Ecosystem Recovery from Disturbance is Constrained by N Cycle Openness, Vegetation-Soil N Distribution, Form of N Losses, and the Balance Between Vegetation and Soil-Microbial Processes
Abstract We present a framework for assessing biogeochemical recovery of terrestrial ecosystems from disturbance. We identify three recovery phases. In Phase 1, nitrogen is redistributed from soil organic matter to vegetation, but the ecosystem continues to lose nitrogen because the recovering veget...
Ausführliche Beschreibung
Autor*in: |
Rastetter, Edward B. [verfasserIn] Kling, George W. [verfasserIn] Shaver, Gaius R. [verfasserIn] Crump, Byron C. [verfasserIn] Gough, Laura [verfasserIn] Griffin, Kevin L. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Ecosystems - Springer-Verlag, 2000, 24(2020), 3 vom: 17. Aug., Seite 667-685 |
---|---|
Übergeordnetes Werk: |
volume:24 ; year:2020 ; number:3 ; day:17 ; month:08 ; pages:667-685 |
Links: |
---|
DOI / URN: |
10.1007/s10021-020-00542-3 |
---|
Katalog-ID: |
SPR043843611 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR043843611 | ||
003 | DE-627 | ||
005 | 20210424065313.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210424s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s10021-020-00542-3 |2 doi | |
035 | |a (DE-627)SPR043843611 | ||
035 | |a (DE-599)SPRs10021-020-00542-3-e | ||
035 | |a (SPR)s10021-020-00542-3-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Rastetter, Edward B. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Ecosystem Recovery from Disturbance is Constrained by N Cycle Openness, Vegetation-Soil N Distribution, Form of N Losses, and the Balance Between Vegetation and Soil-Microbial Processes |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract We present a framework for assessing biogeochemical recovery of terrestrial ecosystems from disturbance. We identify three recovery phases. In Phase 1, nitrogen is redistributed from soil organic matter to vegetation, but the ecosystem continues to lose nitrogen because the recovering vegetation cannot take up nitrogen as fast as it is released from soil. In Phase 2, the ecosystem begins re-accumulating nitrogen and converges on a quasi-steady state in which vegetation and soil-microbial processes are in balance. In Phase 3, vegetation and soil-microbial processes remain in balance and the ecosystem slowly re-accumulates the remaining nitrogen. Phase 3 follows a balanced-accumulation trajectory along a continuum of quasi-steady states that approaches the true steady state asymptotically. We examine the effects of three ecosystem properties on recovery: openness of the nitrogen cycle, nitrogen distribution in and turnover between vegetation and soils, and the proportion of nitrogen losses that are in a refractory form. Openness exacerbates Phase 1 nitrogen losses but speeds recovery in Phases 2 and 3. A high fraction of ecosystem nitrogen in vegetation, resulting from nitrogen turnover that is slow in vegetation but fast in soil, exacerbates Phase 1 nitrogen losses but speeds recovery in Phases 2 and 3. A high proportion of nitrogen loss in refractory form mitigates Phase 1 nitrogen losses and speeds recovery in Phases 2 and 3. Application of our conceptual framework requires empirical recognition of the continuum of quasi-steady states constituting the balanced-accumulation trajectory and a distinction between the balanced-accumulation trajectory and the true steady state. | ||
650 | 4 | |a Element cycles |7 (dpeaa)DE-He213 | |
650 | 4 | |a Disturbance |7 (dpeaa)DE-He213 | |
650 | 4 | |a Biogeochemistry of succession |7 (dpeaa)DE-He213 | |
650 | 4 | |a Plant–soil interactions |7 (dpeaa)DE-He213 | |
650 | 4 | |a Ecosystem development |7 (dpeaa)DE-He213 | |
650 | 4 | |a Nutrient accumulation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Organic matter accumulation |7 (dpeaa)DE-He213 | |
700 | 1 | |a Kling, George W. |e verfasserin |4 aut | |
700 | 1 | |a Shaver, Gaius R. |e verfasserin |4 aut | |
700 | 1 | |a Crump, Byron C. |e verfasserin |4 aut | |
700 | 1 | |a Gough, Laura |e verfasserin |4 aut | |
700 | 1 | |a Griffin, Kevin L. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Ecosystems |d Springer-Verlag, 2000 |g 24(2020), 3 vom: 17. Aug., Seite 667-685 |w (DE-627)SPR008072272 |7 nnns |
773 | 1 | 8 | |g volume:24 |g year:2020 |g number:3 |g day:17 |g month:08 |g pages:667-685 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s10021-020-00542-3 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
951 | |a AR | ||
952 | |d 24 |j 2020 |e 3 |b 17 |c 08 |h 667-685 |
author_variant |
e b r eb ebr g w k gw gwk g r s gr grs b c c bc bcc l g lg k l g kl klg |
