Research Progress of Thermosensitive Hydrogel in Tumor Therapeutic
Abstract Compared with traditional tumor therapy strategies, hydrogel as a drug reservoir system can realize on-demand drug release and deep tissue penetration ability. It also exhibits great tumor-site retention to enhance the permeability and retention effect of tumor treatment. This can significa...
Ausführliche Beschreibung
Autor*in: |
Ma, Nian [verfasserIn] Yan, Zhihui [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Nanoscale research letters - New York, NY [u.a.] : Springer, 2006, 16(2021), 1 vom: 04. März |
---|---|
Übergeordnetes Werk: |
volume:16 ; year:2021 ; number:1 ; day:04 ; month:03 |
Links: |
---|
DOI / URN: |
10.1186/s11671-021-03502-5 |
---|
Katalog-ID: |
SPR043402828 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR043402828 | ||
003 | DE-627 | ||
005 | 20230519225657.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210305s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s11671-021-03502-5 |2 doi | |
035 | |a (DE-627)SPR043402828 | ||
035 | |a (DE-599)SPRs11671-021-03502-5-e | ||
035 | |a (SPR)s11671-021-03502-5-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 600 |q ASE |
100 | 1 | |a Ma, Nian |e verfasserin |4 aut | |
245 | 1 | 0 | |a Research Progress of Thermosensitive Hydrogel in Tumor Therapeutic |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Compared with traditional tumor therapy strategies, hydrogel as a drug reservoir system can realize on-demand drug release and deep tissue penetration ability. It also exhibits great tumor-site retention to enhance the permeability and retention effect of tumor treatment. This can significantly overcome the drug's resistance and severe side effects. Inorganic/organic composite hydrogel has attracted wide attention due to its combined effects, enhancing therapeutic effects against various kinds of tumors. In situ injectable hydrogel can securely restrict the drugs in the lesion sites without leakage and guarantee better biosafety. Moreover, hydrogel possesses interconnected macropores which can provide enough space for nutrient transport, cellular activity, and cell–cell interactions. Thermal therapy is an effective strategy for tumor therapy due to its minimal invasiveness and high selectivity. Because the location temperature can be precisely controlled and helps avoid the risks of destroying the body's immune system and ablate normal cells, thermal therapy exhibits significant treatment outcomes. Nonetheless, when the cellular temperature reaches approximately 43 °C, it causes long-term cell inactivation. Based on these merits, thermosensitive hydrogel formulation with adaptive functions shows excellent efficacy, unlimited tissue penetration capacity, and few deleterious side effects. Furthermore, the thermosensitive hydrogel has unique physical properties under the external stimuli, which is the ideal drug delivery system for on-demand release in tumor treatment. This article will review the state of the thermosensitive hydrogel in clinic application for cancer therapy. | ||
650 | 4 | |a Thermosensitive |7 (dpeaa)DE-He213 | |
650 | 4 | |a Hydrogel |7 (dpeaa)DE-He213 | |
650 | 4 | |a Tumor |7 (dpeaa)DE-He213 | |
650 | 4 | |a Thermotherapy |7 (dpeaa)DE-He213 | |
700 | 1 | |a Yan, Zhihui |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Nanoscale research letters |d New York, NY [u.a.] : Springer, 2006 |g 16(2021), 1 vom: 04. März |w (DE-627)518632474 |w (DE-600)2253244-4 |x 1556-276X |7 nnns |
773 | 1 | 8 | |g volume:16 |g year:2021 |g number:1 |g day:04 |g month:03 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s11671-021-03502-5 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 16 |j 2021 |e 1 |b 04 |c 03 |
author_variant |
n m nm z y zy |
---|---|
matchkey_str |
