Effects of high temperature on spikelet sterility in rice (Oryza sativa L.): association between molecular markers and allelic phenotypic effect in field condition
Abstract Rice varieties are generally bred for higher yield but may possess genomic regions conferring tolerance to abiotic stresses. Climate change driven heat stress during reproductive stage of the crop affects spikelet fertility and yield. Though genetic regions associated with heat stress toler...
Ausführliche Beschreibung
Autor*in: |
Chidambaranathan, Parameswaran [verfasserIn] Balasubramaniasai, Cayalvizhi [verfasserIn] Behura, Niranjana [verfasserIn] Purty, Mohini [verfasserIn] Samantaray, Sanghamitra [verfasserIn] Subudhi, Hatanath [verfasserIn] Ngangkham, Umakanta [verfasserIn] Devanna, B. N. [verfasserIn] Katara, Jawahar Lal [verfasserIn] Kumar, Awadhesh [verfasserIn] Behera, Lambodar [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Genetic resources and crop evolution - Dordrecht [u.a.] : Springer Science + Business Media B.V, 1953, 68(2021), 5 vom: 13. Feb., Seite 1923-1935 |
---|---|
Übergeordnetes Werk: |
volume:68 ; year:2021 ; number:5 ; day:13 ; month:02 ; pages:1923-1935 |
Links: |
---|
DOI / URN: |
10.1007/s10722-021-01106-7 |
---|
Katalog-ID: |
SPR043894569 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR043894569 | ||
003 | DE-627 | ||
005 | 20230519172251.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210429s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s10722-021-01106-7 |2 doi | |
035 | |a (DE-627)SPR043894569 | ||
035 | |a (DE-599)SPRs10722-021-01106-7-e | ||
035 | |a (SPR)s10722-021-01106-7-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 580 |q ASE |
084 | |a 48.58 |2 bkl | ||
084 | |a 42.43 |2 bkl | ||
100 | 1 | |a Chidambaranathan, Parameswaran |e verfasserin |4 aut | |
245 | 1 | 0 | |a Effects of high temperature on spikelet sterility in rice (Oryza sativa L.): association between molecular markers and allelic phenotypic effect in field condition |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Rice varieties are generally bred for higher yield but may possess genomic regions conferring tolerance to abiotic stresses. Climate change driven heat stress during reproductive stage of the crop affects spikelet fertility and yield. Though genetic regions associated with heat stress tolerance have been identified in rice, but response of rice varieties and allelic phenotypic effect favoring spikelet fertility during heat stress has not been comprehensively studied. Hence, the present study aimed at assessing the response of 198 rice varieties during the dry season (2016) followed by validation of selected 67 varieties in the second dry season (2017) through staggered sowing for high temperature. The analysis showed mean spikelet sterility of 21.82% and 33.81% for the first and second sowing, respectively. Further, average difference in spikelet sterility for unit increase in maximum temperature during the flowering period was observed to be 7.93%. Employment of nine heat stress associated markers for genetic analysis identified four sub-populations in the 67 varieties inferred through neighbor-joining phylogenetic tree and sub-structure analysis. Marker-trait association analysis showed two markers namely RM205, RM242 were significantly associated with spikelet sterility with phenotypic variance ($ R^{2} $) of 7.7% and 6.0%, respectively. Allelic phenotypic effect of favorable alleles for both the markers reduced spikelet sterility by 14.49% compared to mean spikelet sterility (33.81%). Furthermore, four rice varieties showed spikelet sterility < 15%. Thus, predominantly moderate tolerance to susceptible response was observed for rice varieties in this study. Besides, favorable allele of RM205, RM242 could be effectively used for improving tolerance in rice varieties to heat stress. | ||
650 | 4 | |a Heat stress |7 (dpeaa)DE-He213 | |
650 | 4 | |a Spikelet sterility |7 (dpeaa)DE-He213 | |
650 | 4 | |a Marker-trait association |7 (dpeaa)DE-He213 | |
650 | 4 | |a Heat stress susceptibility index |7 (dpeaa)DE-He213 | |
650 | 4 | |a Allelic phenotypic effect |7 (dpeaa)DE-He213 | |
650 | 4 | |a Favorable and non-favorable alleles |7 (dpeaa)DE-He213 | |
700 | 1 | |a Balasubramaniasai, Cayalvizhi |e verfasserin |4 aut | |
700 | 1 | |a Behura, Niranjana |e verfasserin |4 aut | |
700 | 1 | |a Purty, Mohini |e verfasserin |4 aut | |
700 | 1 | |a Samantaray, Sanghamitra |e verfasserin |4 aut | |
700 | 1 | |a Subudhi, Hatanath |e verfasserin |4 aut | |
700 | 1 | |a Ngangkham, Umakanta |e verfasserin |4 aut | |
700 | 1 | |a Devanna, B. N. |e verfasserin |4 aut | |
700 | 1 | |a Katara, Jawahar Lal |e verfasserin |4 aut | |
700 | 1 | |a Kumar, Awadhesh |e verfasserin |4 aut | |
700 | 1 | |a Behera, Lambodar |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Genetic resources and crop evolution |d Dordrecht [u.a.] : Springer Science + Business Media B.V, 1953 |g 68(2021), 5 vom: 13. Feb., Seite 1923-1935 |w (DE-627)320529029 |w (DE-600)2015535-9 |x 1573-5109 |7 nnns |
773 | 1 | 8 | |g volume:68 |g year:2021 |g number:5 |g day:13 |g month:02 |g pages:1923-1935 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s10722-021-01106-7 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_165 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_211 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_647 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 48.58 |q ASE |
936 | b | k | |a 42.43 |q ASE |
