Positive influence of gut microbiota on the effects of Korean red ginseng in metabolic syndrome: a randomized, double-blind, placebo-controlled clinical trial
Background Ginseng, a traditional herbal medicine, has been used for thousands of years to treat various diseases including metabolic syndrome (MS). However, the underlying mechanism(s) of such beneficial actions of ginseng against MS is poorly understood. Emerging evidence indicates a close associa...
Ausführliche Beschreibung
Autor*in: |
Seong, Eunhak [verfasserIn] Bose, Shambhunath [verfasserIn] Han, Song-Yi [verfasserIn] Song, Eun-Ji [verfasserIn] Lee, Myeongjong [verfasserIn] Nam, Young-Do [verfasserIn] Kim, Hojun [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Anmerkung: |
© European Association for Predictive, Preventive and Personalised Medicine (EPMA) 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: The EPMA journal - London : BioMed Central, 2010, 12(2021), 2 vom: Juni, Seite 177-197 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2021 ; number:2 ; month:06 ; pages:177-197 |
Links: |
---|
DOI / URN: |
10.1007/s13167-021-00243-4 |
---|
Katalog-ID: |
SPR044272812 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR044272812 | ||
003 | DE-627 | ||
005 | 20230519193513.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210611s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s13167-021-00243-4 |2 doi | |
035 | |a (DE-627)SPR044272812 | ||
035 | |a (SPR)s13167-021-00243-4-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q ASE |
100 | 1 | |a Seong, Eunhak |e verfasserin |4 aut | |
245 | 1 | 0 | |a Positive influence of gut microbiota on the effects of Korean red ginseng in metabolic syndrome: a randomized, double-blind, placebo-controlled clinical trial |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © European Association for Predictive, Preventive and Personalised Medicine (EPMA) 2021 | ||
520 | |a Background Ginseng, a traditional herbal medicine, has been used for thousands of years to treat various diseases including metabolic syndrome (MS). However, the underlying mechanism(s) of such beneficial actions of ginseng against MS is poorly understood. Emerging evidence indicates a close association of the host gut microbiota with MS. The present study was conducted to examine, whether the beneficial effects of Korean red ginseng (KRG) against MS could be influenced by gut microbial population and whether gut microbial profile could be considered a valuable biomarker for targeted treatment strategy for MS in compliance with the predictive, preventive, and personalized medicine (PPPM / 3PM). Methods This clinical study was a randomized, double-blind, placebo-controlled trial evaluating the effects of KRG treatment for 8 weeks on patients with MS. The anthropometric parameters, vital signs, metabolic biomarkers, and gut microbial composition through 16S rRNA gene sequencing were assessed at the baseline and endpoint. The impact of KRG was also evaluated after categorizing the subjects into responders and non-responders, as well as enterotypes 1 and 2 based on their gut microbial profile at the baseline. Results Fifty out of 60 subjects who meet the MS criteria completed the trial without showing adverse reactions. The KRG treatment caused a significant decrease in systolic blood pressure (SBP). Microbial analysis revealed a decrease in Firmicutes, Proteobacteria, and an increase in Bacteroidetes in response to KRG. In patient stratification analysis, the responders showing marked improvement in the serum levels of lipid metabolic biomarkers TC and LDL due to the KRG treatment exhibited higher population of both the family Lachnospiraceae and order Clostridiales compared to the non-responders. The homeostasis model assessment-insulin resistance (HOMA-IR) and insulin level were decreased in enterotype 1 (Bacteroides-abundant group) and increased in enterotype 2 (prevotella-abundant group) following the KRG treatment. Conclusion In this study, the effects of KRG on the glucose metabolism in MS patients were influenced by the relative abundances of gut microbial population and differed according to the individual enterotype. Therefore, the analysis of enterotype categories is considered to be helpful in predicting the effectiveness of KRG on glucose homeostasis of MS patients individually. This will further help to decide on the appropriate treatment strategy for MS, in compliance with the perspective of PPPM. | ||
650 | 4 | |a Korean red ginseng |7 (dpeaa)DE-He213 | |
650 | 4 | |a Herbal medicine |7 (dpeaa)DE-He213 | |
650 | 4 | |a Metabolic syndrome |7 (dpeaa)DE-He213 | |
650 | 4 | |a Patient stratification |7 (dpeaa)DE-He213 | |
650 | 4 | |a Blood serum |7 (dpeaa)DE-He213 | |
650 | 4 | |a Biomarker panel |7 (dpeaa)DE-He213 | |
650 | 4 | |a Molecular pathways |7 (dpeaa)DE-He213 | |
650 | 4 | |a Oxidative stress |7 (dpeaa)DE-He213 | |
650 | 4 | |a Inflammation |7 (dpeaa)DE-He213 | |
650 | 4 | |a ROS detoxification |7 (dpeaa)DE-He213 | |
650 | 4 | |a Lipid metabolic biomarkers |7 (dpeaa)DE-He213 | |
650 | 4 | |a Hyperlipidemia |7 (dpeaa)DE-He213 | |
650 | 4 | |a Glucose homeostasis |7 (dpeaa)DE-He213 | |
650 | 4 | |a Insulin level |7 (dpeaa)DE-He213 | |
650 | 4 | |a Anthropometric parameters |7 (dpeaa)DE-He213 | |
650 | 4 | |a Vital signs |7 (dpeaa)DE-He213 | |
650 | 4 | |a Fat mass |7 (dpeaa)DE-He213 | |
650 | 4 | |a BMI |7 (dpeaa)DE-He213 | |
650 | 4 | |a Gender |7 (dpeaa)DE-He213 | |
650 | 4 | |a Predictive preventive personalized medicine (PPPM / 3PM) |7 (dpeaa)DE-He213 | |
650 | 4 | |a Individual enterotype |7 (dpeaa)DE-He213 | |
650 | 4 | |a Clinical trial |7 (dpeaa)DE-He213 | |
650 | 4 | |a Gut microbiome profile |7 (dpeaa)DE-He213 | |
650 | 4 | |a Drug response |7 (dpeaa)DE-He213 | |
650 | 4 | |a Treatment strategy |7 (dpeaa)DE-He213 | |
650 | 4 | |a Blood pressure |7 (dpeaa)DE-He213 | |
650 | 4 | |a 16S rRNA gene sequencing |7 (dpeaa)DE-He213 | |
650 | 4 | |a HOMA-IR |7 (dpeaa)DE-He213 | |
700 | 1 | |a Bose, Shambhunath |e verfasserin |4 aut | |
700 | 1 | |a Han, Song-Yi |e verfasserin |4 aut | |
700 | 1 | |a Song, Eun-Ji |e verfasserin |4 aut | |
700 | 1 | |a Lee, Myeongjong |e verfasserin |4 aut | |
700 | 1 | |a Nam, Young-Do |e verfasserin |4 aut | |
700 | 1 | |a Kim, Hojun |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t The EPMA journal |d London : BioMed Central, 2010 |g 12(2021), 2 vom: Juni, Seite 177-197 |w (DE-627)62317877X |w (DE-600)2545928-4 |x 1878-5085 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2021 |g number:2 |g month:06 |g pages:177-197 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s13167-021-00243-4 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_266 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2021 |e 2 |c 06 |h 177-197 |
author_variant |
e s es s b sb s y h syh e j s ejs m l ml y d n ydn h k hk |
---|---|
matchkey_str |
