ROI-based medical image watermarking for accurate tamper detection, localisation and recovery
Smart healthcare systems play a vital role in the current era of Internet of Things (IoT) and Cyber-Physical Systems (CPS); i.e. Industry 4.0. Medical data security has become the integral part of smart hospital applications to ensure data privacy and patient data security. Usually, patient medical...
Ausführliche Beschreibung
Autor*in: |
Ravichandran, Dhivya [verfasserIn] Praveenkumar, Padmapriya [verfasserIn] Rajagopalan, Sundararaman [verfasserIn] Rayappan, John Bosco Balaguru [verfasserIn] Amirtharajan, Rengarajan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Anmerkung: |
© International Federation for Medical and Biological Engineering 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: Medical & biological engineering & computing - Cham : Springer Nature, 1963, 59(2021), 6 vom: 14. Mai, Seite 1355-1372 |
---|---|
Übergeordnetes Werk: |
volume:59 ; year:2021 ; number:6 ; day:14 ; month:05 ; pages:1355-1372 |
Links: |
---|
DOI / URN: |
10.1007/s11517-021-02374-2 |
---|
Katalog-ID: |
SPR044304447 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR044304447 | ||
003 | DE-627 | ||
005 | 20230519182057.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210615s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11517-021-02374-2 |2 doi | |
035 | |a (DE-627)SPR044304447 | ||
035 | |a (SPR)s11517-021-02374-2-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |a 660 |a 570 |q ASE |
084 | |a 44.09 |2 bkl | ||
084 | |a 42.11 |2 bkl | ||
100 | 1 | |a Ravichandran, Dhivya |e verfasserin |4 aut | |
245 | 1 | 0 | |a ROI-based medical image watermarking for accurate tamper detection, localisation and recovery |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © International Federation for Medical and Biological Engineering 2021 | ||
520 | |a Smart healthcare systems play a vital role in the current era of Internet of Things (IoT) and Cyber-Physical Systems (CPS); i.e. Industry 4.0. Medical data security has become the integral part of smart hospital applications to ensure data privacy and patient data security. Usually, patient medical reports and diagnostic images are transferred to the specialist physician in other hospitals for effective diagnostics. Therefore, the transmission of medical data over the internet has attained significant interest among many researchers. The three main challenges associated with the e-healthcare systems are the following: (1) ensuring authentication of medical information; (2) transmission of medical image and patient health record (PHR) should not cause data mismatch/detachment; and (3) medical image should not be modified accidentally or intentionally as they are transmitted over the insecure medium. Thus, it is highly essential to ensure the integrity of the medical image, especially the region of interest (ROI) before taking any diagnostic decisions. Watermarking is a well-known technique used to overcome these challenges. The current research work has developed a watermarking algorithm to ensure integrity and authentication of the medical data and image. In this paper, a novel watermarking algorithm is designed based on Integer Wavelet Transform (IWT), combined chaotic map, recovery bit generation and SHA-256 to address the objective as mentioned earlier. The paper’s significant contribution is divided into four phases, namely, watermark generation and data embedding phase, authentication phase, tamper detection phase and localisation and lossless recovery phase. Experiments are carried out to prove that the developed IWT-based data embedding scheme offers high robustness to the data embedded in region of non-interest (RONI), detects and localises the tampered blocks inside ROI with 100% accuracy and recovers the tampered segments of ROI with zero MSE. Further, a comparison is made with the state-of-art schemes to verify the sternness of the developed system. Graphical abstract | ||
650 | 4 | |a Watermarking |7 (dpeaa)DE-He213 | |
650 | 4 | |a IWT |7 (dpeaa)DE-He213 | |
650 | 4 | |a Chaotic embedding |7 (dpeaa)DE-He213 | |
650 | 4 | |a Tamper detection |7 (dpeaa)DE-He213 | |
650 | 4 | |a Localisation and lossless recovery |7 (dpeaa)DE-He213 | |
650 | 4 | |a Patient health record |7 (dpeaa)DE-He213 | |
700 | 1 | |a Praveenkumar, Padmapriya |e verfasserin |4 aut | |
700 | 1 | |a Rajagopalan, Sundararaman |e verfasserin |4 aut | |
700 | 1 | |a Rayappan, John Bosco Balaguru |e verfasserin |4 aut | |