951 | |a AR | ||
952 | |d 68 |j 2021 |e 5 |b 13 |c 02 |h 1923-1935 |
author_variant |
p c pc c b cb n b nb m p mp s s ss h s hs u n un b n d bn bnd j l k jl jlk a k ak l b lb |
---|---|
matchkey_str |
article:15735109:2021----::fetohgtmeauenpklttrltircoyaaiaascainewemlclrakradle |
hierarchy_sort_str |
2021 |
bklnumber |
48.58 42.43 |
publishDate |
2021 |
allfields |
10.1007/s10722-021-01106-7 doi (DE-627)SPR043894569 (DE-599)SPRs10722-021-01106-7-e (SPR)s10722-021-01106-7-e DE-627 ger DE-627 rakwb eng 580 ASE 48.58 bkl 42.43 bkl Chidambaranathan, Parameswaran verfasserin aut Effects of high temperature on spikelet sterility in rice (Oryza sativa L.): association between molecular markers and allelic phenotypic effect in field condition 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Rice varieties are generally bred for higher yield but may possess genomic regions conferring tolerance to abiotic stresses. Climate change driven heat stress during reproductive stage of the crop affects spikelet fertility and yield. Though genetic regions associated with heat stress tolerance have been identified in rice, but response of rice varieties and allelic phenotypic effect favoring spikelet fertility during heat stress has not been comprehensively studied. Hence, the present study aimed at assessing the response of 198 rice varieties during the dry season (2016) followed by validation of selected 67 varieties in the second dry season (2017) through staggered sowing for high temperature. The analysis showed mean spikelet sterility of 21.82% and 33.81% for the first and second sowing, respectively. Further, average difference in spikelet sterility for unit increase in maximum temperature during the flowering period was observed to be 7.93%. Employment of nine heat stress associated markers for genetic analysis identified four sub-populations in the 67 varieties inferred through neighbor-joining phylogenetic tree and sub-structure analysis. Marker-trait association analysis showed two markers namely RM205, RM242 were significantly associated with spikelet sterility with phenotypic variance ($ R^{2} $) of 7.7% and 6.0%, respectively. Allelic phenotypic effect of favorable alleles for both the markers reduced spikelet sterility by 14.49% compared to mean spikelet sterility (33.81%). Furthermore, four rice varieties showed spikelet sterility < 15%. Thus, predominantly moderate tolerance to susceptible response was observed for rice varieties in this study. Besides, favorable allele of RM205, RM242 could be effectively used for improving tolerance in rice varieties to heat stress. Heat stress (dpeaa)DE-He213 Spikelet sterility (dpeaa)DE-He213 Marker-trait association (dpeaa)DE-He213 Heat stress susceptibility index (dpeaa)DE-He213 Allelic phenotypic effect (dpeaa)DE-He213 Favorable and non-favorable alleles (dpeaa)DE-He213 Balasubramaniasai, Cayalvizhi verfasserin aut Behura, Niranjana verfasserin aut Purty, Mohini verfasserin aut Samantaray, Sanghamitra verfasserin aut Subudhi, Hatanath verfasserin aut Ngangkham, Umakanta verfasserin aut Devanna, B. N. verfasserin aut Katara, Jawahar Lal verfasserin aut Kumar, Awadhesh verfasserin aut Behera, Lambodar verfasserin aut Enthalten in Genetic resources and crop evolution Dordrecht [u.a.] : Springer Science + Business Media B.V, 1953 68(2021), 5 vom: 13. Feb., Seite 1923-1935 (DE-627)320529029 (DE-600)2015535-9 1573-5109 nnns volume:68 year:2021 number:5 day:13 month:02 pages:1923-1935 https://dx.doi.org/10.1007/s10722-021-01106-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_211 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 48.58 ASE 42.43 ASE AR 68 2021 5 13 02 1923-1935 |
spelling |
10.1007/s10722-021-01106-7 doi (DE-627)SPR043894569 (DE-599)SPRs10722-021-01106-7-e (SPR)s10722-021-01106-7-e DE-627 ger DE-627 rakwb eng 580 ASE 48.58 bkl 42.43 bkl Chidambaranathan, Parameswaran verfasserin aut Effects of high temperature on spikelet sterility in rice (Oryza sativa L.): association between molecular markers and allelic phenotypic effect in field condition 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Rice varieties are generally bred for higher yield but may possess genomic regions conferring tolerance to abiotic stresses. Climate change driven heat stress during reproductive stage of the crop affects spikelet fertility and yield. Though genetic regions associated with heat stress tolerance have been identified in rice, but response of rice varieties and allelic phenotypic effect favoring spikelet fertility during heat stress has not been comprehensively studied. Hence, the present study aimed at assessing the response of 198 rice varieties during the dry season (2016) followed by validation of selected 67 varieties in the second dry season (2017) through staggered sowing for high temperature. The analysis showed mean spikelet sterility of 21.82% and 33.81% for the first and second sowing, respectively. Further, average difference in spikelet sterility for unit increase in maximum temperature during the flowering period was observed to be 7.93%. Employment of nine heat stress associated markers for genetic analysis identified four sub-populations in the 67 varieties inferred through neighbor-joining phylogenetic tree and sub-structure analysis. Marker-trait association analysis showed two markers namely RM205, RM242 were significantly associated with spikelet sterility with phenotypic variance ($ R^{2} $) of 7.7% and 6.0%, respectively. Allelic