article:18785085:2021----::oiienlecogtirboanhefcsfoenegnegneaoisnrmaadmzdobe |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1007/s13167-021-00243-4 doi (DE-627)SPR044272812 (SPR)s13167-021-00243-4-e DE-627 ger DE-627 rakwb eng 610 ASE Seong, Eunhak verfasserin aut Positive influence of gut microbiota on the effects of Korean red ginseng in metabolic syndrome: a randomized, double-blind, placebo-controlled clinical trial 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © European Association for Predictive, Preventive and Personalised Medicine (EPMA) 2021 Background Ginseng, a traditional herbal medicine, has been used for thousands of years to treat various diseases including metabolic syndrome (MS). However, the underlying mechanism(s) of such beneficial actions of ginseng against MS is poorly understood. Emerging evidence indicates a close association of the host gut microbiota with MS. The present study was conducted to examine, whether the beneficial effects of Korean red ginseng (KRG) against MS could be influenced by gut microbial population and whether gut microbial profile could be considered a valuable biomarker for targeted treatment strategy for MS in compliance with the predictive, preventive, and personalized medicine (PPPM / 3PM). Methods This clinical study was a randomized, double-blind, placebo-controlled trial evaluating the effects of KRG treatment for 8 weeks on patients with MS. The anthropometric parameters, vital signs, metabolic biomarkers, and gut microbial composition through 16S rRNA gene sequencing were assessed at the baseline and endpoint. The impact of KRG was also evaluated after categorizing the subjects into responders and non-responders, as well as enterotypes 1 and 2 based on their gut microbial profile at the baseline. Results Fifty out of 60 subjects who meet the MS criteria completed the trial without showing adverse reactions. The KRG treatment caused a significant decrease in systolic blood pressure (SBP). Microbial analysis revealed a decrease in Firmicutes, Proteobacteria, and an increase in Bacteroidetes in response to KRG. In patient stratification analysis, the responders showing marked improvement in the serum levels of lipid metabolic biomarkers TC and LDL due to the KRG treatment exhibited higher population of both the family Lachnospiraceae and order Clostridiales compared to the non-responders. The homeostasis model assessment-insulin resistance (HOMA-IR) and insulin level were decreased in enterotype 1 (Bacteroides-abundant group) and increased in enterotype 2 (prevotella-abundant group) following the KRG treatment. Conclusion In this study, the effects of KRG on the glucose metabolism in MS patients were influenced by the relative abundances of gut microbial population and differed according to the individual enterotype. Therefore, the analysis of enterotype categories is considered to be helpful in predicting the effectiveness of KRG on glucose homeostasis of MS patients individually. This will further help to decide on the appropriate treatment strategy for MS, in compliance with the perspective of PPPM. Korean red ginseng (dpeaa)DE-He213 Herbal medicine (dpeaa)DE-He213 Metabolic syndrome (dpeaa)DE-He213 Patient stratification (dpeaa)DE-He213 Blood serum (dpeaa)DE-He213 Biomarker panel (dpeaa)DE-He213 Molecular pathways (dpeaa)DE-He213 Oxidative stress (dpeaa)DE-He213 Inflammation (dpeaa)DE-He213 ROS detoxification (dpeaa)DE-He213 Lipid metabolic biomarkers (dpeaa)DE-He213 Hyperlipidemia (dpeaa)DE-He213 Glucose homeostasis (dpeaa)DE-He213 Insulin level (dpeaa)DE-He213 Anthropometric parameters (dpeaa)DE-He213 Vital signs (dpeaa)DE-He213 Fat mass (dpeaa)DE-He213 BMI (dpeaa)DE-He213 Gender (dpeaa)DE-He213 Predictive preventive personalized medicine (PPPM / 3PM) (dpeaa)DE-He213 Individual enterotype (dpeaa)DE-He213 Clinical trial (dpeaa)DE-He213 Gut microbiome profile (dpeaa)DE-He213 Drug response (dpeaa)DE-He213 Treatment strategy (dpeaa)DE-He213 Blood pressure (dpeaa)DE-He213 16S rRNA gene sequencing (dpeaa)DE-He213 HOMA-IR (dpeaa)DE-He213 Bose, Shambhunath verfasserin aut Han, Song-Yi verfasserin aut Song, Eun-Ji verfasserin aut Lee, Myeongjong verfasserin aut Nam, Young-Do verfasserin aut Kim, Hojun verfasserin aut Enthalten in The EPMA journal London : BioMed Central, 2010 12(2021), 2 vom: Juni, Seite 177-197 (DE-627)62317877X (DE-600)2545928-4 1878-5085 nnns volume:12 year:2021 number:2 month:06 pages:177-197 https://dx.doi.org/10.1007/s13167-021-00243-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_266 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 12 2021 2 06 177-197 |
spelling |
10.1007/s13167-021-00243-4 doi (DE-627)SPR044272812 (SPR)s13167-021-00243-4-e DE-627 ger DE-627 rakwb eng 610 ASE Seong, Eunhak verfasserin aut Positive influence of gut microbiota on the effects of Korean red ginseng in metabolic syndrome: a randomized, double-blind, placebo-controlled clinical trial 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © European Association for Predictive, Preventive and Personalised Medicine (EPMA) 2021 Background Ginseng, a traditional herbal medicine, has been used for thousands of years to treat various diseases including metabolic syndrome (MS). However, the underlying mechanism(s) of such beneficial actions of ginseng against MS is poorly understood. Emerging evidence indicates a close association of the host gut microbiota with MS. The present study was conducted to examine, whether the beneficial effects of Korean red ginseng (KRG) against MS could be influenced by gut microbial population and whether gut microbial profile could be considered a valuable biomarker for targeted treatment strategy for MS in compliance with the predictive, preventive, and personalized medicine (PPPM / 3PM). Methods This clinical study was a randomized, double-blind, placebo-controlled trial evaluating the effects of KRG treatment for 8 weeks on patients with MS. The anthropometric parameters, vital signs, metabolic biomarkers, and gut microbial composition through 16S rRNA gene sequencing were assessed at the baseline and endpoint. The impact of KRG was also evaluated after categorizing the subjects into responders and non-responders, as well as enterotypes 1 and 2 based on their gut microbial profile at the baseline. Results Fifty out of 60 subjects who meet the MS criteria completed the trial without showing adverse reactions. The KRG treatment caused a significant decrease in systolic blood pressure (SBP). Microbial analysis revealed a decrease in Firmicutes, Proteobacteria, and an increase in Bacteroidetes in response to KRG. In patient stratification analysis, the responders showing marked improvement in the serum levels of lipid metabolic biomarkers TC and LDL due to the KRG treatment exhibited higher population of both the family Lachnospiraceae and order Clostridiales compared to the non-responders. The homeostasis model assessment-insulin resistance (HOMA-IR) and insulin level were decreased in enterotype 1 (Bacteroides-abundant group) and increased in enterotype 2 (prevotella-abundant group) following the KRG treatment. Conclusion In this study, the effects of KRG on the glucose metabolism in MS patients were influenced by the relative abundances of gut microbial population and differed according to the individual enterotype. Therefore, the analysis of enterotype categories is considered to be helpful in predicting the effectiveness of KRG on glucose homeostasis of MS patients individually. This will further help to decide on the appropriate treatment strategy for MS, in compliance with the perspective of PPPM. Korean red ginseng (dpeaa)DE-He213 