700 | 1 | |a Amirtharajan, Rengarajan |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Medical & biological engineering & computing |d Cham : Springer Nature, 1963 |g 59(2021), 6 vom: 14. Mai, Seite 1355-1372 |w (DE-627)331747456 |w (DE-600)2052667-2 |x 1741-0444 |7 nnns |
773 | 1 | 8 | |g volume:59 |g year:2021 |g number:6 |g day:14 |g month:05 |g pages:1355-1372 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11517-021-02374-2 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OPC-MAT | ||
912 | |a SSG-OPC-ASE | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_647 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 44.09 |q ASE |
936 | b | k | |a 42.11 |q ASE |
951 | |a AR | ||
952 | |d 59 |j 2021 |e 6 |b 14 |c 05 |h 1355-1372 |
author_variant |
d r dr p p pp s r sr j b b r jbb jbbr r a ra |
---|---|
matchkey_str |
article:17410444:2021----::obsdeiaiaeaemrigoacrttmedtcino |
hierarchy_sort_str |
2021 |
bklnumber |
44.09 42.11 |
publishDate |
2021 |
allfields |
10.1007/s11517-021-02374-2 doi (DE-627)SPR044304447 (SPR)s11517-021-02374-2-e DE-627 ger DE-627 rakwb eng 610 660 570 ASE 44.09 bkl 42.11 bkl Ravichandran, Dhivya verfasserin aut ROI-based medical image watermarking for accurate tamper detection, localisation and recovery 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © International Federation for Medical and Biological Engineering 2021 Smart healthcare systems play a vital role in the current era of Internet of Things (IoT) and Cyber-Physical Systems (CPS); i.e. Industry 4.0. Medical data security has become the integral part of smart hospital applications to ensure data privacy and patient data security. Usually, patient medical reports and diagnostic images are transferred to the specialist physician in other hospitals for effective diagnostics. Therefore, the transmission of medical data over the internet has attained significant interest among many researchers. The three main challenges associated with the e-healthcare systems are the following: (1) ensuring authentication of medical information; (2) transmission of medical image and patient health record (PHR) should not cause data mismatch/detachment; and (3) medical image should not be modified accidentally or intentionally as they are transmitted over the insecure medium. Thus, it is highly essential to ensure the integrity of the medical image, especially the region of interest (ROI) before taking any diagnostic decisions. Watermarking is a well-known technique used to overcome these challenges. The current research work has developed a watermarking algorithm to ensure integrity and authentication of the medical data and image. In this paper, a novel watermarking algorithm is designed based on Integer Wavelet Transform (IWT), combined chaotic map, recovery bit generation and SHA-256 to address the objective as mentioned earlier. The paper’s significant contribution is divided into four phases, namely, watermark generation and data embedding phase, authentication phase, tamper detection phase and localisation and lossless recovery phase. Experiments are carried out to prove that the developed IWT-based data embedding scheme offers high robustness to the data embedded in region of non-interest (RONI), detects and localises the tampered blocks inside ROI with 100% accuracy and recovers the tampered segments of ROI with zero MSE. Further, a comparison is made with the state-of-art schemes to verify the sternness of the developed system. Graphical abstract Watermarking (dpeaa)DE-He213 IWT (dpeaa)DE-He213 Chaotic embedding (dpeaa)DE-He213 Tamper detection (dpeaa)DE-He213 Localisation and lossless recovery (dpeaa)DE-He213 Patient health record (dpeaa)DE-He213 Praveenkumar, Padmapriya verfasserin aut Rajagopalan, Sundararaman verfasserin aut Rayappan, John Bosco Balaguru verfasserin aut Amirtharajan, Rengarajan verfasserin aut Enthalten in Medical & biological engineering & computing Cham : Springer Nature, 1963 59(2021), 6 vom: 14. Mai, Seite 1355-1372 (DE-627)331747456 (DE-600)2052667-2 1741-0444 nnns volume:59 year:2021 number:6 day:14 month:05 pages:1355-1372 https://dx.doi.org/10.1007/s11517-021-02374-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 44.09 ASE 42.11 ASE AR 59 2021 6 14 05 1355-1372 |
spelling |