phenotypic effect of favorable alleles for both the markers reduced spikelet sterility by 14.49% compared to mean spikelet sterility (33.81%). Furthermore, four rice varieties showed spikelet sterility < 15%. Thus, predominantly moderate tolerance to susceptible response was observed for rice varieties in this study. Besides, favorable allele of RM205, RM242 could be effectively used for improving tolerance in rice varieties to heat stress. Heat stress (dpeaa)DE-He213 Spikelet sterility (dpeaa)DE-He213 Marker-trait association (dpeaa)DE-He213 Heat stress susceptibility index (dpeaa)DE-He213 Allelic phenotypic effect (dpeaa)DE-He213 Favorable and non-favorable alleles (dpeaa)DE-He213 Balasubramaniasai, Cayalvizhi verfasserin aut Behura, Niranjana verfasserin aut Purty, Mohini verfasserin aut Samantaray, Sanghamitra verfasserin aut Subudhi, Hatanath verfasserin aut Ngangkham, Umakanta verfasserin aut Devanna, B. N. verfasserin aut Katara, Jawahar Lal verfasserin aut Kumar, Awadhesh verfasserin aut Behera, Lambodar verfasserin aut Enthalten in Genetic resources and crop evolution Dordrecht [u.a.] : Springer Science + Business Media B.V, 1953 68(2021), 5 vom: 13. Feb., Seite 1923-1935 (DE-627)320529029 (DE-600)2015535-9 1573-5109 nnns volume:68 year:2021 number:5 day:13 month:02 pages:1923-1935 https://dx.doi.org/10.1007/s10722-021-01106-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_211 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 48.58 ASE 42.43 ASE AR 68 2021 5 13 02 1923-1935 |
allfields_unstemmed |
10.1007/s10722-021-01106-7 doi (DE-627)SPR043894569 (DE-599)SPRs10722-021-01106-7-e (SPR)s10722-021-01106-7-e DE-627 ger DE-627 rakwb eng 580 ASE 48.58 bkl 42.43 bkl Chidambaranathan, Parameswaran verfasserin aut Effects of high temperature on spikelet sterility in rice (Oryza sativa L.): association between molecular markers and allelic phenotypic effect in field condition 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Rice varieties are generally bred for higher yield but may possess genomic regions conferring tolerance to abiotic stresses. Climate change driven heat stress during reproductive stage of the crop affects spikelet fertility and yield. Though genetic regions associated with heat stress tolerance have been identified in rice, but response of rice varieties and allelic phenotypic effect favoring spikelet fertility during heat stress has not been comprehensively studied. Hence, the present study aimed at assessing the response of 198 rice varieties during the dry season (2016) followed by validation of selected 67 varieties in the second dry season (2017) through staggered sowing for high temperature. The analysis showed mean spikelet sterility of 21.82% and 33.81% for the first and second sowing, respectively. Further, average difference in spikelet sterility for unit increase in maximum temperature during the flowering period was observed to be 7.93%. Employment of nine heat stress associated markers for genetic analysis identified four sub-populations in the 67 varieties inferred through neighbor-joining phylogenetic tree and sub-structure analysis. Marker-trait association analysis showed two markers namely RM205, RM242 were significantly associated with spikelet sterility with phenotypic variance ($ R^{2} $) of 7.7% and 6.0%, respectively. Allelic phenotypic effect of favorable alleles for both the markers reduced spikelet sterility by 14.49% compared to mean spikelet sterility (33.81%). Furthermore, four rice varieties showed spikelet sterility < 15%. Thus, predominantly moderate tolerance to susceptible response was observed for rice varieties in this study. Besides, favorable allele of RM205, RM242 could be effectively used for improving tolerance in rice varieties to heat stress. Heat stress (dpeaa)DE-He213 Spikelet sterility (dpeaa)DE-He213 Marker-trait association (dpeaa)DE-He213 Heat stress susceptibility index (dpeaa)DE-He213 Allelic phenotypic effect (dpeaa)DE-He213 Favorable and non-favorable alleles (dpeaa)DE-He213 Balasubramaniasai, Cayalvizhi verfasserin aut Behura, Niranjana verfasserin aut Purty, Mohini verfasserin aut Samantaray, Sanghamitra verfasserin aut Subudhi, Hatanath verfasserin aut Ngangkham, Umakanta verfasserin aut Devanna, B. N. verfasserin aut Katara, Jawahar Lal verfasserin aut Kumar, Awadhesh verfasserin aut Behera, Lambodar verfasserin aut Enthalten in Genetic resources and crop evolution Dordrecht [u.a.] : Springer Science + Business Media B.V, 1953 68(2021), 5 vom: 13. Feb., Seite 1923-1935 (DE-627)320529029 (DE-600)2015535-9 1573-5109 nnns volume:68 year:2021 number:5 day:13 month:02 pages:1923-1935 https://dx.doi.org/10.1007/s10722-021-01106-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_211 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 48.58 ASE 42.43 ASE AR 68 2021 5 13 02 1923-1935 |
allfieldsGer |