Herbal medicine (dpeaa)DE-He213 Metabolic syndrome (dpeaa)DE-He213 Patient stratification (dpeaa)DE-He213 Blood serum (dpeaa)DE-He213 Biomarker panel (dpeaa)DE-He213 Molecular pathways (dpeaa)DE-He213 Oxidative stress (dpeaa)DE-He213 Inflammation (dpeaa)DE-He213 ROS detoxification (dpeaa)DE-He213 Lipid metabolic biomarkers (dpeaa)DE-He213 Hyperlipidemia (dpeaa)DE-He213 Glucose homeostasis (dpeaa)DE-He213 Insulin level (dpeaa)DE-He213 Anthropometric parameters (dpeaa)DE-He213 Vital signs (dpeaa)DE-He213 Fat mass (dpeaa)DE-He213 BMI (dpeaa)DE-He213 Gender (dpeaa)DE-He213 Predictive preventive personalized medicine (PPPM / 3PM) (dpeaa)DE-He213 Individual enterotype (dpeaa)DE-He213 Clinical trial (dpeaa)DE-He213 Gut microbiome profile (dpeaa)DE-He213 Drug response (dpeaa)DE-He213 Treatment strategy (dpeaa)DE-He213 Blood pressure (dpeaa)DE-He213 16S rRNA gene sequencing (dpeaa)DE-He213 HOMA-IR (dpeaa)DE-He213 Bose, Shambhunath verfasserin aut Han, Song-Yi verfasserin aut Song, Eun-Ji verfasserin aut Lee, Myeongjong verfasserin aut Nam, Young-Do verfasserin aut Kim, Hojun verfasserin aut Enthalten in The EPMA journal London : BioMed Central, 2010 12(2021), 2 vom: Juni, Seite 177-197 (DE-627)62317877X (DE-600)2545928-4 1878-5085 nnns volume:12 year:2021 number:2 month:06 pages:177-197 https://dx.doi.org/10.1007/s13167-021-00243-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_266 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 12 2021 2 06 177-197 |
allfields_unstemmed |
10.1007/s13167-021-00243-4 doi (DE-627)SPR044272812 (SPR)s13167-021-00243-4-e DE-627 ger DE-627 rakwb eng 610 ASE Seong, Eunhak verfasserin aut Positive influence of gut microbiota on the effects of Korean red ginseng in metabolic syndrome: a randomized, double-blind, placebo-controlled clinical trial 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © European Association for Predictive, Preventive and Personalised Medicine (EPMA) 2021 Background Ginseng, a traditional herbal medicine, has been used for thousands of years to treat various diseases including metabolic syndrome (MS). However, the underlying mechanism(s) of such beneficial actions of ginseng against MS is poorly understood. Emerging evidence indicates a close association of the host gut microbiota with MS. The present study was conducted to examine, whether the beneficial effects of Korean red ginseng (KRG) against MS could be influenced by gut microbial population and whether gut microbial profile could be considered a valuable biomarker for targeted treatment strategy for MS in compliance with the predictive, preventive, and personalized medicine (PPPM / 3PM). Methods This clinical study was a randomized, double-blind, placebo-controlled trial evaluating the effects of KRG treatment for 8 weeks on patients with MS. The anthropometric parameters, vital signs, metabolic biomarkers, and gut microbial composition through 16S rRNA gene sequencing were assessed at the baseline and endpoint. The impact of KRG was also evaluated after categorizing the subjects into responders and non-responders, as well as enterotypes 1 and 2 based on their gut microbial profile at the baseline. Results Fifty out of 60 subjects who meet the MS criteria completed the trial without showing adverse reactions. The KRG treatment caused a significant decrease in systolic blood pressure (SBP). Microbial analysis revealed a decrease in Firmicutes, Proteobacteria, and an increase in Bacteroidetes in response to KRG. In patient stratification analysis, the responders showing marked improvement in the serum levels of lipid metabolic biomarkers TC and LDL due to the KRG treatment exhibited higher population of both the family Lachnospiraceae and order Clostridiales compared to the non-responders. The homeostasis model assessment-insulin resistance (HOMA-IR) and insulin level were decreased in enterotype 1 (Bacteroides-abundant group) and increased in enterotype 2 (prevotella-abundant group) following the KRG treatment. Conclusion In this study, the effects of KRG on the glucose metabolism in MS patients were influenced by the relative abundances of gut microbial population and differed according to the individual enterotype. Therefore, the analysis of enterotype categories is considered to be helpful in predicting the effectiveness of KRG on glucose homeostasis of MS patients individually. This will further help to decide on the appropriate treatment strategy for MS, in compliance with the perspective of PPPM. Korean red ginseng (dpeaa)DE-He213 Herbal medicine (dpeaa)DE-He213 Metabolic syndrome (dpeaa)DE-He213 Patient stratification (dpeaa)DE-He213 Blood serum (dpeaa)DE-He213 Biomarker panel (dpeaa)DE-He213 Molecular pathways (dpeaa)DE-He213 Oxidative stress (dpeaa)DE-He213 Inflammation (dpeaa)DE-He213 ROS detoxification (dpeaa)DE-He213 Lipid metabolic biomarkers (dpeaa)DE-He213 Hyperlipidemia (dpeaa)DE-He213 Glucose homeostasis (dpeaa)DE-He213 Insulin level (dpeaa)DE-He213 Anthropometric parameters (dpeaa)DE-He213 Vital signs (dpeaa)DE-He213 Fat mass (dpeaa)DE-He213 BMI (dpeaa)DE-He213 Gender (dpeaa)DE-He213 Predictive preventive personalized medicine (PPPM / 3PM) (dpeaa)DE-He213 Individual enterotype (dpeaa)DE-He213 Clinical trial (dpeaa)DE-He213 Gut microbiome profile (dpeaa)DE-He213 Drug response (dpeaa)DE-He213 Treatment strategy (dpeaa)DE-He213 Blood pressure (dpeaa)DE-He213 16S rRNA gene sequencing (dpeaa)DE-He213 HOMA-IR (dpeaa)DE-He213 Bose, Shambhunath verfasserin aut Han, Song-Yi verfasserin aut Song, Eun-Ji verfasserin aut Lee, Myeongjong verfasserin aut Nam, Young-Do verfasserin aut Kim, Hojun verfasserin aut Enthalten in The EPMA journal London : BioMed Central, 2010 12(2021), 2 vom: Juni, Seite 177-197 (DE-627)62317877X (DE-600)2545928-4 1878-5085 nnns volume:12 year:2021 number:2 month:06 pages:177-197 https://dx.doi.org/10.1007/s13167-021-00243-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_266 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 12 2021 2 06 177-197 |
allfieldsGer |
10.1007/s13167-021-00243-4 doi (DE-627)SPR044272812 (SPR)s13167-021-00243-4-e DE-627 ger DE-627 rakwb eng 610 ASE Seong, Eunhak verfasserin aut Positive influence of gut microbiota on the effects of Korean red ginseng in metabolic syndrome: a randomized, double-blind, placebo-controlled clinical trial 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © European Association for Predictive, Preventive and Personalised Medicine (EPMA) 2021 Background Ginseng, a traditional herbal medicine, has been used for thousands of years to treat various diseases including metabolic syndrome (MS). However, the underlying mechanism(s) of such beneficial actions of ginseng against MS is poorly understood. Emerging evidence indicates a close association of the host gut microbiota with MS. The present study was conducted to examine, whether the beneficial effects of Korean red ginseng (KRG) against MS could be influenced by gut microbial population and whether gut microbial profile could be considered a valuable biomarker for targeted treatment strategy for MS in compliance with the predictive, preventive, and personalized medicine (PPPM / 3PM). Methods This clinical study was a randomized, double-blind, placebo-controlled trial evaluating the effects