article:1556276X:2021----::eerhrgesfhroestvhdoei |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1186/s11671-021-03502-5 doi (DE-627)SPR043402828 (DE-599)SPRs11671-021-03502-5-e (SPR)s11671-021-03502-5-e DE-627 ger DE-627 rakwb eng 600 ASE Ma, Nian verfasserin aut Research Progress of Thermosensitive Hydrogel in Tumor Therapeutic 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Compared with traditional tumor therapy strategies, hydrogel as a drug reservoir system can realize on-demand drug release and deep tissue penetration ability. It also exhibits great tumor-site retention to enhance the permeability and retention effect of tumor treatment. This can significantly overcome the drug's resistance and severe side effects. Inorganic/organic composite hydrogel has attracted wide attention due to its combined effects, enhancing therapeutic effects against various kinds of tumors. In situ injectable hydrogel can securely restrict the drugs in the lesion sites without leakage and guarantee better biosafety. Moreover, hydrogel possesses interconnected macropores which can provide enough space for nutrient transport, cellular activity, and cell–cell interactions. Thermal therapy is an effective strategy for tumor therapy due to its minimal invasiveness and high selectivity. Because the location temperature can be precisely controlled and helps avoid the risks of destroying the body's immune system and ablate normal cells, thermal therapy exhibits significant treatment outcomes. Nonetheless, when the cellular temperature reaches approximately 43 °C, it causes long-term cell inactivation. Based on these merits, thermosensitive hydrogel formulation with adaptive functions shows excellent efficacy, unlimited tissue penetration capacity, and few deleterious side effects. Furthermore, the thermosensitive hydrogel has unique physical properties under the external stimuli, which is the ideal drug delivery system for on-demand release in tumor treatment. This article will review the state of the thermosensitive hydrogel in clinic application for cancer therapy. Thermosensitive (dpeaa)DE-He213 Hydrogel (dpeaa)DE-He213 Tumor (dpeaa)DE-He213 Thermotherapy (dpeaa)DE-He213 Yan, Zhihui verfasserin aut Enthalten in Nanoscale research letters New York, NY [u.a.] : Springer, 2006 16(2021), 1 vom: 04. März (DE-627)518632474 (DE-600)2253244-4 1556-276X nnns volume:16 year:2021 number:1 day:04 month:03 https://dx.doi.org/10.1186/s11671-021-03502-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2021 1 04 03 |
spelling |
10.1186/s11671-021-03502-5 doi (DE-627)SPR043402828 (DE-599)SPRs11671-021-03502-5-e (SPR)s11671-021-03502-5-e DE-627 ger DE-627 rakwb eng 600 ASE Ma, Nian verfasserin aut Research Progress of Thermosensitive Hydrogel in Tumor Therapeutic 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Compared with traditional tumor therapy strategies, hydrogel as a drug reservoir system can realize on-demand drug release and deep tissue penetration ability. It also exhibits great tumor-site retention to enhance the permeability and retention effect of tumor treatment. This can significantly overcome the drug's resistance and severe side effects. Inorganic/organic composite hydrogel has attracted wide attention due to its combined effects, enhancing therapeutic effects against various kinds of tumors. In situ injectable hydrogel can securely restrict the drugs in the lesion sites without leakage and guarantee better biosafety. Moreover, hydrogel possesses interconnected macropores which can provide enough space for nutrient transport, cellular activity, and cell–cell interactions. Thermal therapy is an effective strategy for tumor therapy due to its minimal invasiveness and high selectivity. Because the location temperature can be precisely controlled and helps avoid the risks of destroying the body's immune system and ablate normal cells, thermal therapy exhibits significant treatment outcomes. Nonetheless, when the cellular temperature reaches approximately 43 °C, it causes long-term cell inactivation. Based on these merits, thermosensitive hydrogel formulation with adaptive functions shows excellent efficacy, unlimited tissue penetration capacity, and few deleterious side effects. Furthermore, the thermosensitive hydrogel has unique physical properties under the external stimuli, which is the ideal drug delivery system for on-demand release in tumor treatment. This article will review the state of the thermosensitive hydrogel in clinic application for cancer therapy. Thermosensitive (dpeaa)DE-He213 Hydrogel (dpeaa)DE-He213 Tumor (dpeaa)DE-He213 Thermotherapy (dpeaa)DE-He213 Yan, Zhihui verfasserin aut Enthalten in Nanoscale research letters New York, NY [u.a.] : Springer, 2006 16(2021), 1 vom: 04. März (DE-627)518632474 (DE-600)2253244-4 1556-276X nnns volume:16 year:2021 number:1 day:04 month:03 https://dx.doi.org/10.1186/s11671-021-03502-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2021 1 04 03 |
allfields_unstemmed |