---|---|
matchkey_str |
rastetteredwardbklinggeorgewshavergaiusr:2020----:cssercvrfodsubnesosriebnyloensvgttosinitiuinomflseadhblnee |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.1007/s10021-020-00542-3 doi (DE-627)SPR043843611 (DE-599)SPRs10021-020-00542-3-e (SPR)s10021-020-00542-3-e DE-627 ger DE-627 rakwb eng Rastetter, Edward B. verfasserin aut Ecosystem Recovery from Disturbance is Constrained by N Cycle Openness, Vegetation-Soil N Distribution, Form of N Losses, and the Balance Between Vegetation and Soil-Microbial Processes 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract We present a framework for assessing biogeochemical recovery of terrestrial ecosystems from disturbance. We identify three recovery phases. In Phase 1, nitrogen is redistributed from soil organic matter to vegetation, but the ecosystem continues to lose nitrogen because the recovering vegetation cannot take up nitrogen as fast as it is released from soil. In Phase 2, the ecosystem begins re-accumulating nitrogen and converges on a quasi-steady state in which vegetation and soil-microbial processes are in balance. In Phase 3, vegetation and soil-microbial processes remain in balance and the ecosystem slowly re-accumulates the remaining nitrogen. Phase 3 follows a balanced-accumulation trajectory along a continuum of quasi-steady states that approaches the true steady state asymptotically. We examine the effects of three ecosystem properties on recovery: openness of the nitrogen cycle, nitrogen distribution in and turnover between vegetation and soils, and the proportion of nitrogen losses that are in a refractory form. Openness exacerbates Phase 1 nitrogen losses but speeds recovery in Phases 2 and 3. A high fraction of ecosystem nitrogen in vegetation, resulting from nitrogen turnover that is slow in vegetation but fast in soil, exacerbates Phase 1 nitrogen losses but speeds recovery in Phases 2 and 3. A high proportion of nitrogen loss in refractory form mitigates Phase 1 nitrogen losses and speeds recovery in Phases 2 and 3. Application of our conceptual framework requires empirical recognition of the continuum of quasi-steady states constituting the balanced-accumulation trajectory and a distinction between the balanced-accumulation trajectory and the true steady state. Element cycles (dpeaa)DE-He213 Disturbance (dpeaa)DE-He213 Biogeochemistry of succession (dpeaa)DE-He213 Plant–soil interactions (dpeaa)DE-He213 Ecosystem development (dpeaa)DE-He213 Nutrient accumulation (dpeaa)DE-He213 Organic matter accumulation (dpeaa)DE-He213 Kling, George W. verfasserin aut Shaver, Gaius R. verfasserin aut Crump, Byron C. verfasserin aut Gough, Laura verfasserin aut Griffin, Kevin L. verfasserin aut Enthalten in Ecosystems Springer-Verlag, 2000 24(2020), 3 vom: 17. Aug., Seite 667-685 (DE-627)SPR008072272 nnns volume:24 year:2020 number:3 day:17 month:08 pages:667-685 https://dx.doi.org/10.1007/s10021-020-00542-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 24 2020 3 17 08 667-685 |
spelling |
10.1007/s10021-020-00542-3 doi (DE-627)SPR043843611 (DE-599)SPRs10021-020-00542-3-e (SPR)s10021-020-00542-3-e DE-627 ger DE-627 rakwb eng Rastetter, Edward B. verfasserin aut Ecosystem Recovery from Disturbance is Constrained by N Cycle Openness, Vegetation-Soil N Distribution, Form of N Losses, and the Balance Between Vegetation and Soil-Microbial Processes 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract We present a framework for assessing biogeochemical recovery of terrestrial ecosystems from disturbance. We identify three recovery phases. In Phase 1, nitrogen is redistributed from soil organic matter to vegetation, but the ecosystem continues to lose nitrogen because the recovering vegetation cannot take up nitrogen as fast as it is released from soil. In Phase 2, the ecosystem begins re-accumulating nitrogen and converges on a quasi-steady state in which vegetation and soil-microbial processes are in balance. In Phase 3, vegetation and soil-microbial processes remain in balance and the ecosystem slowly re-accumulates the remaining nitrogen. Phase 3 follows a balanced-accumulation trajectory along a continuum of quasi-steady states that approaches the true steady state asymptotically. We examine the effects of three ecosystem properties on recovery: openness of the nitrogen cycle, nitrogen distribution in and turnover between vegetation and soils, and the proportion of nitrogen losses that are in a refractory form. Openness exacerbates Phase 1 nitrogen losses but speeds recovery in Phases 2 and 3. A high fraction of ecosystem nitrogen in vegetation, resulting from