of KRG treatment for 8 weeks on patients with MS. The anthropometric parameters, vital signs, metabolic biomarkers, and gut microbial composition through 16S rRNA gene sequencing were assessed at the baseline and endpoint. The impact of KRG was also evaluated after categorizing the subjects into responders and non-responders, as well as enterotypes 1 and 2 based on their gut microbial profile at the baseline. Results Fifty out of 60 subjects who meet the MS criteria completed the trial without showing adverse reactions. The KRG treatment caused a significant decrease in systolic blood pressure (SBP). Microbial analysis revealed a decrease in Firmicutes, Proteobacteria, and an increase in Bacteroidetes in response to KRG. In patient stratification analysis, the responders showing marked improvement in the serum levels of lipid metabolic biomarkers TC and LDL due to the KRG treatment exhibited higher population of both the family Lachnospiraceae and order Clostridiales compared to the non-responders. The homeostasis model assessment-insulin resistance (HOMA-IR) and insulin level were decreased in enterotype 1 (Bacteroides-abundant group) and increased in enterotype 2 (prevotella-abundant group) following the KRG treatment. Conclusion In this study, the effects of KRG on the glucose metabolism in MS patients were influenced by the relative abundances of gut microbial population and differed according to the individual enterotype. Therefore, the analysis of enterotype categories is considered to be helpful in predicting the effectiveness of KRG on glucose homeostasis of MS patients individually. This will further help to decide on the appropriate treatment strategy for MS, in compliance with the perspective of PPPM. Korean red ginseng (dpeaa)DE-He213 Herbal medicine (dpeaa)DE-He213 Metabolic syndrome (dpeaa)DE-He213 Patient stratification (dpeaa)DE-He213 Blood serum (dpeaa)DE-He213 Biomarker panel (dpeaa)DE-He213 Molecular pathways (dpeaa)DE-He213 Oxidative stress (dpeaa)DE-He213 Inflammation (dpeaa)DE-He213 ROS detoxification (dpeaa)DE-He213 Lipid metabolic biomarkers (dpeaa)DE-He213 Hyperlipidemia (dpeaa)DE-He213 Glucose homeostasis (dpeaa)DE-He213 Insulin level (dpeaa)DE-He213 Anthropometric parameters (dpeaa)DE-He213 Vital signs (dpeaa)DE-He213 Fat mass (dpeaa)DE-He213 BMI (dpeaa)DE-He213 Gender (dpeaa)DE-He213 Predictive preventive personalized medicine (PPPM / 3PM) (dpeaa)DE-He213 Individual enterotype (dpeaa)DE-He213 Clinical trial (dpeaa)DE-He213 Gut microbiome profile (dpeaa)DE-He213 Drug response (dpeaa)DE-He213 Treatment strategy (dpeaa)DE-He213 Blood pressure (dpeaa)DE-He213 16S rRNA gene sequencing (dpeaa)DE-He213 HOMA-IR (dpeaa)DE-He213 Bose, Shambhunath verfasserin aut Han, Song-Yi verfasserin aut Song, Eun-Ji verfasserin aut Lee, Myeongjong verfasserin aut Nam, Young-Do verfasserin aut Kim, Hojun verfasserin aut Enthalten in The EPMA journal London : BioMed Central, 2010 12(2021), 2 vom: Juni, Seite 177-197 (DE-627)62317877X (DE-600)2545928-4 1878-5085 nnns volume:12 year:2021 number:2 month:06 pages:177-197 https://dx.doi.org/10.1007/s13167-021-00243-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_266 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 12 2021 2 06 177-197 |
allfieldsSound |
10.1007/s13167-021-00243-4 doi (DE-627)SPR044272812 (SPR)s13167-021-00243-4-e DE-627 ger DE-627 rakwb eng 610 ASE Seong, Eunhak verfasserin aut Positive influence of gut microbiota on the effects of Korean red ginseng in metabolic syndrome: a randomized, double-blind, placebo-controlled clinical trial 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © European Association for Predictive, Preventive and Personalised Medicine (EPMA) 2021 Background Ginseng, a traditional herbal medicine, has been used for thousands of years to treat various diseases including metabolic syndrome (MS). However, the underlying mechanism(s) of such beneficial actions of ginseng against MS is poorly understood. Emerging evidence indicates a close association of the host gut microbiota with MS. The present study was conducted to examine, whether the beneficial effects of Korean red ginseng (KRG) against MS could be influenced by gut microbial population and whether gut microbial profile could be considered a valuable biomarker for targeted treatment strategy for MS in compliance with the predictive, preventive, and personalized medicine (PPPM / 3PM). Methods This clinical study was a randomized, double-blind, placebo-controlled trial evaluating the effects of KRG treatment for 8 weeks on patients with MS. The anthropometric parameters, vital signs, metabolic biomarkers, and gut microbial composition through 16S rRNA gene sequencing were assessed at the baseline and endpoint. The impact of KRG was also evaluated after categorizing the subjects into responders and non-responders, as well as enterotypes 1 and 2 based on their gut microbial profile at the baseline. Results Fifty out of 60 subjects who meet the MS criteria completed the trial without showing adverse reactions. The KRG treatment caused a significant decrease in systolic blood pressure (SBP). Microbial analysis revealed a decrease in Firmicutes, Proteobacteria, and an increase in Bacteroidetes in response to KRG. In patient stratification analysis, the responders showing marked improvement in the serum levels of lipid metabolic biomarkers TC and LDL due to the KRG treatment exhibited higher population of both the family Lachnospiraceae and order Clostridiales compared to the non-responders. The homeostasis model assessment-insulin resistance (HOMA-IR) and insulin level were decreased in enterotype 1 (Bacteroides-abundant group) and increased in enterotype 2 (prevotella-abundant group) following the KRG treatment. Conclusion In this study, the effects of KRG on the glucose metabolism in MS patients were influenced by the relative abundances of gut microbial population and differed according to the individual enterotype. Therefore, the analysis of enterotype categories is considered to be helpful in predicting the effectiveness of KRG on glucose homeostasis of MS patients individually. This will further help to decide on the appropriate treatment strategy for MS, in compliance with the perspective of PPPM. Korean red ginseng (dpeaa)DE-He213 Herbal medicine (dpeaa)DE-He213 Metabolic syndrome (dpeaa)DE-He213 Patient stratification (dpeaa)DE-He213 Blood serum (dpeaa)DE-He213 Biomarker panel (dpeaa)DE-He213 Molecular pathways (dpeaa)DE-He213 Oxidative stress (dpeaa)DE-He213 Inflammation (dpeaa)DE-He213 ROS detoxification (dpeaa)DE-He213 Lipid metabolic biomarkers (dpeaa)DE-He213 Hyperlipidemia (dpeaa)DE-He213 Glucose homeostasis (dpeaa)DE-He213 Insulin level (dpeaa)DE-He213 Anthropometric parameters (dpeaa)DE-He213 Vital signs (dpeaa)DE-He213 Fat mass (dpeaa)DE-He213 BMI (dpeaa)DE-He213 Gender (dpeaa)DE-He213 Predictive preventive personalized medicine (PPPM / 3PM) (dpeaa)DE-He213 Individual enterotype (dpeaa)DE-He213 Clinical trial (dpeaa)DE-He213 Gut microbiome profile (dpeaa)DE-He213 Drug response (dpeaa)DE-He213 Treatment strategy (dpeaa)DE-He213 Blood pressure (dpeaa)DE-He213 16S rRNA gene sequencing (dpeaa)DE-He213 HOMA-IR (dpeaa)DE-He213 Bose, Shambhunath verfasserin aut Han, Song-Yi verfasserin aut Song, Eun-Ji verfasserin aut Lee, Myeongjong verfasserin aut Nam, Young-Do verfasserin aut Kim, Hojun verfasserin aut Enthalten in The EPMA journal London : BioMed Central, 2010 12(2021), 2 vom: Juni, Seite 177-197 (DE-627)62317877X (DE-600)2545928-4 1878-5085 nnns volume:12 year:2021 number:2 month:06 pages:177-197 https://dx.doi.org/10.1007/s13167-021-00243-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_266 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 12 2021 2 06 177-197 |