10.1007/s10722-021-01106-7 doi (DE-627)SPR043894569 (DE-599)SPRs10722-021-01106-7-e (SPR)s10722-021-01106-7-e DE-627 ger DE-627 rakwb eng 580 ASE 48.58 bkl 42.43 bkl Chidambaranathan, Parameswaran verfasserin aut Effects of high temperature on spikelet sterility in rice (Oryza sativa L.): association between molecular markers and allelic phenotypic effect in field condition 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Rice varieties are generally bred for higher yield but may possess genomic regions conferring tolerance to abiotic stresses. Climate change driven heat stress during reproductive stage of the crop affects spikelet fertility and yield. Though genetic regions associated with heat stress tolerance have been identified in rice, but response of rice varieties and allelic phenotypic effect favoring spikelet fertility during heat stress has not been comprehensively studied. Hence, the present study aimed at assessing the response of 198 rice varieties during the dry season (2016) followed by validation of selected 67 varieties in the second dry season (2017) through staggered sowing for high temperature. The analysis showed mean spikelet sterility of 21.82% and 33.81% for the first and second sowing, respectively. Further, average difference in spikelet sterility for unit increase in maximum temperature during the flowering period was observed to be 7.93%. Employment of nine heat stress associated markers for genetic analysis identified four sub-populations in the 67 varieties inferred through neighbor-joining phylogenetic tree and sub-structure analysis. Marker-trait association analysis showed two markers namely RM205, RM242 were significantly associated with spikelet sterility with phenotypic variance ($ R^{2} $) of 7.7% and 6.0%, respectively. Allelic phenotypic effect of favorable alleles for both the markers reduced spikelet sterility by 14.49% compared to mean spikelet sterility (33.81%). Furthermore, four rice varieties showed spikelet sterility < 15%. Thus, predominantly moderate tolerance to susceptible response was observed for rice varieties in this study. Besides, favorable allele of RM205, RM242 could be effectively used for improving tolerance in rice varieties to heat stress. Heat stress (dpeaa)DE-He213 Spikelet sterility (dpeaa)DE-He213 Marker-trait association (dpeaa)DE-He213 Heat stress susceptibility index (dpeaa)DE-He213 Allelic phenotypic effect (dpeaa)DE-He213 Favorable and non-favorable alleles (dpeaa)DE-He213 Balasubramaniasai, Cayalvizhi verfasserin aut Behura, Niranjana verfasserin aut Purty, Mohini verfasserin aut Samantaray, Sanghamitra verfasserin aut Subudhi, Hatanath verfasserin aut Ngangkham, Umakanta verfasserin aut Devanna, B. N. verfasserin aut Katara, Jawahar Lal verfasserin aut Kumar, Awadhesh verfasserin aut Behera, Lambodar verfasserin aut Enthalten in Genetic resources and crop evolution Dordrecht [u.a.] : Springer Science + Business Media B.V, 1953 68(2021), 5 vom: 13. Feb., Seite 1923-1935 (DE-627)320529029 (DE-600)2015535-9 1573-5109 nnns volume:68 year:2021 number:5 day:13 month:02 pages:1923-1935 https://dx.doi.org/10.1007/s10722-021-01106-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_211 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 48.58 ASE 42.43 ASE AR 68 2021 5 13 02 1923-1935 |
allfieldsSound |
10.1007/s10722-021-01106-7 doi (DE-627)SPR043894569 (DE-599)SPRs10722-021-01106-7-e (SPR)s10722-021-01106-7-e DE-627 ger DE-627 rakwb eng 580 ASE 48.58 bkl 42.43 bkl Chidambaranathan, Parameswaran verfasserin aut Effects of high temperature on spikelet sterility in rice (Oryza sativa L.): association between molecular markers and allelic phenotypic effect in field condition 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Rice varieties are generally bred for higher yield but may possess genomic regions conferring tolerance to abiotic stresses. Climate change driven heat stress during reproductive stage of the crop affects spikelet fertility and yield. Though genetic regions associated with heat stress tolerance have been identified in rice, but response of rice varieties and allelic phenotypic effect favoring spikelet fertility during heat stress has not been comprehensively studied. Hence, the present study aimed at assessing the response of 198 rice varieties during the dry season (2016) followed by validation of selected 67 varieties in the second dry season (2017) through staggered sowing for high temperature. The analysis showed mean spikelet sterility of 21.82% and 33.81% for the first and second sowing, respectively. Further, average difference in spikelet sterility for unit increase in maximum temperature during the flowering period was observed to be 7.93%. Employment of nine heat stress associated markers for genetic analysis identified four sub-populations in the 67 varieties inferred through neighbor-joining phylogenetic tree and sub-structure analysis. Marker-trait association analysis showed two markers namely RM205, RM242 were significantly associated with spikelet sterility with phenotypic variance ($ R^{2} $) of 7.7% and 6.0%, respectively. Allelic phenotypic effect of favorable alleles for both the markers reduced spikelet sterility by 14.49% compared to mean spikelet sterility (33.81%). Furthermore, four rice varieties showed spikelet sterility < 15%. Thus, predominantly moderate tolerance to susceptible response was observed for rice varieties in this study. Besides, favorable allele of RM205, RM242 could be effectively used for improving tolerance in rice varieties to heat stress. Heat stress (dpeaa)DE-He213 Spikelet sterility (dpeaa)DE-He213 Marker-trait association (dpeaa)DE-He213 Heat stress susceptibility index (dpeaa)DE-He213 Allelic phenotypic effect (dpeaa)DE-He213 Favorable and non-favorable alleles (dpeaa)DE-He213 Balasubramaniasai, Cayalvizhi verfasserin aut Behura, Niranjana verfasserin aut Purty, Mohini verfasserin aut Samantaray, Sanghamitra verfasserin aut Subudhi, Hatanath verfasserin aut Ngangkham, Umakanta verfasserin aut Devanna, B. N. verfasserin aut Katara, Jawahar Lal verfasserin aut Kumar, Awadhesh verfasserin aut Behera, Lambodar verfasserin aut Enthalten in Genetic resources and crop evolution Dordrecht [u.a.] : Springer Science + Business Media B.V, 1953 68(2021), 5 vom: 13. Feb., Seite 1923-1935 (DE-627)320529029 (DE-600)2015535-9 1573-5109 nnns volume:68 year:2021 number:5 day:13 month:02 pages:1923-1935 https://dx.doi.org/10.1007/s10722-021-01106-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_211 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 48.58 ASE 42.43 ASE AR 68 2021 5 13 02 1923-1935 |