nitrogen turnover that is slow in vegetation but fast in soil, exacerbates Phase 1 nitrogen losses but speeds recovery in Phases 2 and 3. A high proportion of nitrogen loss in refractory form mitigates Phase 1 nitrogen losses and speeds recovery in Phases 2 and 3. Application of our conceptual framework requires empirical recognition of the continuum of quasi-steady states constituting the balanced-accumulation trajectory and a distinction between the balanced-accumulation trajectory and the true steady state. Element cycles (dpeaa)DE-He213 Disturbance (dpeaa)DE-He213 Biogeochemistry of succession (dpeaa)DE-He213 Plant–soil interactions (dpeaa)DE-He213 Ecosystem development (dpeaa)DE-He213 Nutrient accumulation (dpeaa)DE-He213 Organic matter accumulation (dpeaa)DE-He213 Kling, George W. verfasserin aut Shaver, Gaius R. verfasserin aut Crump, Byron C. verfasserin aut Gough, Laura verfasserin aut Griffin, Kevin L. verfasserin aut Enthalten in Ecosystems Springer-Verlag, 2000 24(2020), 3 vom: 17. Aug., Seite 667-685 (DE-627)SPR008072272 nnns volume:24 year:2020 number:3 day:17 month:08 pages:667-685 https://dx.doi.org/10.1007/s10021-020-00542-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 24 2020 3 17 08 667-685 |
allfields_unstemmed |
10.1007/s10021-020-00542-3 doi (DE-627)SPR043843611 (DE-599)SPRs10021-020-00542-3-e (SPR)s10021-020-00542-3-e DE-627 ger DE-627 rakwb eng Rastetter, Edward B. verfasserin aut Ecosystem Recovery from Disturbance is Constrained by N Cycle Openness, Vegetation-Soil N Distribution, Form of N Losses, and the Balance Between Vegetation and Soil-Microbial Processes 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract We present a framework for assessing biogeochemical recovery of terrestrial ecosystems from disturbance. We identify three recovery phases. In Phase 1, nitrogen is redistributed from soil organic matter to vegetation, but the ecosystem continues to lose nitrogen because the recovering vegetation cannot take up nitrogen as fast as it is released from soil. In Phase 2, the ecosystem begins re-accumulating nitrogen and converges on a quasi-steady state in which vegetation and soil-microbial processes are in balance. In Phase 3, vegetation and soil-microbial processes remain in balance and the ecosystem slowly re-accumulates the remaining nitrogen. Phase 3 follows a balanced-accumulation trajectory along a continuum of quasi-steady states that approaches the true steady state asymptotically. We examine the effects of three ecosystem properties on recovery: openness of the nitrogen cycle, nitrogen distribution in and turnover between vegetation and soils, and the proportion of nitrogen losses that are in a refractory form. Openness exacerbates Phase 1 nitrogen losses but speeds recovery in Phases 2 and 3. A high fraction of ecosystem nitrogen in vegetation, resulting from nitrogen turnover that is slow in vegetation but fast in soil, exacerbates Phase 1 nitrogen losses but speeds recovery in Phases 2 and 3. A high proportion of nitrogen loss in refractory form mitigates Phase 1 nitrogen losses and speeds recovery in Phases 2 and 3. Application of our conceptual framework requires empirical recognition of the continuum of quasi-steady states constituting the balanced-accumulation trajectory and a distinction between the balanced-accumulation trajectory and the true steady state. Element cycles (dpeaa)DE-He213 Disturbance (dpeaa)DE-He213 Biogeochemistry of succession (dpeaa)DE-He213 Plant–soil interactions (dpeaa)DE-He213 Ecosystem development (dpeaa)DE-He213 Nutrient accumulation (dpeaa)DE-He213 Organic matter accumulation (dpeaa)DE-He213 Kling, George W. verfasserin aut Shaver, Gaius R. verfasserin aut Crump, Byron C. verfasserin aut Gough, Laura verfasserin aut Griffin, Kevin L. verfasserin aut Enthalten in Ecosystems Springer-Verlag, 2000 24(2020), 3 vom: 17. Aug., Seite 667-685 (DE-627)SPR008072272 nnns volume:24 year:2020 number:3 day:17 month:08 pages:667-685 https://dx.doi.org/10.1007/s10021-020-00542-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 24 2020 3 17 08 667-685 |
allfieldsGer |