language |
English |
source |
Enthalten in The EPMA journal 12(2021), 2 vom: Juni, Seite 177-197 volume:12 year:2021 number:2 month:06 pages:177-197 |
sourceStr |
Enthalten in The EPMA journal 12(2021), 2 vom: Juni, Seite 177-197 volume:12 year:2021 number:2 month:06 pages:177-197 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Korean red ginseng Herbal medicine Metabolic syndrome Patient stratification Blood serum Biomarker panel Molecular pathways Oxidative stress Inflammation ROS detoxification Lipid metabolic biomarkers Hyperlipidemia Glucose homeostasis Insulin level Anthropometric parameters Vital signs Fat mass BMI Gender Predictive preventive personalized medicine (PPPM / 3PM) Individual enterotype Clinical trial Gut microbiome profile Drug response Treatment strategy Blood pressure 16S rRNA gene sequencing HOMA-IR |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
The EPMA journal |
authorswithroles_txt_mv |
Seong, Eunhak @@aut@@ Bose, Shambhunath @@aut@@ Han, Song-Yi @@aut@@ Song, Eun-Ji @@aut@@ Lee, Myeongjong @@aut@@ Nam, Young-Do @@aut@@ Kim, Hojun @@aut@@ |
publishDateDaySort_date |
2021-06-01T00:00:00Z |
hierarchy_top_id |
62317877X |
dewey-sort |
3610 |
id |
SPR044272812 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR044272812</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519193513.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210611s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s13167-021-00243-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR044272812</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13167-021-00243-4-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Seong, Eunhak</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Positive influence of gut microbiota on the effects of Korean red ginseng in metabolic syndrome: a randomized, double-blind, placebo-controlled clinical trial</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© European Association for Predictive, Preventive and Personalised Medicine (EPMA) 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Ginseng, a traditional herbal medicine, has been used for thousands of years to treat various diseases including metabolic syndrome (MS). However, the underlying mechanism(s) of such beneficial actions of ginseng against MS is poorly understood. Emerging evidence indicates a close association of the host gut microbiota with MS. The present study was conducted to examine, whether the beneficial effects of Korean red ginseng (KRG) against MS could be influenced by gut microbial population and whether gut microbial profile could be considered a valuable biomarker for targeted treatment strategy for MS in compliance with the predictive, preventive, and personalized medicine (PPPM / 3PM). Methods This clinical study was a randomized, double-blind, placebo-controlled trial evaluating the effects of KRG treatment for 8 weeks on patients with MS. The anthropometric parameters, vital signs, metabolic biomarkers, and gut microbial composition through 16S rRNA gene sequencing were assessed at the baseline and endpoint. The impact of KRG was also evaluated after categorizing the subjects into responders and non-responders, as well as enterotypes 1 and 2 based on their gut microbial profile at the baseline. Results Fifty out of 60 subjects who meet the MS criteria completed the trial without showing adverse reactions. The KRG treatment caused a significant decrease in systolic blood pressure (SBP). Microbial analysis revealed a decrease in Firmicutes, Proteobacteria, and an increase in Bacteroidetes in response to KRG. In patient stratification analysis, the responders showing marked improvement in the serum levels of lipid metabolic biomarkers TC and LDL due to the KRG treatment exhibited higher population of both the family Lachnospiraceae and order Clostridiales compared to the non-responders. The homeostasis model assessment-insulin resistance (HOMA-IR) and insulin level were decreased in enterotype 1 (Bacteroides-abundant group) and increased in enterotype 2 (prevotella-abundant group) following the KRG treatment. Conclusion In this study, the effects of KRG on the glucose metabolism in MS patients were influenced by the relative abundances of gut microbial population and differed according to the individual enterotype. Therefore, the analysis of enterotype categories is considered to be helpful in predicting the effectiveness of KRG on glucose homeostasis of MS patients individually. This will further help to decide on the appropriate treatment strategy for MS, in compliance with the perspective of PPPM.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Korean red ginseng</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Herbal medicine</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metabolic syndrome</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Patient stratification</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Blood serum</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biomarker panel</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Molecular pathways</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oxidative stress</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inflammation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ROS detoxification</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lipid metabolic biomarkers</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hyperlipidemia</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Glucose homeostasis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Insulin level</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anthropometric parameters</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vital signs</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fat mass</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">BMI</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gender</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Predictive preventive personalized medicine (PPPM / 3PM)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Individual enterotype</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clinical trial</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gut microbiome profile</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Drug response</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Treatment strategy</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Blood pressure</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">16S rRNA gene sequencing</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">HOMA-IR</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bose, Shambhunath</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Han, Song-Yi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Song, Eun-Ji</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lee, Myeongjong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nam, Young-Do</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Hojun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The EPMA journal</subfield><subfield code="d">London : BioMed Central, 2010</subfield><subfield code="g">12(2021), 2 vom: Juni, Seite 177-197</subfield><subfield code="w">(DE-627)62317877X</subfield><subfield code="w">(DE-600)2545928-4</subfield><subfield code="x">1878-5085</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:2</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:177-197</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s13167-021-00243-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2021</subfield><subfield code="e">2</subfield><subfield code="c">06</subfield><subfield code="h">177-197</subfield></datafield></record></collection>