10.1186/s11671-021-03502-5 doi (DE-627)SPR043402828 (DE-599)SPRs11671-021-03502-5-e (SPR)s11671-021-03502-5-e DE-627 ger DE-627 rakwb eng 600 ASE Ma, Nian verfasserin aut Research Progress of Thermosensitive Hydrogel in Tumor Therapeutic 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Compared with traditional tumor therapy strategies, hydrogel as a drug reservoir system can realize on-demand drug release and deep tissue penetration ability. It also exhibits great tumor-site retention to enhance the permeability and retention effect of tumor treatment. This can significantly overcome the drug's resistance and severe side effects. Inorganic/organic composite hydrogel has attracted wide attention due to its combined effects, enhancing therapeutic effects against various kinds of tumors. In situ injectable hydrogel can securely restrict the drugs in the lesion sites without leakage and guarantee better biosafety. Moreover, hydrogel possesses interconnected macropores which can provide enough space for nutrient transport, cellular activity, and cell–cell interactions. Thermal therapy is an effective strategy for tumor therapy due to its minimal invasiveness and high selectivity. Because the location temperature can be precisely controlled and helps avoid the risks of destroying the body's immune system and ablate normal cells, thermal therapy exhibits significant treatment outcomes. Nonetheless, when the cellular temperature reaches approximately 43 °C, it causes long-term cell inactivation. Based on these merits, thermosensitive hydrogel formulation with adaptive functions shows excellent efficacy, unlimited tissue penetration capacity, and few deleterious side effects. Furthermore, the thermosensitive hydrogel has unique physical properties under the external stimuli, which is the ideal drug delivery system for on-demand release in tumor treatment. This article will review the state of the thermosensitive hydrogel in clinic application for cancer therapy. Thermosensitive (dpeaa)DE-He213 Hydrogel (dpeaa)DE-He213 Tumor (dpeaa)DE-He213 Thermotherapy (dpeaa)DE-He213 Yan, Zhihui verfasserin aut Enthalten in Nanoscale research letters New York, NY [u.a.] : Springer, 2006 16(2021), 1 vom: 04. März (DE-627)518632474 (DE-600)2253244-4 1556-276X nnns volume:16 year:2021 number:1 day:04 month:03 https://dx.doi.org/10.1186/s11671-021-03502-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2021 1 04 03 |
allfieldsGer |
10.1186/s11671-021-03502-5 doi (DE-627)SPR043402828 (DE-599)SPRs11671-021-03502-5-e (SPR)s11671-021-03502-5-e DE-627 ger DE-627 rakwb eng 600 ASE Ma, Nian verfasserin aut Research Progress of Thermosensitive Hydrogel in Tumor Therapeutic 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Compared with traditional tumor therapy strategies, hydrogel as a drug reservoir system can realize on-demand drug release and deep tissue penetration ability. It also exhibits great tumor-site retention to enhance the permeability and retention effect of tumor treatment. This can significantly overcome the drug's resistance and severe side effects. Inorganic/organic composite hydrogel has attracted wide attention due to its combined effects, enhancing therapeutic effects against various kinds of tumors. In situ injectable hydrogel can securely restrict the drugs in the lesion sites without leakage and guarantee better biosafety. Moreover, hydrogel possesses interconnected macropores which can provide enough space for nutrient transport, cellular activity, and cell–cell interactions. Thermal therapy is an effective strategy for tumor therapy due to its minimal invasiveness and high selectivity. Because the location temperature can be precisely controlled and helps avoid the risks of destroying the body's immune system and ablate normal cells, thermal therapy exhibits significant treatment outcomes. Nonetheless, when the cellular temperature reaches approximately 43 °C, it causes long-term cell inactivation. Based on these merits, thermosensitive hydrogel formulation with adaptive functions shows excellent efficacy, unlimited tissue penetration capacity, and few deleterious side effects. Furthermore, the thermosensitive hydrogel has unique physical properties under the external stimuli, which is the ideal drug delivery system for on-demand release in tumor treatment. This article will review the state of the thermosensitive hydrogel in clinic application for cancer therapy. Thermosensitive (dpeaa)DE-He213 Hydrogel (dpeaa)DE-He213 Tumor (dpeaa)DE-He213 Thermotherapy (dpeaa)DE-He213 Yan, Zhihui verfasserin aut Enthalten in Nanoscale research letters New York, NY [u.a.] : Springer, 2006 16(2021), 1 vom: 04. März (DE-627)518632474 (DE-600)2253244-4 1556-276X nnns volume:16 year:2021 number:1 day:04 month:03 https://dx.doi.org/10.1186/s11671-021-03502-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2021 1 04 03 |
