code="w">(DE-627)1735681601</subfield><subfield code="w">(DE-600)3041928-1</subfield><subfield code="x">2730-5724</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:1</subfield><subfield code="g">year:2002</subfield><subfield code="g">number:3</subfield><subfield code="g">day:01</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:185-205</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/BF03549378</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">1</subfield><subfield code="j">2002</subfield><subfield code="e">3</subfield><subfield code="b">01</subfield><subfield code="c">09</subfield><subfield code="h">185-205</subfield></datafield></record></collection>
|
author |
Lacaze, B. |
spellingShingle |
Lacaze, B. ddc 510 misc interlaced sampling misc Yen’s formula misc cyclostationarity misc linear mean square reconstruction Interlaced Sampling Corrupted by Noise |
authorStr |
Lacaze, B. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1735681601 |
format |
electronic Article |
dewey-ones |
510 - Mathematics 004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2730-5724 |
topic_title |
510 004 ASE 510 ASE Interlaced Sampling Corrupted by Noise interlaced sampling (dpeaa)DE-He213 Yen’s formula (dpeaa)DE-He213 cyclostationarity (dpeaa)DE-He213 linear mean square reconstruction (dpeaa)DE-He213 |
topic |
ddc 510 misc interlaced sampling misc Yen’s formula misc cyclostationarity misc linear mean square reconstruction |
topic_unstemmed |
ddc 510 misc interlaced sampling misc Yen’s formula misc cyclostationarity misc linear mean square reconstruction |
topic_browse |
ddc 510 misc interlaced sampling misc Yen’s formula misc cyclostationarity misc linear mean square reconstruction |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Sampling theory, signal processing, and data analysis |
hierarchy_parent_id |
1735681601 |
dewey-tens |
510 - Mathematics 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Sampling theory, signal processing, and data analysis |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)1735681601 (DE-600)3041928-1 |
title |
Interlaced Sampling Corrupted by Noise |
ctrlnum |
(DE-627)SPR043387136 (SPR)BF03549378-e |
title_full |
Interlaced Sampling Corrupted by Noise |
author_sort |
Lacaze, B. |
journal |
Sampling theory, signal processing, and data analysis |
journalStr |
Sampling theory, signal processing, and data analysis |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2002 |
contenttype_str_mv |
txt |
container_start_page |
185 |
author_browse |
Lacaze, B. Mailhes, C. |
container_volume |
1 |
class |
510 004 ASE 510 ASE |
format_se |
Elektronische Aufsätze |
author-letter |
Lacaze, B. |
doi_str_mv |
10.1007/BF03549378 |
dewey-full |
510 004 |
author2-role |
verfasserin |
title_sort |
interlaced sampling corrupted by noise |
title_auth |
Interlaced Sampling Corrupted by Noise |
abstract |
Abstract The problem addressed in this paper is the reconstruction of a continuous-time stationary process from noisy interlaced sampled observations. This work extends the one of Yen who gave an exact reconstruction of a process or a function with spectral support within (−Kπ, Kπ) subjected to interlaced sampling i.e. when sampling times are such that tkn = n + ak, n ∈ Z, k = 1, …, K. In this paper, we derive the linear mean square estimator (LMSE) of a continuous-time process based on the observations of noisy interlaced samples. Two different cases are studied. The first one deals with noise samples coming from a unique stationary process. In the second one, K uncorrelated noises with different spectra are considered. In both cases, the specific sampling leads to technics linked to cyclostationarity properties. © SIP 2002 |
abstractGer |
Abstract The problem addressed in this paper is the reconstruction of a continuous-time stationary process from noisy interlaced sampled observations. This work extends the one of Yen who gave an exact reconstruction of a process or a function with spectral support within (−Kπ, Kπ) subjected to interlaced sampling i.e. when sampling times are such that tkn = n + ak, n ∈ Z, k = 1, …, K. In this paper, we derive the linear mean square estimator (LMSE) of a continuous-time process based on the observations of noisy interlaced samples. Two different cases are studied. The first one deals with noise samples coming from a unique stationary process. In the second one, K uncorrelated noises with different spectra are considered. In both cases, the specific sampling leads to technics linked to cyclostationarity properties. © SIP 2002 |
abstract_unstemmed |
Abstract The problem addressed in this paper is the reconstruction of a continuous-time stationary process from noisy interlaced sampled observations. This work extends the one of Yen who gave an exact reconstruction of a process or a function with spectral support within (−Kπ, Kπ) subjected to interlaced sampling i.e. when sampling times are such that tkn = n + ak, n ∈ Z, k = 1, …, K. In this paper, we derive the linear mean square estimator (LMSE) of a continuous-time process based on the observations of noisy interlaced samples. Two different cases are studied. The first one deals with noise samples coming from a unique stationary process. In the second one, K uncorrelated noises with different spectra are considered. In both cases, the specific sampling leads to technics linked to cyclostationarity properties. © SIP 2002 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER |
container_issue |
3 |
title_short |
Interlaced Sampling Corrupted by Noise |
url |
https://dx.doi.org/10.1007/BF03549378 |
remote_bool |
true |
author2 |
Mailhes, C. |
author2Str |
Mailhes, C. |
ppnlink |
1735681601 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF03549378 |
up_date |
2024-07-03T18:20:50.457Z |
_version_ |
1803583069050896384 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR043387136</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220112055039.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210303s2002 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF03549378</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR043387136</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)BF03549378-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">004</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lacaze, B.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Interlaced Sampling Corrupted by Noise</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2002</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© SIP 2002</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The problem addressed in this paper is the reconstruction of a continuous-time stationary process from noisy interlaced sampled observations. This work extends the one of Yen who gave an exact reconstruction of a process or a function with spectral support within (−Kπ, Kπ) subjected to interlaced sampling i.e. when sampling times are such that tkn = n + ak, n ∈ Z, k = 1, …, K. In this paper, we derive the linear mean square estimator (LMSE) of a continuous-time process based on the observations of noisy interlaced samples. Two different cases are studied. The first one deals with noise samples coming from a unique stationary process. In the second one, K uncorrelated noises with different spectra are considered. In both cases, the specific sampling leads to technics linked to cyclostationarity properties.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">interlaced sampling</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Yen’s formula</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cyclostationarity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">linear mean square reconstruction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mailhes, C.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Sampling theory, signal processing, and data analysis</subfield><subfield code="d">[Cham] : Birkhäuser, 2021</subfield><subfield code="g">1(2002), 3 vom: 01. Sept., Seite 185-205</subfield><subfield code="w">(DE-627)1735681601</subfield><subfield code="w">(DE-600)3041928-1</subfield><subfield code="x">2730-5724</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:1</subfield><subfield code="g">year:2002</subfield><subfield code="g">number:3</subfield><subfield code="g">day:01</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:185-205</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/BF03549378</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">1</subfield><subfield code="j">2002</subfield><subfield code="e">3</subfield><subfield code="b">01</subfield><subfield code="c">09</subfield><subfield code="h">185-205</subfield></datafield></record></collection>
|
score |
7.401229 |