language |
English |
source |
Enthalten in Genetic resources and crop evolution 68(2021), 5 vom: 13. Feb., Seite 1923-1935 volume:68 year:2021 number:5 day:13 month:02 pages:1923-1935 |
sourceStr |
Enthalten in Genetic resources and crop evolution 68(2021), 5 vom: 13. Feb., Seite 1923-1935 volume:68 year:2021 number:5 day:13 month:02 pages:1923-1935 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Heat stress Spikelet sterility Marker-trait association Heat stress susceptibility index Allelic phenotypic effect Favorable and non-favorable alleles |
dewey-raw |
580 |
isfreeaccess_bool |
false |
container_title |
Genetic resources and crop evolution |
authorswithroles_txt_mv |
Chidambaranathan, Parameswaran @@aut@@ Balasubramaniasai, Cayalvizhi @@aut@@ Behura, Niranjana @@aut@@ Purty, Mohini @@aut@@ Samantaray, Sanghamitra @@aut@@ Subudhi, Hatanath @@aut@@ Ngangkham, Umakanta @@aut@@ Devanna, B. N. @@aut@@ Katara, Jawahar Lal @@aut@@ Kumar, Awadhesh @@aut@@ Behera, Lambodar @@aut@@ |
publishDateDaySort_date |
2021-02-13T00:00:00Z |
hierarchy_top_id |
320529029 |
dewey-sort |
3580 |
id |
SPR043894569 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR043894569</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519172251.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210429s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10722-021-01106-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR043894569</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)SPRs10722-021-01106-7-e</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10722-021-01106-7-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">580</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">48.58</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.43</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chidambaranathan, Parameswaran</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effects of high temperature on spikelet sterility in rice (Oryza sativa L.): association between molecular markers and allelic phenotypic effect in field condition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Rice varieties are generally bred for higher yield but may possess genomic regions conferring tolerance to abiotic stresses. Climate change driven heat stress during reproductive stage of the crop affects spikelet fertility and yield. Though genetic regions associated with heat stress tolerance have been identified in rice, but response of rice varieties and allelic phenotypic effect favoring spikelet fertility during heat stress has not been comprehensively studied. Hence, the present study aimed at assessing the response of 198 rice varieties during the dry season (2016) followed by validation of selected 67 varieties in the second dry season (2017) through staggered sowing for high temperature. The analysis showed mean spikelet sterility of 21.82% and 33.81% for the first and second sowing, respectively. Further, average difference in spikelet sterility for unit increase in maximum temperature during the flowering period was observed to be 7.93%. Employment of nine heat stress associated markers for genetic analysis identified four sub-populations in the 67 varieties inferred through neighbor-joining phylogenetic tree and sub-structure analysis. Marker-trait association analysis showed two markers namely RM205, RM242 were significantly associated with spikelet sterility with phenotypic variance ($ R^{2} $) of 7.7% and 6.0%, respectively. Allelic phenotypic effect of favorable alleles for both the markers reduced spikelet sterility by 14.49% compared to mean spikelet sterility (33.81%). Furthermore, four rice varieties showed spikelet sterility < 15%. Thus, predominantly moderate tolerance to susceptible response was observed for rice varieties in this study. Besides, favorable allele of RM205, RM242 could be effectively used for improving tolerance in rice varieties to heat stress.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat stress</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spikelet sterility</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Marker-trait association</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat stress susceptibility index</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Allelic phenotypic effect</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Favorable and non-favorable alleles</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Balasubramaniasai, Cayalvizhi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Behura, Niranjana</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Purty, Mohini</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Samantaray, Sanghamitra</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Subudhi, Hatanath</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ngangkham, Umakanta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Devanna, B. N.