10.1007/s11517-021-02374-2 doi (DE-627)SPR044304447 (SPR)s11517-021-02374-2-e DE-627 ger DE-627 rakwb eng 610 660 570 ASE 44.09 bkl 42.11 bkl Ravichandran, Dhivya verfasserin aut ROI-based medical image watermarking for accurate tamper detection, localisation and recovery 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © International Federation for Medical and Biological Engineering 2021 Smart healthcare systems play a vital role in the current era of Internet of Things (IoT) and Cyber-Physical Systems (CPS); i.e. Industry 4.0. Medical data security has become the integral part of smart hospital applications to ensure data privacy and patient data security. Usually, patient medical reports and diagnostic images are transferred to the specialist physician in other hospitals for effective diagnostics. Therefore, the transmission of medical data over the internet has attained significant interest among many researchers. The three main challenges associated with the e-healthcare systems are the following: (1) ensuring authentication of medical information; (2) transmission of medical image and patient health record (PHR) should not cause data mismatch/detachment; and (3) medical image should not be modified accidentally or intentionally as they are transmitted over the insecure medium. Thus, it is highly essential to ensure the integrity of the medical image, especially the region of interest (ROI) before taking any diagnostic decisions. Watermarking is a well-known technique used to overcome these challenges. The current research work has developed a watermarking algorithm to ensure integrity and authentication of the medical data and image. In this paper, a novel watermarking algorithm is designed based on Integer Wavelet Transform (IWT), combined chaotic map, recovery bit generation and SHA-256 to address the objective as mentioned earlier. The paper’s significant contribution is divided into four phases, namely, watermark generation and data embedding phase, authentication phase, tamper detection phase and localisation and lossless recovery phase. Experiments are carried out to prove that the developed IWT-based data embedding scheme offers high robustness to the data embedded in region of non-interest (RONI), detects and localises the tampered blocks inside ROI with 100% accuracy and recovers the tampered segments of ROI with zero MSE. Further, a comparison is made with the state-of-art schemes to verify the sternness of the developed system. Graphical abstract Watermarking (dpeaa)DE-He213 IWT (dpeaa)DE-He213 Chaotic embedding (dpeaa)DE-He213 Tamper detection (dpeaa)DE-He213 Localisation and lossless recovery (dpeaa)DE-He213 Patient health record (dpeaa)DE-He213 Praveenkumar, Padmapriya verfasserin aut Rajagopalan, Sundararaman verfasserin aut Rayappan, John Bosco Balaguru verfasserin aut Amirtharajan, Rengarajan verfasserin aut Enthalten in Medical & biological engineering & computing Cham : Springer Nature, 1963 59(2021), 6 vom: 14. Mai, Seite 1355-1372 (DE-627)331747456 (DE-600)2052667-2 1741-0444 nnns volume:59 year:2021 number:6 day:14 month:05 pages:1355-1372 https://dx.doi.org/10.1007/s11517-021-02374-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 44.09 ASE 42.11 ASE AR 59 2021 6 14 05 1355-1372 |
allfields_unstemmed |
10.1007/s11517-021-02374-2 doi (DE-627)SPR044304447 (SPR)s11517-021-02374-2-e DE-627 ger DE-627 rakwb eng 610 660 570 ASE 44.09 bkl 42.11 bkl Ravichandran, Dhivya verfasserin aut ROI-based medical image watermarking for accurate tamper detection, localisation and recovery 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © International Federation for Medical and Biological Engineering 2021 Smart healthcare systems play a vital role in the current era of Internet of Things (IoT) and Cyber-Physical Systems (CPS); i.e. Industry 4.0. Medical data security has become the integral part of smart hospital applications to ensure data privacy and patient data security. Usually, patient medical reports and diagnostic images are transferred to the specialist physician in other hospitals for effective diagnostics. Therefore, the transmission of medical data over the internet has attained significant interest among many researchers. The three main challenges associated with the e-healthcare systems are the following: (1) ensuring authentication of medical information; (2) transmission of medical image and patient health record (PHR) should not cause data mismatch/detachment; and (3) medical image should not be modified accidentally or intentionally as they are transmitted over the insecure medium. Thus, it is highly essential to ensure the integrity of the medical