allfieldsSound |
10.1186/s11671-021-03502-5 doi (DE-627)SPR043402828 (DE-599)SPRs11671-021-03502-5-e (SPR)s11671-021-03502-5-e DE-627 ger DE-627 rakwb eng 600 ASE Ma, Nian verfasserin aut Research Progress of Thermosensitive Hydrogel in Tumor Therapeutic 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Compared with traditional tumor therapy strategies, hydrogel as a drug reservoir system can realize on-demand drug release and deep tissue penetration ability. It also exhibits great tumor-site retention to enhance the permeability and retention effect of tumor treatment. This can significantly overcome the drug's resistance and severe side effects. Inorganic/organic composite hydrogel has attracted wide attention due to its combined effects, enhancing therapeutic effects against various kinds of tumors. In situ injectable hydrogel can securely restrict the drugs in the lesion sites without leakage and guarantee better biosafety. Moreover, hydrogel possesses interconnected macropores which can provide enough space for nutrient transport, cellular activity, and cell–cell interactions. Thermal therapy is an effective strategy for tumor therapy due to its minimal invasiveness and high selectivity. Because the location temperature can be precisely controlled and helps avoid the risks of destroying the body's immune system and ablate normal cells, thermal therapy exhibits significant treatment outcomes. Nonetheless, when the cellular temperature reaches approximately 43 °C, it causes long-term cell inactivation. Based on these merits, thermosensitive hydrogel formulation with adaptive functions shows excellent efficacy, unlimited tissue penetration capacity, and few deleterious side effects. Furthermore, the thermosensitive hydrogel has unique physical properties under the external stimuli, which is the ideal drug delivery system for on-demand release in tumor treatment. This article will review the state of the thermosensitive hydrogel in clinic application for cancer therapy. Thermosensitive (dpeaa)DE-He213 Hydrogel (dpeaa)DE-He213 Tumor (dpeaa)DE-He213 Thermotherapy (dpeaa)DE-He213 Yan, Zhihui verfasserin aut Enthalten in Nanoscale research letters New York, NY [u.a.] : Springer, 2006 16(2021), 1 vom: 04. März (DE-627)518632474 (DE-600)2253244-4 1556-276X nnns volume:16 year:2021 number:1 day:04 month:03 https://dx.doi.org/10.1186/s11671-021-03502-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2021 1 04 03 |
language |
English |
source |
Enthalten in Nanoscale research letters 16(2021), 1 vom: 04. März volume:16 year:2021 number:1 day:04 month:03 |
sourceStr |
Enthalten in Nanoscale research letters 16(2021), 1 vom: 04. März volume:16 year:2021 number:1 day:04 month:03 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Thermosensitive Hydrogel Tumor Thermotherapy |
dewey-raw |
600 |
isfreeaccess_bool |
true |
container_title |
Nanoscale research letters |
authorswithroles_txt_mv |
Ma, Nian @@aut@@ Yan, Zhihui @@aut@@ |
publishDateDaySort_date |
2021-03-04T00:00:00Z |
hierarchy_top_id |
518632474 |
dewey-sort |
3600 |
id |
SPR043402828 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR043402828</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519225657.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210305s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s11671-021-03502-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR043402828</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)SPRs11671-021-03502-5-e</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11671-021-03502-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ma, Nian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Research Progress of Thermosensitive Hydrogel in Tumor Therapeutic</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Compared with traditional tumor therapy strategies, hydrogel as a drug reservoir system can realize on-demand drug release and deep tissue penetration ability. It also exhibits great tumor-site retention to enhance the permeability and retention effect of tumor treatment. This