10.1007/s10021-020-00542-3 doi (DE-627)SPR043843611 (DE-599)SPRs10021-020-00542-3-e (SPR)s10021-020-00542-3-e DE-627 ger DE-627 rakwb eng Rastetter, Edward B. verfasserin aut Ecosystem Recovery from Disturbance is Constrained by N Cycle Openness, Vegetation-Soil N Distribution, Form of N Losses, and the Balance Between Vegetation and Soil-Microbial Processes 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract We present a framework for assessing biogeochemical recovery of terrestrial ecosystems from disturbance. We identify three recovery phases. In Phase 1, nitrogen is redistributed from soil organic matter to vegetation, but the ecosystem continues to lose nitrogen because the recovering vegetation cannot take up nitrogen as fast as it is released from soil. In Phase 2, the ecosystem begins re-accumulating nitrogen and converges on a quasi-steady state in which vegetation and soil-microbial processes are in balance. In Phase 3, vegetation and soil-microbial processes remain in balance and the ecosystem slowly re-accumulates the remaining nitrogen. Phase 3 follows a balanced-accumulation trajectory along a continuum of quasi-steady states that approaches the true steady state asymptotically. We examine the effects of three ecosystem properties on recovery: openness of the nitrogen cycle, nitrogen distribution in and turnover between vegetation and soils, and the proportion of nitrogen losses that are in a refractory form. Openness exacerbates Phase 1 nitrogen losses but speeds recovery in Phases 2 and 3. A high fraction of ecosystem nitrogen in vegetation, resulting from nitrogen turnover that is slow in vegetation but fast in soil, exacerbates Phase 1 nitrogen losses but speeds recovery in Phases 2 and 3. A high proportion of nitrogen loss in refractory form mitigates Phase 1 nitrogen losses and speeds recovery in Phases 2 and 3. Application of our conceptual framework requires empirical recognition of the continuum of quasi-steady states constituting the balanced-accumulation trajectory and a distinction between the balanced-accumulation trajectory and the true steady state. Element cycles (dpeaa)DE-He213 Disturbance (dpeaa)DE-He213 Biogeochemistry of succession (dpeaa)DE-He213 Plant–soil interactions (dpeaa)DE-He213 Ecosystem development (dpeaa)DE-He213 Nutrient accumulation (dpeaa)DE-He213 Organic matter accumulation (dpeaa)DE-He213 Kling, George W. verfasserin aut Shaver, Gaius R. verfasserin aut Crump, Byron C. verfasserin aut Gough, Laura verfasserin aut Griffin, Kevin L. verfasserin aut Enthalten in Ecosystems Springer-Verlag, 2000 24(2020), 3 vom: 17. Aug., Seite 667-685 (DE-627)SPR008072272 nnns volume:24 year:2020 number:3 day:17 month:08 pages:667-685 https://dx.doi.org/10.1007/s10021-020-00542-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 24 2020 3 17 08 667-685 |
allfieldsSound |
10.1007/s10021-020-00542-3 doi (DE-627)SPR043843611 (DE-599)SPRs10021-020-00542-3-e (SPR)s10021-020-00542-3-e DE-627 ger DE-627 rakwb eng Rastetter, Edward B. verfasserin aut Ecosystem Recovery from Disturbance is Constrained by N Cycle Openness, Vegetation-Soil N Distribution, Form of N Losses, and the Balance Between Vegetation and Soil-Microbial Processes 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract We present a framework for assessing biogeochemical recovery of terrestrial ecosystems from disturbance. We identify three recovery phases. In Phase 1, nitrogen is redistributed from soil organic matter to vegetation, but the ecosystem continues to lose nitrogen because the recovering vegetation cannot take up nitrogen as fast as it is released from soil. In Phase 2, the ecosystem begins re-accumulating nitrogen and converges on a quasi-steady state in which vegetation and soil-microbial processes are in balance. In Phase 3, vegetation and soil-microbial processes remain in balance and the ecosystem slowly re-accumulates the remaining nitrogen. Phase 3 follows a balanced-accumulation trajectory along a continuum of quasi-steady states that approaches the true steady state asymptotically. We examine the effects of three ecosystem properties on recovery: openness of the nitrogen cycle, nitrogen distribution in and turnover between vegetation and soils, and the proportion of nitrogen losses that are in a refractory form. Openness exacerbates Phase 1 nitrogen losses but speeds recovery in Phases 2 and 3. A high fraction of ecosystem nitrogen in vegetation, resulting from nitrogen turnover that is slow in vegetation but fast in soil, exacerbates Phase 1 nitrogen losses but speeds recovery in Phases 2 and 3. A high proportion of nitrogen loss in refractory form mitigates Phase 1 nitrogen losses and speeds recovery in Phases 2 and 3. Application of our conceptual framework requires empirical recognition of the continuum of quasi-steady states constituting the balanced-accumulation trajectory and a distinction between the balanced-accumulation trajectory and the true steady state. Element cycles (dpeaa)DE-He213 Disturbance (dpeaa)DE-He213 Biogeochemistry of succession (dpeaa)DE-He213 Plant–soil interactions (dpeaa)DE-He213 Ecosystem development (dpeaa)DE-He213 Nutrient accumulation (dpeaa)DE-He213 Organic matter accumulation (dpeaa)DE-He213 Kling, George W. verfasserin aut Shaver, Gaius R. verfasserin aut Crump, Byron C. verfasserin aut Gough, Laura verfasserin aut Griffin, Kevin L. verfasserin aut Enthalten in Ecosystems Springer-Verlag, 2000 24(2020), 3 vom: 17. Aug., Seite 667-685 (DE-627)SPR008072272 nnns volume:24 year:2020 number:3 day:17 month:08 pages:667-685 https://dx.doi.org/10.1007/s10021-020-00542-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 24 2020 3 17 08 667-685 |