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Katara, Jawahar Lal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kumar, Awadhesh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Behera, Lambodar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Genetic resources and crop evolution</subfield><subfield code="d">Dordrecht [u.a.] : Springer Science + Business Media B.V, 1953</subfield><subfield code="g">68(2021), 5 vom: 13. Feb., Seite 1923-1935</subfield><subfield code="w">(DE-627)320529029</subfield><subfield code="w">(DE-600)2015535-9</subfield><subfield code="x">1573-5109</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:68</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:5</subfield><subfield code="g">day:13</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:1923-1935</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10722-021-01106-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_211</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">48.58</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.43</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">68</subfield><subfield code="j">2021</subfield><subfield code="e">5</subfield><subfield code="b">13</subfield><subfield code="c">02</subfield><subfield code="h">1923-1935</subfield></datafield></record></collection>
|
author |
Chidambaranathan, Parameswaran |
spellingShingle |
Chidambaranathan, Parameswaran ddc 580 bkl 48.58 bkl 42.43 misc Heat stress misc Spikelet sterility misc Marker-trait association misc Heat stress susceptibility index misc Allelic phenotypic effect misc Favorable and non-favorable alleles Effects of high temperature on spikelet sterility in rice (Oryza sativa L.): association between molecular markers and allelic phenotypic effect in field condition |
authorStr |
Chidambaranathan, Parameswaran |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320529029 |
format |
electronic Article |
dewey-ones |
580 - Plants (Botany) |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1573-5109 |
topic_title |
580 ASE 48.58 bkl 42.43 bkl Effects of high temperature on spikelet sterility in rice (Oryza sativa L.): association between molecular markers and allelic phenotypic effect in field condition Heat stress (dpeaa)DE-He213 Spikelet sterility (dpeaa)DE-He213 Marker-trait association (dpeaa)DE-He213 Heat stress susceptibility index (dpeaa)DE-He213 Allelic phenotypic effect (dpeaa)DE-He213 Favorable and non-favorable alleles (dpeaa)DE-He213 |
topic |
ddc 580 bkl 48.58 bkl 42.43 misc Heat stress misc Spikelet sterility misc Marker-trait association misc Heat stress susceptibility index misc Allelic phenotypic effect misc Favorable and non-favorable alleles |
topic_unstemmed |
ddc 580 bkl 48.58 bkl 42.43 misc Heat stress misc Spikelet sterility misc Marker-trait association misc Heat stress susceptibility index misc Allelic phenotypic effect misc Favorable and non-favorable alleles |
topic_browse |
ddc 580 bkl 48.58 bkl 42.43 misc Heat stress misc Spikelet sterility misc Marker-trait association misc Heat stress susceptibility index misc Allelic phenotypic effect misc Favorable and non-favorable alleles |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Genetic resources and crop evolution |
hierarchy_parent_id |
320529029 |
dewey-tens |
580 - Plants (Botany) |
hierarchy_top_title |
Genetic resources and crop evolution |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320529029 (DE-600)2015535-9 |
title |
Effects of high temperature on spikelet sterility in rice (Oryza sativa L.): association between molecular markers and allelic phenotypic effect in field condition |
ctrlnum |
(DE-627)SPR043894569 (DE-599)SPRs10722-021-01106-7-e (SPR)s10722-021-01106-7-e |
title_full |
Effects of high temperature on spikelet sterility in rice (Oryza sativa L.): association between molecular markers and allelic phenotypic effect in field condition |
author_sort |
Chidambaranathan, Parameswaran |
journal |
Genetic resources and crop evolution |
journalStr |
Genetic resources and crop evolution |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
1923 |
author_browse |
Chidambaranathan, Parameswaran Balasubramaniasai, Cayalvizhi Behura, Niranjana Purty, Mohini Samantaray, Sanghamitra Subudhi, Hatanath Ngangkham, Umakanta Devanna, B. N. Katara, Jawahar Lal Kumar, Awadhesh Behera, Lambodar |
container_volume |
68 |
class |
580 ASE 48.58 bkl 42.43 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Chidambaranathan, Parameswaran |
doi_str_mv |
10.1007/s10722-021-01106-7 |
dewey-full |
580 |
author2-role |
verfasserin |
title_sort |
effects of high temperature on spikelet sterility in rice (oryza sativa l.): association between molecular markers and allelic phenotypic effect in field condition |
title_auth |
Effects of high temperature on spikelet sterility in rice (Oryza sativa L.): association between molecular markers and allelic phenotypic effect in field condition |
abstract |
