Compositional Convolutional Neural Networks: A Robust and Interpretable Model for Object Recognition Under Occlusion

Abstract Computer vision systems in real-world applications need to be robust to partial occlusion while also being explainable. In this work, we show that black-box deep convolutional neural networks (DCNNs) have only limited robustness to partial occlusion. We overcome these limitations by unifyin...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Kortylewski, Adam [verfasserIn]

Liu, Qing [verfasserIn]

Wang, Angtian [verfasserIn]

Sun, Yihong [verfasserIn]

Yuille, Alan [verfasserIn]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2020

Schlagwörter:

Compositional models

Robustness to partial occlusion

Image classification

Object detection

Out-of-distribution generalization

Übergeordnetes Werk:

Enthalten in: International journal of computer vision - Dordrecht [u.a.] : Springer Science + Business Media B.V, 1987, 129(2020), 3 vom: 24. Nov., Seite 736-760

Übergeordnetes Werk:

volume:129 ; year:2020 ; number:3 ; day:24 ; month:11 ; pages:736-760

Links:

Volltext

DOI / URN:

10.1007/s11263-020-01401-3

Katalog-ID:

SPR043432735

Nicht das Richtige dabei?

Schreiben Sie uns!