language |
English |
source |
Enthalten in Ecosystems 24(2020), 3 vom: 17. Aug., Seite 667-685 volume:24 year:2020 number:3 day:17 month:08 pages:667-685 |
sourceStr |
Enthalten in Ecosystems 24(2020), 3 vom: 17. Aug., Seite 667-685 volume:24 year:2020 number:3 day:17 month:08 pages:667-685 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Element cycles Disturbance Biogeochemistry of succession Plant–soil interactions Ecosystem development Nutrient accumulation Organic matter accumulation |
isfreeaccess_bool |
false |
container_title |
Ecosystems |
authorswithroles_txt_mv |
Rastetter, Edward B. @@aut@@ Kling, George W. @@aut@@ Shaver, Gaius R. @@aut@@ Crump, Byron C. @@aut@@ Gough, Laura @@aut@@ Griffin, Kevin L. @@aut@@ |
publishDateDaySort_date |
2020-08-17T00:00:00Z |
hierarchy_top_id |
SPR008072272 |
id |
SPR043843611 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR043843611</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210424065313.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210424s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10021-020-00542-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR043843611</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)SPRs10021-020-00542-3-e</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10021-020-00542-3-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rastetter, Edward B.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ecosystem Recovery from Disturbance is Constrained by N Cycle Openness, Vegetation-Soil N Distribution, Form of N Losses, and the Balance Between Vegetation and Soil-Microbial Processes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We present a framework for assessing biogeochemical recovery of terrestrial ecosystems from disturbance. We identify three recovery phases. In Phase 1, nitrogen is redistributed from soil organic matter to vegetation, but the ecosystem continues to lose nitrogen because the recovering vegetation cannot take up nitrogen as fast as it is released from soil. In Phase 2, the ecosystem begins re-accumulating nitrogen and converges on a quasi-steady state in which vegetation and soil-microbial processes are in balance. In Phase 3, vegetation and soil-microbial processes remain in balance and the ecosystem slowly re-accumulates the remaining nitrogen. Phase 3 follows a balanced-accumulation trajectory along a continuum of quasi-steady states that approaches the true steady state asymptotically. We examine the effects of three ecosystem properties on recovery: openness of the nitrogen cycle, nitrogen distribution in and turnover between vegetation and soils, and the proportion of nitrogen losses that are in a refractory form. Openness exacerbates Phase 1 nitrogen losses but speeds recovery in Phases 2 and 3. A high fraction of ecosystem nitrogen in vegetation, resulting from nitrogen turnover that is slow in vegetation but fast in soil, exacerbates Phase 1 nitrogen losses but speeds recovery in Phases 2 and 3. A high proportion of nitrogen loss in refractory form mitigates Phase 1 nitrogen losses and speeds recovery in Phases 2 and 3. Application of our conceptual framework requires empirical recognition of the continuum of quasi-steady states constituting the balanced-accumulation trajectory and a distinction between the balanced-accumulation trajectory and the true steady state.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Element cycles</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Disturbance</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biogeochemistry of succession</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plant–soil interactions</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ecosystem development</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nutrient accumulation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Organic matter accumulation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kling, George W.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shaver, Gaius R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Crump, Byron C.