Abstract Rice varieties are generally bred for higher yield but may possess genomic regions conferring tolerance to abiotic stresses. Climate change driven heat stress during reproductive stage of the crop affects spikelet fertility and yield. Though genetic regions associated with heat stress tolerance have been identified in rice, but response of rice varieties and allelic phenotypic effect favoring spikelet fertility during heat stress has not been comprehensively studied. Hence, the present study aimed at assessing the response of 198 rice varieties during the dry season (2016) followed by validation of selected 67 varieties in the second dry season (2017) through staggered sowing for high temperature. The analysis showed mean spikelet sterility of 21.82% and 33.81% for the first and second sowing, respectively. Further, average difference in spikelet sterility for unit increase in maximum temperature during the flowering period was observed to be 7.93%. Employment of nine heat stress associated markers for genetic analysis identified four sub-populations in the 67 varieties inferred through neighbor-joining phylogenetic tree and sub-structure analysis. Marker-trait association analysis showed two markers namely RM205, RM242 were significantly associated with spikelet sterility with phenotypic variance ($ R^{2} $) of 7.7% and 6.0%, respectively. Allelic phenotypic effect of favorable alleles for both the markers reduced spikelet sterility by 14.49% compared to mean spikelet sterility (33.81%). Furthermore, four rice varieties showed spikelet sterility < 15%. Thus, predominantly moderate tolerance to susceptible response was observed for rice varieties in this study. Besides, favorable allele of RM205, RM242 could be effectively used for improving tolerance in rice varieties to heat stress. |
abstractGer |
Abstract Rice varieties are generally bred for higher yield but may possess genomic regions conferring tolerance to abiotic stresses. Climate change driven heat stress during reproductive stage of the crop affects spikelet fertility and yield. Though genetic regions associated with heat stress tolerance have been identified in rice, but response of rice varieties and allelic phenotypic effect favoring spikelet fertility during heat stress has not been comprehensively studied. Hence, the present study aimed at assessing the response of 198 rice varieties during the dry season (2016) followed by validation of selected 67 varieties in the second dry season (2017) through staggered sowing for high temperature. The analysis showed mean spikelet sterility of 21.82% and 33.81% for the first and second sowing, respectively. Further, average difference in spikelet sterility for unit increase in maximum temperature during the flowering period was observed to be 7.93%. Employment of nine heat stress associated markers for genetic analysis identified four sub-populations in the 67 varieties inferred through neighbor-joining phylogenetic tree and sub-structure analysis. Marker-trait association analysis showed two markers namely RM205, RM242 were significantly associated with spikelet sterility with phenotypic variance ($ R^{2} $) of 7.7% and 6.0%, respectively. Allelic phenotypic effect of favorable alleles for both the markers reduced spikelet sterility by 14.49% compared to mean spikelet sterility (33.81%). Furthermore, four rice varieties showed spikelet sterility < 15%. Thus, predominantly moderate tolerance to susceptible response was observed for rice varieties in this study. Besides, favorable allele of RM205, RM242 could be effectively used for improving tolerance in rice varieties to heat stress. |
abstract_unstemmed |
Abstract Rice varieties are generally bred for higher yield but may possess genomic regions conferring tolerance to abiotic stresses. Climate change driven heat stress during reproductive stage of the crop affects spikelet fertility and yield. Though genetic regions associated with heat stress tolerance have been identified in rice, but response of rice varieties and allelic phenotypic effect favoring spikelet fertility during heat stress has not been comprehensively studied. Hence, the present study aimed at assessing the response of 198 rice varieties during the dry season (2016) followed by validation of selected 67 varieties in the second dry season (2017) through staggered sowing for high temperature. The analysis showed mean spikelet sterility of 21.82% and 33.81% for the first and second sowing, respectively. Further, average difference in spikelet sterility for unit increase in maximum temperature during the flowering period was observed to be 7.93%. Employment of nine heat stress associated markers for genetic analysis identified four sub-populations in the 67 varieties inferred through neighbor-joining phylogenetic tree and sub-structure analysis. Marker-trait association analysis showed two markers namely RM205, RM242 were significantly associated with spikelet sterility with phenotypic variance ($ R^{2} $) of 7.7% and 6.0%, respectively. Allelic phenotypic effect of favorable alleles for both the markers reduced spikelet sterility by 14.49% compared to mean spikelet sterility (33.81%). Furthermore, four rice varieties showed spikelet sterility < 15%. Thus, predominantly moderate tolerance to susceptible response was observed for rice varieties in this study. Besides, favorable allele of RM205, RM242 could be effectively used for improving tolerance in rice varieties to heat stress. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_211 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
5 |
title_short |
Effects of high temperature on spikelet sterility in rice (Oryza sativa L.): association between molecular markers and allelic phenotypic effect in field condition |
url |
https://dx.doi.org/10.1007/s10722-021-01106-7 |
remote_bool |
true |
author2 |
Balasubramaniasai, Cayalvizhi Behura, Niranjana Purty, Mohini Samantaray, Sanghamitra Subudhi, Hatanath Ngangkham, Umakanta Devanna, B. N. Katara, Jawahar Lal Kumar, Awadhesh Behera, Lambodar |
author2Str |