can significantly overcome the drug's resistance and severe side effects. Inorganic/organic composite hydrogel has attracted wide attention due to its combined effects, enhancing therapeutic effects against various kinds of tumors. In situ injectable hydrogel can securely restrict the drugs in the lesion sites without leakage and guarantee better biosafety. Moreover, hydrogel possesses interconnected macropores which can provide enough space for nutrient transport, cellular activity, and cell–cell interactions. Thermal therapy is an effective strategy for tumor therapy due to its minimal invasiveness and high selectivity. Because the location temperature can be precisely controlled and helps avoid the risks of destroying the body's immune system and ablate normal cells, thermal therapy exhibits significant treatment outcomes. Nonetheless, when the cellular temperature reaches approximately 43 °C, it causes long-term cell inactivation. Based on these merits, thermosensitive hydrogel formulation with adaptive functions shows excellent efficacy, unlimited tissue penetration capacity, and few deleterious side effects. Furthermore, the thermosensitive hydrogel has unique physical properties under the external stimuli, which is the ideal drug delivery system for on-demand release in tumor treatment. This article will review the state of the thermosensitive hydrogel in clinic application for cancer therapy.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermosensitive</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrogel</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tumor</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermotherapy</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yan, Zhihui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nanoscale research letters</subfield><subfield code="d">New York, NY [u.a.] : Springer, 2006</subfield><subfield code="g">16(2021), 1 vom: 04. März</subfield><subfield code="w">(DE-627)518632474</subfield><subfield code="w">(DE-600)2253244-4</subfield><subfield code="x">1556-276X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">day:04</subfield><subfield code="g">month:03</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s11671-021-03502-5</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="b">04</subfield><subfield code="c">03</subfield></datafield></record></collection>
|
author |
Ma, Nian |
spellingShingle |
Ma, Nian ddc 600 misc Thermosensitive misc Hydrogel misc Tumor misc Thermotherapy Research Progress of Thermosensitive Hydrogel in Tumor Therapeutic |
authorStr |
Ma, Nian |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)518632474 |
format |
electronic Article |
dewey-ones |
600 - Technology |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1556-276X |
topic_title |
600 ASE Research Progress of Thermosensitive Hydrogel in Tumor Therapeutic Thermosensitive (dpeaa)DE-He213 Hydrogel (dpeaa)DE-He213 Tumor (dpeaa)DE-He213 Thermotherapy (dpeaa)DE-He213 |
topic |
ddc 600 misc Thermosensitive misc Hydrogel misc Tumor misc Thermotherapy |
topic_unstemmed |
ddc 600 misc Thermosensitive misc Hydrogel misc Tumor misc Thermotherapy |
topic_browse |
ddc 600 misc Thermosensitive misc Hydrogel misc Tumor misc Thermotherapy |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Nanoscale research letters |
hierarchy_parent_id |
518632474 |
dewey-tens |
600 - Technology |
hierarchy_top_title |
Nanoscale research letters |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)518632474 (DE-600)2253244-4 |
title |
Research Progress of Thermosensitive Hydrogel in Tumor Therapeutic |
ctrlnum |
(DE-627)SPR043402828 (DE-599)SPRs11671-021-03502-5-e (SPR)s11671-021-03502-5-e |
title_full |
Research Progress of Thermosensitive Hydrogel in Tumor Therapeutic |
author_sort |
Ma, Nian |
journal |
Nanoscale research letters |
journalStr |
Nanoscale research letters |
lang_code |
eng |
isOA_bool |
true |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Ma, Nian Yan, Zhihui |
container_volume |
16 |
class |
600 ASE |
format_se |
Elektronische Aufsätze |
author-letter |
Ma, Nian |
doi_str_mv |
10.1186/s11671-021-03502-5 |
dewey-full |
600 |
author2-role |
verfasserin |
title_sort |
research progress of thermosensitive hydrogel in tumor therapeutic |
title_auth |
Research Progress of Thermosensitive Hydrogel in Tumor Therapeutic |
abstract |