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gough, Laura</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Griffin, Kevin L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Ecosystems</subfield><subfield code="d">Springer-Verlag, 2000</subfield><subfield code="g">24(2020), 3 vom: 17. Aug., Seite 667-685</subfield><subfield code="w">(DE-627)SPR008072272</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:3</subfield><subfield code="g">day:17</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:667-685</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10021-020-00542-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2020</subfield><subfield code="e">3</subfield><subfield code="b">17</subfield><subfield code="c">08</subfield><subfield code="h">667-685</subfield></datafield></record></collection>
|
author |
Rastetter, Edward B. |
spellingShingle |
Rastetter, Edward B. misc Element cycles misc Disturbance misc Biogeochemistry of succession misc Plant–soil interactions misc Ecosystem development misc Nutrient accumulation misc Organic matter accumulation Ecosystem Recovery from Disturbance is Constrained by N Cycle Openness, Vegetation-Soil N Distribution, Form of N Losses, and the Balance Between Vegetation and Soil-Microbial Processes |
authorStr |
Rastetter, Edward B. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)SPR008072272 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
Ecosystem Recovery from Disturbance is Constrained by N Cycle Openness, Vegetation-Soil N Distribution, Form of N Losses, and the Balance Between Vegetation and Soil-Microbial Processes Element cycles (dpeaa)DE-He213 Disturbance (dpeaa)DE-He213 Biogeochemistry of succession (dpeaa)DE-He213 Plant–soil interactions (dpeaa)DE-He213 Ecosystem development (dpeaa)DE-He213 Nutrient accumulation (dpeaa)DE-He213 Organic matter accumulation (dpeaa)DE-He213 |
topic |
misc Element cycles misc Disturbance misc Biogeochemistry of succession misc Plant–soil interactions misc Ecosystem development misc Nutrient accumulation misc Organic matter accumulation |
topic_unstemmed |
misc Element cycles misc Disturbance misc Biogeochemistry of succession misc Plant–soil interactions misc Ecosystem development misc Nutrient accumulation misc Organic matter accumulation |
topic_browse |
misc Element cycles misc Disturbance misc Biogeochemistry of succession misc Plant–soil interactions misc Ecosystem development misc Nutrient accumulation misc Organic matter accumulation |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Ecosystems |
hierarchy_parent_id |
SPR008072272 |
hierarchy_top_title |
Ecosystems |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)SPR008072272 |
title |
Ecosystem Recovery from Disturbance is Constrained by N Cycle Openness, Vegetation-Soil N Distribution, Form of N Losses, and the Balance Between Vegetation and Soil-Microbial Processes |
ctrlnum |
(DE-627)SPR043843611 (DE-599)SPRs10021-020-00542-3-e (SPR)s10021-020-00542-3-e |
title_full |
Ecosystem Recovery from Disturbance is Constrained by N Cycle Openness, Vegetation-Soil N Distribution, Form of N Losses, and the Balance Between Vegetation and Soil-Microbial Processes |
author_sort |
Rastetter, Edward B. |
journal |
Ecosystems |
journalStr |
Ecosystems |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
667 |
author_browse |
Rastetter, Edward B. Kling, George W. Shaver, Gaius R. Crump, Byron C. Gough, Laura Griffin, Kevin L. |
container_volume |
24 |
format_se |
Elektronische Aufsätze |
author-letter |
Rastetter, Edward B. |
doi_str_mv |
10.1007/s10021-020-00542-3 |
author2-role |
verfasserin |
title_sort |
ecosystem recovery from disturbance is constrained by n cycle openness, vegetation-soil n distribution, form of n losses, and the balance between vegetation and soil-microbial processes |
title_auth |
Ecosystem Recovery from Disturbance is Constrained by N Cycle Openness, Vegetation-Soil N Distribution, Form of N Losses, and the Balance Between Vegetation and Soil-Microbial Processes |
abstract |