image, especially the region of interest (ROI) before taking any diagnostic decisions. Watermarking is a well-known technique used to overcome these challenges. The current research work has developed a watermarking algorithm to ensure integrity and authentication of the medical data and image. In this paper, a novel watermarking algorithm is designed based on Integer Wavelet Transform (IWT), combined chaotic map, recovery bit generation and SHA-256 to address the objective as mentioned earlier. The paper’s significant contribution is divided into four phases, namely, watermark generation and data embedding phase, authentication phase, tamper detection phase and localisation and lossless recovery phase. Experiments are carried out to prove that the developed IWT-based data embedding scheme offers high robustness to the data embedded in region of non-interest (RONI), detects and localises the tampered blocks inside ROI with 100% accuracy and recovers the tampered segments of ROI with zero MSE. Further, a comparison is made with the state-of-art schemes to verify the sternness of the developed system. Graphical abstract Watermarking (dpeaa)DE-He213 IWT (dpeaa)DE-He213 Chaotic embedding (dpeaa)DE-He213 Tamper detection (dpeaa)DE-He213 Localisation and lossless recovery (dpeaa)DE-He213 Patient health record (dpeaa)DE-He213 Praveenkumar, Padmapriya verfasserin aut Rajagopalan, Sundararaman verfasserin aut Rayappan, John Bosco Balaguru verfasserin aut Amirtharajan, Rengarajan verfasserin aut Enthalten in Medical & biological engineering & computing Cham : Springer Nature, 1963 59(2021), 6 vom: 14. Mai, Seite 1355-1372 (DE-627)331747456 (DE-600)2052667-2 1741-0444 nnns volume:59 year:2021 number:6 day:14 month:05 pages:1355-1372 https://dx.doi.org/10.1007/s11517-021-02374-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 44.09 ASE 42.11 ASE AR 59 2021 6 14 05 1355-1372 |
allfieldsGer |
10.1007/s11517-021-02374-2 doi (DE-627)SPR044304447 (SPR)s11517-021-02374-2-e DE-627 ger DE-627 rakwb eng 610 660 570 ASE 44.09 bkl 42.11 bkl Ravichandran, Dhivya verfasserin aut ROI-based medical image watermarking for accurate tamper detection, localisation and recovery 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © International Federation for Medical and Biological Engineering 2021 Smart healthcare systems play a vital role in the current era of Internet of Things (IoT) and Cyber-Physical Systems (CPS); i.e. Industry 4.0. Medical data security has become the integral part of smart hospital applications to ensure data privacy and patient data security. Usually, patient medical reports and diagnostic images are transferred to the specialist physician in other hospitals for effective diagnostics. Therefore, the transmission of medical data over the internet has attained significant interest among many researchers. The three main challenges associated with the e-healthcare systems are the following: (1) ensuring authentication of medical information; (2) transmission of medical image and patient health record (PHR) should not cause data mismatch/detachment; and (3) medical image should not be modified accidentally or intentionally as they are transmitted over the insecure medium. Thus, it is highly essential to ensure the integrity of the medical image, especially the region of interest (ROI) before taking any diagnostic decisions. Watermarking is a well-known technique used to overcome these challenges. The current research work has developed a watermarking algorithm to ensure integrity and authentication of the medical data and image. In this paper, a novel watermarking algorithm is designed based on Integer Wavelet Transform (IWT), combined chaotic map, recovery bit generation and SHA-256 to address the objective as mentioned earlier. The paper’s significant contribution is divided into four phases, namely, watermark generation and data embedding phase, authentication phase, tamper detection phase and localisation and lossless recovery phase. Experiments are carried out to prove that the developed IWT-based data embedding scheme offers high robustness to the data embedded in region of non-interest (RONI), detects and localises the tampered blocks inside ROI with 100% accuracy and recovers the tampered segments of ROI with zero MSE. Further, a comparison is made with the state-of-art schemes to verify the sternness of the developed system. Graphical abstract Watermarking (dpeaa)DE-He213 IWT (dpeaa)DE-He213 Chaotic embedding (dpeaa)DE-He213 Tamper detection (dpeaa)DE-He213 Localisation and lossless recovery (dpeaa)DE-He213 Patient health record (dpeaa)DE-He213 Praveenkumar, Padmapriya verfasserin aut Rajagopalan, Sundararaman verfasserin aut Rayappan, John Bosco Balaguru verfasserin aut Amirtharajan, Rengarajan verfasserin aut Enthalten in Medical & biological engineering & computing Cham : Springer Nature, 1963 59(2021), 6 vom: 14. Mai, Seite 1355-1372 (DE-627)331747456 (DE-600)2052667-2 1741-0444 nnns volume:59 year:2021 number:6 day:14 month:05 pages:1355-1372 https://dx.doi.org/10.1007/s11517-021-02374-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 44.09 ASE 42.11 ASE AR 59 2021 6 14 05 1355-1372 |
allfieldsSound |
10.1007/s11517-021-02374-2 doi (DE-627)SPR044304447 (SPR)s11517-021-02374-2-e DE-627 ger DE-627 rakwb eng 610 660 570 ASE 44.09 bkl 42.11 bkl Ravichandran, Dhivya verfasserin aut ROI-based medical image watermarking for accurate tamper detection, localisation and recovery 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © International Federation for Medical and Biological Engineering 2021 Smart healthcare systems play a vital role in the current era of Internet of Things (IoT) and Cyber-Physical Systems (CPS); i.e. Industry 4.0. Medical data security has become the integral part of smart hospital applications to ensure data privacy and patient data security. Usually, patient medical reports and diagnostic images are transferred to the specialist physician in other hospitals for effective diagnostics. Therefore, the transmission of medical data over the internet has attained significant interest among many researchers. The three main challenges associated with the e-healthcare systems are the following: (1) ensuring authentication of medical information; (2) transmission of medical image and patient health record (PHR) should not cause data mismatch/detachment; and (3) medical image should not be modified accidentally or intentionally as they are transmitted over the insecure medium. Thus, it is highly essential to ensure the integrity of the medical image, especially the region of interest (ROI) before taking any diagnostic decisions. Watermarking is a well-known technique used to overcome these challenges. The current research work has developed a watermarking algorithm to ensure integrity and authentication of the medical data and image. In this paper, a novel watermarking algorithm is designed based on Integer Wavelet Transform (IWT), combined chaotic map, recovery bit generation and SHA-256 to address the objective as mentioned earlier. The paper’s significant contribution is divided into four phases, namely, watermark generation and data embedding phase, authentication phase, tamper detection phase and localisation and lossless recovery phase. Experiments are carried out to prove that the developed IWT-based data embedding scheme offers high robustness to the data embedded in region of non-interest (RONI), detects and localises the tampered blocks inside ROI with 100% accuracy and recovers the tampered segments of ROI with zero MSE. Further, a comparison is made with the state-of-art schemes to verify the sternness of the developed system. Graphical abstract Watermarking (dpeaa)DE-He213 IWT (dpeaa)DE-He213 Chaotic embedding (dpeaa)DE-He213 Tamper detection (dpeaa)DE-He213 Localisation and lossless recovery (dpeaa)DE-He213 Patient health record (dpeaa)DE-He213 Praveenkumar, Padmapriya verfasserin aut Rajagopalan, Sundararaman verfasserin aut Rayappan, John Bosco Balaguru verfasserin aut Amirtharajan, Rengarajan verfasserin aut Enthalten in Medical & biological engineering & computing Cham : Springer Nature, 1963 59(2021), 6 vom: 14. Mai, Seite 1355-1372 (DE-627)331747456 (DE-600)2052667-2 1741-0444 nnns volume:59 year:2021 number:6 day:14 month:05 pages:1355-1372 https://dx.doi.org/10.1007/s11517-021-02374-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 44.09 ASE 42.11 ASE AR 59 2021 6 14 05 1355-1372 |
language |
English |
source |
Enthalten in Medical & biological engineering & computing 59(2021), 6 vom: 14. Mai, Seite 1355-1372 volume:59 year:2021 number:6 day:14 month:05 pages:1355-1372 |
sourceStr |
Enthalten in Medical & biological engineering & computing 59(2021), 6 vom: 14. Mai, Seite 1355-1372 volume:59 year:2021 number:6 day:14 month:05 pages:1355-1372 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Watermarking IWT Chaotic embedding Tamper detection Localisation and lossless recovery Patient health record |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