Abstract Compared with traditional tumor therapy strategies, hydrogel as a drug reservoir system can realize on-demand drug release and deep tissue penetration ability. It also exhibits great tumor-site retention to enhance the permeability and retention effect of tumor treatment. This can significantly overcome the drug's resistance and severe side effects. Inorganic/organic composite hydrogel has attracted wide attention due to its combined effects, enhancing therapeutic effects against various kinds of tumors. In situ injectable hydrogel can securely restrict the drugs in the lesion sites without leakage and guarantee better biosafety. Moreover, hydrogel possesses interconnected macropores which can provide enough space for nutrient transport, cellular activity, and cell–cell interactions. Thermal therapy is an effective strategy for tumor therapy due to its minimal invasiveness and high selectivity. Because the location temperature can be precisely controlled and helps avoid the risks of destroying the body's immune system and ablate normal cells, thermal therapy exhibits significant treatment outcomes. Nonetheless, when the cellular temperature reaches approximately 43 °C, it causes long-term cell inactivation. Based on these merits, thermosensitive hydrogel formulation with adaptive functions shows excellent efficacy, unlimited tissue penetration capacity, and few deleterious side effects. Furthermore, the thermosensitive hydrogel has unique physical properties under the external stimuli, which is the ideal drug delivery system for on-demand release in tumor treatment. This article will review the state of the thermosensitive hydrogel in clinic application for cancer therapy. |
abstractGer |
Abstract Compared with traditional tumor therapy strategies, hydrogel as a drug reservoir system can realize on-demand drug release and deep tissue penetration ability. It also exhibits great tumor-site retention to enhance the permeability and retention effect of tumor treatment. This can significantly overcome the drug's resistance and severe side effects. Inorganic/organic composite hydrogel has attracted wide attention due to its combined effects, enhancing therapeutic effects against various kinds of tumors. In situ injectable hydrogel can securely restrict the drugs in the lesion sites without leakage and guarantee better biosafety. Moreover, hydrogel possesses interconnected macropores which can provide enough space for nutrient transport, cellular activity, and cell–cell interactions. Thermal therapy is an effective strategy for tumor therapy due to its minimal invasiveness and high selectivity. Because the location temperature can be precisely controlled and helps avoid the risks of destroying the body's immune system and ablate normal cells, thermal therapy exhibits significant treatment outcomes. Nonetheless, when the cellular temperature reaches approximately 43 °C, it causes long-term cell inactivation. Based on these merits, thermosensitive hydrogel formulation with adaptive functions shows excellent efficacy, unlimited tissue penetration capacity, and few deleterious side effects. Furthermore, the thermosensitive hydrogel has unique physical properties under the external stimuli, which is the ideal drug delivery system for on-demand release in tumor treatment. This article will review the state of the thermosensitive hydrogel in clinic application for cancer therapy. |
abstract_unstemmed |
Abstract Compared with traditional tumor therapy strategies, hydrogel as a drug reservoir system can realize on-demand drug release and deep tissue penetration ability. It also exhibits great tumor-site retention to enhance the permeability and retention effect of tumor treatment. This can significantly overcome the drug's resistance and severe side effects. Inorganic/organic composite hydrogel has attracted wide attention due to its combined effects, enhancing therapeutic effects against various kinds of tumors. In situ injectable hydrogel can securely restrict the drugs in the lesion sites without leakage and guarantee better biosafety. Moreover, hydrogel possesses interconnected macropores which can provide enough space for nutrient transport, cellular activity, and cell–cell interactions. Thermal therapy is an effective strategy for tumor therapy due to its minimal invasiveness and high selectivity. Because the location temperature can be precisely controlled and helps avoid the risks of destroying the body's immune system and ablate normal cells, thermal therapy exhibits significant treatment outcomes. Nonetheless, when the cellular temperature reaches approximately 43 °C, it causes long-term cell inactivation. Based on these merits, thermosensitive hydrogel formulation with adaptive functions shows excellent efficacy, unlimited tissue penetration capacity, and few deleterious side effects. Furthermore, the thermosensitive hydrogel has unique physical properties under the external stimuli, which is the ideal drug delivery system for on-demand release in tumor treatment. This article will review the state of the thermosensitive hydrogel in clinic application for cancer therapy. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Research Progress of Thermosensitive Hydrogel in Tumor Therapeutic |
url |
https://dx.doi.org/10.1186/s11671-021-03502-5 |
remote_bool |
true |
author2 |
Yan, Zhihui |
author2Str |
Yan, Zhihui |
ppnlink |
518632474 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s11671-021-03502-5 |
up_date |
2024-07-03T18:26:09.867Z |
_version_ |
1803583403974459392 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR043402828</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519225657.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210305s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s11671-021-03502-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR043402828</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)SPRs11671-021-03502-5-e</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11671-021-03502-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ma, Nian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Research Progress of Thermosensitive Hydrogel in Tumor Therapeutic</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Compared with traditional tumor therapy strategies, hydrogel as a drug reservoir system can realize on-demand drug release and deep tissue penetration ability. It also exhibits great tumor-site retention to enhance the permeability and retention effect of tumor treatment. This can significantly overcome the drug's resistance and severe side effects. Inorganic/organic composite hydrogel has attracted wide attention due to its combined effects, enhancing therapeutic effects against various kinds of tumors. In situ injectable hydrogel can securely restrict the drugs in the lesion sites without leakage and guarantee better biosafety. Moreover, hydrogel possesses interconnected macropores which can provide enough space for nutrient transport, cellular activity, and cell–cell interactions. Thermal therapy is an effective strategy for tumor therapy due to its minimal invasiveness and high selectivity. Because the location temperature can be precisely controlled and helps avoid the risks of destroying the body's immune system and ablate normal cells, thermal therapy exhibits significant treatment outcomes. Nonetheless, when the cellular temperature reaches approximately 43 °C, it causes long-term cell inactivation. Based on these merits, thermosensitive hydrogel formulation with adaptive functions shows excellent efficacy, unlimited tissue penetration capacity, and few deleterious side effects. Furthermore, the thermosensitive hydrogel has unique physical properties under the external stimuli, which is the ideal drug delivery system for on-demand release in tumor treatment. This article will review the state of the thermosensitive hydrogel in clinic application for cancer therapy.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermosensitive</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrogel</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tumor</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermotherapy</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yan, Zhihui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nanoscale research letters</subfield><subfield code="d">New York, NY [u.a.] : Springer, 2006</subfield><subfield code="g">16(2021), 1 vom: 04. März</subfield><subfield code="w">(DE-627)518632474</subfield><subfield code="w">(DE-600)2253244-4</subfield><subfield code="x">1556-276X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">day:04</subfield><subfield code="g">month:03</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s11671-021-03502-5</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="b">04</subfield><subfield code="c">03</subfield></datafield></record></collection>
|
score |
7.4030848 |