Abstract We present a framework for assessing biogeochemical recovery of terrestrial ecosystems from disturbance. We identify three recovery phases. In Phase 1, nitrogen is redistributed from soil organic matter to vegetation, but the ecosystem continues to lose nitrogen because the recovering vegetation cannot take up nitrogen as fast as it is released from soil. In Phase 2, the ecosystem begins re-accumulating nitrogen and converges on a quasi-steady state in which vegetation and soil-microbial processes are in balance. In Phase 3, vegetation and soil-microbial processes remain in balance and the ecosystem slowly re-accumulates the remaining nitrogen. Phase 3 follows a balanced-accumulation trajectory along a continuum of quasi-steady states that approaches the true steady state asymptotically. We examine the effects of three ecosystem properties on recovery: openness of the nitrogen cycle, nitrogen distribution in and turnover between vegetation and soils, and the proportion of nitrogen losses that are in a refractory form. Openness exacerbates Phase 1 nitrogen losses but speeds recovery in Phases 2 and 3. A high fraction of ecosystem nitrogen in vegetation, resulting from nitrogen turnover that is slow in vegetation but fast in soil, exacerbates Phase 1 nitrogen losses but speeds recovery in Phases 2 and 3. A high proportion of nitrogen loss in refractory form mitigates Phase 1 nitrogen losses and speeds recovery in Phases 2 and 3. Application of our conceptual framework requires empirical recognition of the continuum of quasi-steady states constituting the balanced-accumulation trajectory and a distinction between the balanced-accumulation trajectory and the true steady state. |
abstractGer |
Abstract We present a framework for assessing biogeochemical recovery of terrestrial ecosystems from disturbance. We identify three recovery phases. In Phase 1, nitrogen is redistributed from soil organic matter to vegetation, but the ecosystem continues to lose nitrogen because the recovering vegetation cannot take up nitrogen as fast as it is released from soil. In Phase 2, the ecosystem begins re-accumulating nitrogen and converges on a quasi-steady state in which vegetation and soil-microbial processes are in balance. In Phase 3, vegetation and soil-microbial processes remain in balance and the ecosystem slowly re-accumulates the remaining nitrogen. Phase 3 follows a balanced-accumulation trajectory along a continuum of quasi-steady states that approaches the true steady state asymptotically. We examine the effects of three ecosystem properties on recovery: openness of the nitrogen cycle, nitrogen distribution in and turnover between vegetation and soils, and the proportion of nitrogen losses that are in a refractory form. Openness exacerbates Phase 1 nitrogen losses but speeds recovery in Phases 2 and 3. A high fraction of ecosystem nitrogen in vegetation, resulting from nitrogen turnover that is slow in vegetation but fast in soil, exacerbates Phase 1 nitrogen losses but speeds recovery in Phases 2 and 3. A high proportion of nitrogen loss in refractory form mitigates Phase 1 nitrogen losses and speeds recovery in Phases 2 and 3. Application of our conceptual framework requires empirical recognition of the continuum of quasi-steady states constituting the balanced-accumulation trajectory and a distinction between the balanced-accumulation trajectory and the true steady state. |
abstract_unstemmed |
Abstract We present a framework for assessing biogeochemical recovery of terrestrial ecosystems from disturbance. We identify three recovery phases. In Phase 1, nitrogen is redistributed from soil organic matter to vegetation, but the ecosystem continues to lose nitrogen because the recovering vegetation cannot take up nitrogen as fast as it is released from soil. In Phase 2, the ecosystem begins re-accumulating nitrogen and converges on a quasi-steady state in which vegetation and soil-microbial processes are in balance. In Phase 3, vegetation and soil-microbial processes remain in balance and the ecosystem slowly re-accumulates the remaining nitrogen. Phase 3 follows a balanced-accumulation trajectory along a continuum of quasi-steady states that approaches the true steady state asymptotically. We examine the effects of three ecosystem properties on recovery: openness of the nitrogen cycle, nitrogen distribution in and turnover between vegetation and soils, and the proportion of nitrogen losses that are in a refractory form. Openness exacerbates Phase 1 nitrogen losses but speeds recovery in Phases 2 and 3. A high fraction of ecosystem nitrogen in vegetation, resulting from nitrogen turnover that is slow in vegetation but fast in soil, exacerbates Phase 1 nitrogen losses but speeds recovery in Phases 2 and 3. A high proportion of nitrogen loss in refractory form mitigates Phase 1 nitrogen losses and speeds recovery in Phases 2 and 3. Application of our conceptual framework requires empirical recognition of the continuum of quasi-steady states constituting the balanced-accumulation trajectory and a distinction between the balanced-accumulation trajectory and the true steady state. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER |
container_issue |
3 |
title_short |