Medical & biological engineering & computing |
authorswithroles_txt_mv |
Ravichandran, Dhivya @@aut@@ Praveenkumar, Padmapriya @@aut@@ Rajagopalan, Sundararaman @@aut@@ Rayappan, John Bosco Balaguru @@aut@@ Amirtharajan, Rengarajan @@aut@@ |
publishDateDaySort_date |
2021-05-14T00:00:00Z |
hierarchy_top_id |
331747456 |
dewey-sort |
3610 |
id |
SPR044304447 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR044304447</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519182057.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210615s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11517-021-02374-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR044304447</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11517-021-02374-2-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="a">660</subfield><subfield code="a">570</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.09</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.11</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ravichandran, Dhivya</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">ROI-based medical image watermarking for accurate tamper detection, localisation and recovery</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© International Federation for Medical and Biological Engineering 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Smart healthcare systems play a vital role in the current era of Internet of Things (IoT) and Cyber-Physical Systems (CPS); i.e. Industry 4.0. Medical data security has become the integral part of smart hospital applications to ensure data privacy and patient data security. Usually, patient medical reports and diagnostic images are transferred to the specialist physician in other hospitals for effective diagnostics. Therefore, the transmission of medical data over the internet has attained significant interest among many researchers. The three main challenges associated with the e-healthcare systems are the following: (1) ensuring authentication of medical information; (2) transmission of medical image and patient health record (PHR) should not cause data mismatch/detachment; and (3) medical image should not be modified accidentally or intentionally as they are transmitted over the insecure medium. Thus, it is highly essential to ensure the integrity of the medical image, especially the region of interest (ROI) before taking any diagnostic decisions. Watermarking is a well-known technique used to overcome these challenges. The current research work has developed a watermarking algorithm to ensure integrity and authentication of the medical data and image. In this paper, a novel watermarking algorithm is designed based on Integer Wavelet Transform (IWT), combined chaotic map, recovery bit generation and SHA-256 to address the objective as mentioned earlier. The paper’s significant contribution is divided into four phases, namely, watermark generation and data embedding phase, authentication phase, tamper detection phase and localisation and lossless recovery phase. Experiments are carried out to prove that the developed IWT-based data embedding scheme offers high robustness to the data embedded in region of non-interest (RONI), detects and localises the tampered blocks inside ROI with 100% accuracy and recovers the tampered segments of ROI with zero MSE. Further, a comparison is made with the state-of-art schemes to verify the sternness of the developed system. Graphical abstract</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Watermarking</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">IWT</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chaotic embedding</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tamper detection</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Localisation and lossless recovery</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Patient health record</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Praveenkumar, Padmapriya</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rajagopalan, Sundararaman</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rayappan, John Bosco Balaguru</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Amirtharajan, Rengarajan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Medical & biological engineering & computing</subfield><subfield code="d">Cham : Springer Nature, 1963</subfield><subfield code="g">59(2021), 