Balasubramaniasai, Cayalvizhi Behura, Niranjana Purty, Mohini Samantaray, Sanghamitra Subudhi, Hatanath Ngangkham, Umakanta Devanna, B. N. Katara, Jawahar Lal Kumar, Awadhesh Behera, Lambodar |
ppnlink |
320529029 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10722-021-01106-7 |
up_date |
2024-07-03T21:36:31.505Z |
_version_ |
1803595380442529792 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR043894569</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519172251.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210429s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10722-021-01106-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR043894569</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)SPRs10722-021-01106-7-e</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10722-021-01106-7-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">580</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">48.58</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.43</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chidambaranathan, Parameswaran</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effects of high temperature on spikelet sterility in rice (Oryza sativa L.): association between molecular markers and allelic phenotypic effect in field condition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Rice varieties are generally bred for higher yield but may possess genomic regions conferring tolerance to abiotic stresses. Climate change driven heat stress during reproductive stage of the crop affects spikelet fertility and yield. Though genetic regions associated with heat stress tolerance have been identified in rice, but response of rice varieties and allelic phenotypic effect favoring spikelet fertility during heat stress has not been comprehensively studied. Hence, the present study aimed at assessing the response of 198 rice varieties during the dry season (2016) followed by validation of selected 67 varieties in the second dry season (2017) through staggered sowing for high temperature. The analysis showed mean spikelet sterility of 21.82% and 33.81% for the first and second sowing, respectively. Further, average difference in spikelet sterility for unit increase in maximum temperature during the flowering period was observed to be 7.93%. Employment of nine heat stress associated markers for genetic analysis identified four sub-populations in the 67 varieties inferred through neighbor-joining phylogenetic tree and sub-structure analysis. Marker-trait association analysis showed two markers namely RM205, RM242 were significantly associated with spikelet sterility with phenotypic variance ($ R^{2} $) of 7.7% and 6.0%, respectively. Allelic phenotypic effect of favorable alleles for both the markers reduced spikelet sterility by 14.49% compared to mean spikelet sterility (33.81%). Furthermore, four rice varieties showed spikelet sterility < 15%. Thus, predominantly moderate tolerance to susceptible response was observed for rice varieties in this study. Besides, favorable allele of RM205, RM242 could be effectively used for improving tolerance in rice varieties to heat stress.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat stress</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spikelet sterility</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Marker-trait association</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat stress susceptibility index</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Allelic phenotypic effect</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Favorable and non-favorable alleles</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Balasubramaniasai, Cayalvizhi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Behura, Niranjana</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Purty, Mohini</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Samantaray, Sanghamitra</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Subudhi, Hatanath</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ngangkham, Umakanta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Devanna, B. N.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Katara, Jawahar Lal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kumar, Awadhesh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Behera, Lambodar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Genetic resources and crop evolution</subfield><subfield code="d">Dordrecht [u.a.] : Springer Science + Business Media B.V, 1953</subfield><subfield code="g">68(2021), 5 vom: 13. Feb., Seite 1923-1935</subfield><subfield code="w">(DE-627)320529029</subfield><subfield code="w">(DE-600)2015535-9</subfield><subfield code="x">1573-5109</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:68</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:5</subfield><subfield code="g">day:13</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:1923-1935</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10722-021-01106-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_211</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">48.58</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.43</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">68</subfield><subfield code="j">2021</subfield><subfield code="e">5</subfield><subfield code="b">13</subfield><subfield code="c">02</subfield><subfield code="h">1923-1935</subfield></datafield></record></collection>
|
score |
7.4022045 |