|
author |
Seong, Eunhak |
spellingShingle |
Seong, Eunhak ddc 610 misc Korean red ginseng misc Herbal medicine misc Metabolic syndrome misc Patient stratification misc Blood serum misc Biomarker panel misc Molecular pathways misc Oxidative stress misc Inflammation misc ROS detoxification misc Lipid metabolic biomarkers misc Hyperlipidemia misc Glucose homeostasis misc Insulin level misc Anthropometric parameters misc Vital signs misc Fat mass misc BMI misc Gender misc Predictive preventive personalized medicine (PPPM / 3PM) misc Individual enterotype misc Clinical trial misc Gut microbiome profile misc Drug response misc Treatment strategy misc Blood pressure misc 16S rRNA gene sequencing misc HOMA-IR Positive influence of gut microbiota on the effects of Korean red ginseng in metabolic syndrome: a randomized, double-blind, placebo-controlled clinical trial |
authorStr |
Seong, Eunhak |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)62317877X |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1878-5085 |
topic_title |
610 ASE Positive influence of gut microbiota on the effects of Korean red ginseng in metabolic syndrome: a randomized, double-blind, placebo-controlled clinical trial Korean red ginseng (dpeaa)DE-He213 Herbal medicine (dpeaa)DE-He213 Metabolic syndrome (dpeaa)DE-He213 Patient stratification (dpeaa)DE-He213 Blood serum (dpeaa)DE-He213 Biomarker panel (dpeaa)DE-He213 Molecular pathways (dpeaa)DE-He213 Oxidative stress (dpeaa)DE-He213 Inflammation (dpeaa)DE-He213 ROS detoxification (dpeaa)DE-He213 Lipid metabolic biomarkers (dpeaa)DE-He213 Hyperlipidemia (dpeaa)DE-He213 Glucose homeostasis (dpeaa)DE-He213 Insulin level (dpeaa)DE-He213 Anthropometric parameters (dpeaa)DE-He213 Vital signs (dpeaa)DE-He213 Fat mass (dpeaa)DE-He213 BMI (dpeaa)DE-He213 Gender (dpeaa)DE-He213 Predictive preventive personalized medicine (PPPM / 3PM) (dpeaa)DE-He213 Individual enterotype (dpeaa)DE-He213 Clinical trial (dpeaa)DE-He213 Gut microbiome profile (dpeaa)DE-He213 Drug response (dpeaa)DE-He213 Treatment strategy (dpeaa)DE-He213 Blood pressure (dpeaa)DE-He213 16S rRNA gene sequencing (dpeaa)DE-He213 HOMA-IR (dpeaa)DE-He213 |
topic |
ddc 610 misc Korean red ginseng misc Herbal medicine misc Metabolic syndrome misc Patient stratification misc Blood serum misc Biomarker panel misc Molecular pathways misc Oxidative stress misc Inflammation misc ROS detoxification misc Lipid metabolic biomarkers misc Hyperlipidemia misc Glucose homeostasis misc Insulin level misc Anthropometric parameters misc Vital signs misc Fat mass misc BMI misc Gender misc Predictive preventive personalized medicine (PPPM / 3PM) misc Individual enterotype misc Clinical trial misc Gut microbiome profile misc Drug response misc Treatment strategy misc Blood pressure misc 16S rRNA gene sequencing misc HOMA-IR |
topic_unstemmed |
ddc 610 misc Korean red ginseng misc Herbal medicine misc Metabolic syndrome misc Patient stratification misc Blood serum misc Biomarker panel misc Molecular pathways misc Oxidative stress misc Inflammation misc ROS detoxification misc Lipid metabolic biomarkers misc Hyperlipidemia misc Glucose homeostasis misc Insulin level misc Anthropometric parameters misc Vital signs misc Fat mass misc BMI misc Gender misc Predictive preventive personalized medicine (PPPM / 3PM) misc Individual enterotype misc Clinical trial misc Gut microbiome profile misc Drug response misc Treatment strategy misc Blood pressure misc 16S rRNA gene sequencing misc HOMA-IR |
topic_browse |
ddc 610 misc Korean red ginseng misc Herbal medicine misc Metabolic syndrome misc Patient stratification misc Blood serum misc Biomarker panel misc Molecular pathways misc Oxidative stress misc Inflammation misc ROS detoxification misc Lipid metabolic biomarkers misc Hyperlipidemia misc Glucose homeostasis misc Insulin level misc Anthropometric parameters misc Vital signs misc Fat mass misc BMI misc Gender misc Predictive preventive personalized medicine (PPPM / 3PM) misc Individual enterotype misc Clinical trial misc Gut microbiome profile misc Drug response misc Treatment strategy misc Blood pressure misc 16S rRNA gene sequencing misc HOMA-IR |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
The EPMA journal |
hierarchy_parent_id |
62317877X |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
The EPMA journal |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)62317877X (DE-600)2545928-4 |
title |
Positive influence of gut microbiota on the effects of Korean red ginseng in metabolic syndrome: a randomized, double-blind, placebo-controlled clinical trial |
ctrlnum |
(DE-627)SPR044272812 (SPR)s13167-021-00243-4-e |
title_full |
Positive influence of gut microbiota on the effects of Korean red ginseng in metabolic syndrome: a randomized, double-blind, placebo-controlled clinical trial |
author_sort |
Seong, Eunhak |
journal |
The EPMA journal |
journalStr |
The EPMA journal |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
177 |
author_browse |
Seong, Eunhak Bose, Shambhunath Han, Song-Yi Song, Eun-Ji Lee, Myeongjong Nam, Young-Do Kim, Hojun |
container_volume |
12 |
class |
610 ASE |
format_se |
Elektronische Aufsätze |
author-letter |
Seong, Eunhak |
doi_str_mv |
10.1007/s13167-021-00243-4 |
dewey-full |
610 |
author2-role |
verfasserin |
title_sort |
positive influence of gut microbiota on the effects of korean red ginseng in metabolic syndrome: a randomized, double-blind, placebo-controlled clinical trial |
title_auth |
Positive influence of gut microbiota on the effects of Korean red ginseng in metabolic syndrome: a randomized, double-blind, placebo-controlled clinical trial |
abstract |