6 vom: 14. Mai, Seite 1355-1372</subfield><subfield code="w">(DE-627)331747456</subfield><subfield code="w">(DE-600)2052667-2</subfield><subfield code="x">1741-0444</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:59</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:6</subfield><subfield code="g">day:14</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:1355-1372</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11517-021-02374-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.09</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.11</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">59</subfield><subfield code="j">2021</subfield><subfield code="e">6</subfield><subfield code="b">14</subfield><subfield code="c">05</subfield><subfield code="h">1355-1372</subfield></datafield></record></collection>
|
author |
Ravichandran, Dhivya |
spellingShingle |
Ravichandran, Dhivya ddc 610 bkl 44.09 bkl 42.11 misc Watermarking misc IWT misc Chaotic embedding misc Tamper detection misc Localisation and lossless recovery misc Patient health record ROI-based medical image watermarking for accurate tamper detection, localisation and recovery |
authorStr |
Ravichandran, Dhivya |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)331747456 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health 660 - Chemical engineering 570 - Life sciences; biology |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1741-0444 |
topic_title |
610 660 570 ASE 44.09 bkl 42.11 bkl ROI-based medical image watermarking for accurate tamper detection, localisation and recovery Watermarking (dpeaa)DE-He213 IWT (dpeaa)DE-He213 Chaotic embedding (dpeaa)DE-He213 Tamper detection (dpeaa)DE-He213 Localisation and lossless recovery (dpeaa)DE-He213 Patient health record (dpeaa)DE-He213 |
topic |
ddc 610 bkl 44.09 bkl 42.11 misc Watermarking misc IWT misc Chaotic embedding misc Tamper detection misc Localisation and lossless recovery misc Patient health record |
topic_unstemmed |
ddc 610 bkl 44.09 bkl 42.11 misc Watermarking misc IWT misc Chaotic embedding misc Tamper detection misc Localisation and lossless recovery misc Patient health record |
topic_browse |
ddc 610 bkl 44.09 bkl 42.11 misc Watermarking misc IWT misc Chaotic embedding misc Tamper detection misc Localisation and lossless recovery misc Patient health record |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Medical & biological engineering & computing |
hierarchy_parent_id |
331747456 |
dewey-tens |
610 - Medicine & health 660 - Chemical engineering 570 - Life sciences; biology |
hierarchy_top_title |
Medical & biological engineering & computing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)331747456 (DE-600)2052667-2 |
title |
ROI-based medical image watermarking for accurate tamper detection, localisation and recovery |
ctrlnum |
(DE-627)SPR044304447 (SPR)s11517-021-02374-2-e |
title_full |
ROI-based medical image watermarking for accurate tamper detection, localisation and recovery |
author_sort |
Ravichandran, Dhivya |
journal |
Medical & biological engineering & computing |
journalStr |
Medical & biological engineering & computing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
1355 |
author_browse |
Ravichandran, Dhivya Praveenkumar, Padmapriya Rajagopalan, Sundararaman Rayappan, John Bosco Balaguru Amirtharajan, Rengarajan |
container_volume |
59 |
class |
610 660 570 ASE 44.09 bkl 42.11 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Ravichandran, Dhivya |
doi_str_mv |
10.1007/s11517-021-02374-2 |
dewey-full |
610 660 570 |
author2-role |
verfasserin |
title_sort |
roi-based medical image watermarking for accurate tamper detection, localisation and recovery |
title_auth |
ROI-based medical image watermarking for accurate tamper detection, localisation and recovery |
abstract |