Ecosystem Recovery from Disturbance is Constrained by N Cycle Openness, Vegetation-Soil N Distribution, Form of N Losses, and the Balance Between Vegetation and Soil-Microbial Processes |
url |
https://dx.doi.org/10.1007/s10021-020-00542-3 |
remote_bool |
true |
author2 |
Kling, George W. Shaver, Gaius R. Crump, Byron C. Gough, Laura Griffin, Kevin L. |
author2Str |
Kling, George W. Shaver, Gaius R. Crump, Byron C. Gough, Laura Griffin, Kevin L. |
ppnlink |
SPR008072272 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10021-020-00542-3 |
up_date |
2024-07-03T21:17:02.932Z |
_version_ |
1803594155094441984 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR043843611</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210424065313.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210424s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10021-020-00542-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR043843611</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)SPRs10021-020-00542-3-e</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10021-020-00542-3-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rastetter, Edward B.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ecosystem Recovery from Disturbance is Constrained by N Cycle Openness, Vegetation-Soil N Distribution, Form of N Losses, and the Balance Between Vegetation and Soil-Microbial Processes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We present a framework for assessing biogeochemical recovery of terrestrial ecosystems from disturbance. We identify three recovery phases. In Phase 1, nitrogen is redistributed from soil organic matter to vegetation, but the ecosystem continues to lose nitrogen because the recovering vegetation cannot take up nitrogen as fast as it is released from soil. In Phase 2, the ecosystem begins re-accumulating nitrogen and converges on a quasi-steady state in which vegetation and soil-microbial processes are in balance. In Phase 3, vegetation and soil-microbial processes remain in balance and the ecosystem slowly re-accumulates the remaining nitrogen. Phase 3 follows a balanced-accumulation trajectory along a continuum of quasi-steady states that approaches the true steady state asymptotically. We examine the effects of three ecosystem properties on recovery: openness of the nitrogen cycle, nitrogen distribution in and turnover between vegetation and soils, and the proportion of nitrogen losses that are in a refractory form. Openness exacerbates Phase 1 nitrogen losses but speeds recovery in Phases 2 and 3. A high fraction of ecosystem nitrogen in vegetation, resulting from nitrogen turnover that is slow in vegetation but fast in soil, exacerbates Phase 1 nitrogen losses but speeds recovery in Phases 2 and 3. A high proportion of nitrogen loss in refractory form mitigates Phase 1 nitrogen losses and speeds recovery in Phases 2 and 3. Application of our conceptual framework requires empirical recognition of the continuum of quasi-steady states constituting the balanced-accumulation trajectory and a distinction between the balanced-accumulation trajectory and the true steady state.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Element cycles</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Disturbance</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biogeochemistry of succession</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plant–soil interactions</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ecosystem development</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nutrient accumulation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Organic matter accumulation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kling, George W.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shaver, Gaius R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Crump, Byron C.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gough, Laura</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Griffin, Kevin L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Ecosystems</subfield><subfield code="d">Springer-Verlag, 2000</subfield><subfield code="g">24(2020), 3 vom: 17. Aug., Seite 667-685</subfield><subfield code="w">(DE-627)SPR008072272</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:3</subfield><subfield code="g">day:17</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:667-685</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10021-020-00542-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2020</subfield><subfield code="e">3</subfield><subfield code="b">17</subfield><subfield code="c">08</subfield><subfield code="h">667-685</subfield></datafield></record></collection>
|
score |
7.4016123 |