Background Ginseng, a traditional herbal medicine, has been used for thousands of years to treat various diseases including metabolic syndrome (MS). However, the underlying mechanism(s) of such beneficial actions of ginseng against MS is poorly understood. Emerging evidence indicates a close association of the host gut microbiota with MS. The present study was conducted to examine, whether the beneficial effects of Korean red ginseng (KRG) against MS could be influenced by gut microbial population and whether gut microbial profile could be considered a valuable biomarker for targeted treatment strategy for MS in compliance with the predictive, preventive, and personalized medicine (PPPM / 3PM). Methods This clinical study was a randomized, double-blind, placebo-controlled trial evaluating the effects of KRG treatment for 8 weeks on patients with MS. The anthropometric parameters, vital signs, metabolic biomarkers, and gut microbial composition through 16S rRNA gene sequencing were assessed at the baseline and endpoint. The impact of KRG was also evaluated after categorizing the subjects into responders and non-responders, as well as enterotypes 1 and 2 based on their gut microbial profile at the baseline. Results Fifty out of 60 subjects who meet the MS criteria completed the trial without showing adverse reactions. The KRG treatment caused a significant decrease in systolic blood pressure (SBP). Microbial analysis revealed a decrease in Firmicutes, Proteobacteria, and an increase in Bacteroidetes in response to KRG. In patient stratification analysis, the responders showing marked improvement in the serum levels of lipid metabolic biomarkers TC and LDL due to the KRG treatment exhibited higher population of both the family Lachnospiraceae and order Clostridiales compared to the non-responders. The homeostasis model assessment-insulin resistance (HOMA-IR) and insulin level were decreased in enterotype 1 (Bacteroides-abundant group) and increased in enterotype 2 (prevotella-abundant group) following the KRG treatment. Conclusion In this study, the effects of KRG on the glucose metabolism in MS patients were influenced by the relative abundances of gut microbial population and differed according to the individual enterotype. Therefore, the analysis of enterotype categories is considered to be helpful in predicting the effectiveness of KRG on glucose homeostasis of MS patients individually. This will further help to decide on the appropriate treatment strategy for MS, in compliance with the perspective of PPPM. © European Association for Predictive, Preventive and Personalised Medicine (EPMA) 2021 |
abstractGer |
Background Ginseng, a traditional herbal medicine, has been used for thousands of years to treat various diseases including metabolic syndrome (MS). However, the underlying mechanism(s) of such beneficial actions of ginseng against MS is poorly understood. Emerging evidence indicates a close association of the host gut microbiota with MS. The present study was conducted to examine, whether the beneficial effects of Korean red ginseng (KRG) against MS could be influenced by gut microbial population and whether gut microbial profile could be considered a valuable biomarker for targeted treatment strategy for MS in compliance with the predictive, preventive, and personalized medicine (PPPM / 3PM). Methods This clinical study was a randomized, double-blind, placebo-controlled trial evaluating the effects of KRG treatment for 8 weeks on patients with MS. The anthropometric parameters, vital signs, metabolic biomarkers, and gut microbial composition through 16S rRNA gene sequencing were assessed at the baseline and endpoint. The impact of KRG was also evaluated after categorizing the subjects into responders and non-responders, as well as enterotypes 1 and 2 based on their gut microbial profile at the baseline. Results Fifty out of 60 subjects who meet the MS criteria completed the trial without showing adverse reactions. The KRG treatment caused a significant decrease in systolic blood pressure (SBP). Microbial analysis revealed a decrease in Firmicutes, Proteobacteria, and an increase in Bacteroidetes in response to KRG. In patient stratification analysis, the responders showing marked improvement in the serum levels of lipid metabolic biomarkers TC and LDL due to the KRG treatment exhibited higher population of both the family Lachnospiraceae and order Clostridiales compared to the non-responders. The homeostasis model assessment-insulin resistance (HOMA-IR) and insulin level were decreased in enterotype 1 (Bacteroides-abundant group) and increased in enterotype 2 (prevotella-abundant group) following the KRG treatment. Conclusion In this study, the effects of KRG on the glucose metabolism in MS patients were influenced by the relative abundances of gut microbial population and differed according to the individual enterotype. Therefore, the analysis of enterotype categories is considered to be helpful in predicting the effectiveness of KRG on glucose homeostasis of MS patients individually. This will further help to decide on the appropriate treatment strategy for MS, in compliance with the perspective of PPPM. © European Association for Predictive, Preventive and Personalised Medicine (EPMA) 2021 |
abstract_unstemmed |
Background Ginseng, a traditional herbal medicine, has been used for thousands of years to treat various diseases including metabolic syndrome (MS). However, the underlying mechanism(s) of such beneficial actions of ginseng against MS is poorly understood. Emerging evidence indicates a close association of the host gut microbiota with MS. The present study was conducted to examine, whether the beneficial effects of Korean red ginseng (KRG) against MS could be influenced by gut microbial population and whether gut microbial profile could be considered a valuable biomarker for targeted treatment strategy for MS in compliance with the predictive, preventive, and personalized medicine (PPPM / 3PM). Methods This clinical study was a randomized, double-blind, placebo-controlled trial evaluating the effects of KRG treatment for 8 weeks on patients with MS. The anthropometric parameters, vital signs, metabolic biomarkers, and gut microbial composition through 16S rRNA gene sequencing were assessed at the baseline and endpoint. The impact of KRG was also evaluated after categorizing the subjects into responders and non-responders, as well as enterotypes 1 and 2 based on their gut microbial profile at the baseline. Results Fifty out of 60 subjects who meet the MS criteria completed the trial without showing adverse reactions. The KRG treatment caused a significant decrease in systolic blood pressure (SBP). Microbial analysis revealed a decrease in Firmicutes, Proteobacteria, and an increase in Bacteroidetes in response to KRG. In patient stratification analysis, the responders showing marked improvement in the serum levels of lipid metabolic biomarkers TC and LDL due to the KRG treatment exhibited higher population of both the family Lachnospiraceae and order Clostridiales compared to the non-responders. The homeostasis model assessment-insulin resistance (HOMA-IR) and insulin level were decreased in enterotype 1 (Bacteroides-abundant group) and increased in enterotype 2 (prevotella-abundant group) following the KRG treatment. Conclusion In this study, the effects of KRG on the glucose metabolism in MS patients were influenced by the relative abundances of gut microbial population and differed according to the individual enterotype. Therefore, the analysis of enterotype categories is considered to be helpful in predicting the effectiveness of KRG on glucose homeostasis of MS patients individually. This will further help to decide on the appropriate treatment strategy for MS, in compliance with the perspective of PPPM. © European Association for Predictive, Preventive and Personalised Medicine (EPMA) 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_266 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
2 |
title_short |
Positive influence of gut microbiota on the effects of Korean red ginseng in metabolic syndrome: a randomized, double-blind, placebo-controlled clinical trial |
url |
https://dx.doi.org/10.1007/s13167-021-00243-4 |
remote_bool |
true |
author2 |
Bose, Shambhunath Han, Song-Yi Song, Eun-Ji Lee, Myeongjong Nam, Young-Do Kim, Hojun |
author2Str |
Bose, Shambhunath Han, Song-Yi Song, Eun-Ji Lee, Myeongjong Nam, Young-Do Kim, Hojun |
ppnlink |
62317877X |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s13167-021-00243-4 |
up_date |
2024-07-03T23:51:32.243Z |
_version_ |
1803603874673590272 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR044272812</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519193513.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210611s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s13167-021-00243-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR044272812</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13167-021-00243-4-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Seong, Eunhak</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Positive influence of gut microbiota on the effects of Korean red ginseng in metabolic syndrome: a randomized, double-blind, placebo-controlled clinical trial</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© European Association for Predictive, Preventive and Personalised Medicine (EPMA) 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Ginseng, a traditional herbal medicine, has been used for thousands of years to treat various diseases including metabolic syndrome (MS). However, the underlying mechanism(s) of such beneficial actions of ginseng against MS is poorly understood. Emerging evidence indicates a close association of the host gut microbiota with MS. The present study was conducted to examine, whether the beneficial effects of Korean red ginseng (KRG) against MS could be influenced by gut microbial population and whether gut microbial profile could be considered a valuable biomarker for targeted treatment strategy for MS in compliance with the predictive, preventive, and personalized medicine (PPPM / 3PM). Methods This clinical study was a randomized, double-blind, placebo-controlled trial evaluating the effects of KRG treatment for 8 weeks on patients with MS. The anthropometric parameters, vital signs, metabolic biomarkers, and gut microbial composition through 16S rRNA gene sequencing were assessed at the baseline and endpoint. The impact of KRG was also evaluated after categorizing the subjects into responders and non-responders, as well as enterotypes 1 and 2 based on their gut microbial profile at the baseline. Results Fifty out of 60 subjects who meet the MS criteria completed the trial without showing adverse reactions. The KRG treatment caused a significant decrease in systolic blood pressure (SBP). Microbial analysis revealed a decrease in Firmicutes, Proteobacteria, and an increase in Bacteroidetes in response to KRG. In patient stratification analysis, the responders showing marked improvement in the serum levels of lipid metabolic biomarkers TC and LDL due to the KRG treatment exhibited higher population of both the family Lachnospiraceae and order Clostridiales compared to the non-responders. The homeostasis model assessment-insulin resistance (HOMA-IR) and insulin level were decreased in enterotype 1 (Bacteroides-abundant group) and increased in enterotype 2 (prevotella-abundant group) following the KRG treatment. Conclusion In this study, the effects of KRG on the glucose metabolism in MS patients were influenced by the relative abundances of gut microbial population and differed according to the individual enterotype. Therefore, the analysis of enterotype categories is considered to be helpful in predicting the effectiveness of KRG on glucose homeostasis of MS patients individually. This will further help to decide on the appropriate treatment strategy for MS, in compliance with the perspective of PPPM.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Korean red ginseng</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Herbal medicine</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metabolic syndrome</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Patient stratification</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Blood serum</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biomarker panel</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Molecular pathways</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oxidative stress</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inflammation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ROS detoxification</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lipid metabolic biomarkers</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hyperlipidemia</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Glucose homeostasis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Insulin level</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anthropometric parameters</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vital signs</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fat mass</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">BMI</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gender</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Predictive preventive personalized medicine (PPPM / 3PM)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Individual enterotype</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clinical trial</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gut microbiome profile</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Drug response</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Treatment strategy</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Blood pressure</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">16S rRNA gene sequencing</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">HOMA-IR</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bose, Shambhunath</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Han, Song-Yi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Song, Eun-Ji</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lee, Myeongjong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nam, Young-Do</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Hojun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The EPMA journal</subfield><subfield code="d">London : BioMed Central, 2010</subfield><subfield code="g">12(2021), 2 vom: Juni, Seite 177-197</subfield><subfield code="w">(DE-627)62317877X</subfield><subfield code="w">(DE-600)2545928-4</subfield><subfield code="x">1878-5085</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:2</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:177-197</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s13167-021-00243-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2021</subfield><subfield code="e">2</subfield><subfield code="c">06</subfield><subfield code="h">177-197</subfield></datafield></record></collection>
|
score |
7.4016323 |