Smart healthcare systems play a vital role in the current era of Internet of Things (IoT) and Cyber-Physical Systems (CPS); i.e. Industry 4.0. Medical data security has become the integral part of smart hospital applications to ensure data privacy and patient data security. Usually, patient medical reports and diagnostic images are transferred to the specialist physician in other hospitals for effective diagnostics. Therefore, the transmission of medical data over the internet has attained significant interest among many researchers. The three main challenges associated with the e-healthcare systems are the following: (1) ensuring authentication of medical information; (2) transmission of medical image and patient health record (PHR) should not cause data mismatch/detachment; and (3) medical image should not be modified accidentally or intentionally as they are transmitted over the insecure medium. Thus, it is highly essential to ensure the integrity of the medical image, especially the region of interest (ROI) before taking any diagnostic decisions. Watermarking is a well-known technique used to overcome these challenges. The current research work has developed a watermarking algorithm to ensure integrity and authentication of the medical data and image. In this paper, a novel watermarking algorithm is designed based on Integer Wavelet Transform (IWT), combined chaotic map, recovery bit generation and SHA-256 to address the objective as mentioned earlier. The paper’s significant contribution is divided into four phases, namely, watermark generation and data embedding phase, authentication phase, tamper detection phase and localisation and lossless recovery phase. Experiments are carried out to prove that the developed IWT-based data embedding scheme offers high robustness to the data embedded in region of non-interest (RONI), detects and localises the tampered blocks inside ROI with 100% accuracy and recovers the tampered segments of ROI with zero MSE. Further, a comparison is made with the state-of-art schemes to verify the sternness of the developed system. Graphical abstract © International Federation for Medical and Biological Engineering 2021 |
abstractGer |
Smart healthcare systems play a vital role in the current era of Internet of Things (IoT) and Cyber-Physical Systems (CPS); i.e. Industry 4.0. Medical data security has become the integral part of smart hospital applications to ensure data privacy and patient data security. Usually, patient medical reports and diagnostic images are transferred to the specialist physician in other hospitals for effective diagnostics. Therefore, the transmission of medical data over the internet has attained significant interest among many researchers. The three main challenges associated with the e-healthcare systems are the following: (1) ensuring authentication of medical information; (2) transmission of medical image and patient health record (PHR) should not cause data mismatch/detachment; and (3) medical image should not be modified accidentally or intentionally as they are transmitted over the insecure medium. Thus, it is highly essential to ensure the integrity of the medical image, especially the region of interest (ROI) before taking any diagnostic decisions. Watermarking is a well-known technique used to overcome these challenges. The current research work has developed a watermarking algorithm to ensure integrity and authentication of the medical data and image. In this paper, a novel watermarking algorithm is designed based on Integer Wavelet Transform (IWT), combined chaotic map, recovery bit generation and SHA-256 to address the objective as mentioned earlier. The paper’s significant contribution is divided into four phases, namely, watermark generation and data embedding phase, authentication phase, tamper detection phase and localisation and lossless recovery phase. Experiments are carried out to prove that the developed IWT-based data embedding scheme offers high robustness to the data embedded in region of non-interest (RONI), detects and localises the tampered blocks inside ROI with 100% accuracy and recovers the tampered segments of ROI with zero MSE. Further, a comparison is made with the state-of-art schemes to verify the sternness of the developed system. Graphical abstract © International Federation for Medical and Biological Engineering 2021 |
abstract_unstemmed |
Smart healthcare systems play a vital role in the current era of Internet of Things (IoT) and Cyber-Physical Systems (CPS); i.e. Industry 4.0. Medical data security has become the integral part of smart hospital applications to ensure data privacy and patient data security. Usually, patient medical reports and diagnostic images are transferred to the specialist physician in other hospitals for effective diagnostics. Therefore, the transmission of medical data over the internet has attained significant interest among many researchers. The three main challenges associated with the e-healthcare systems are the following: (1) ensuring authentication of medical information; (2) transmission of medical image and patient health record (PHR) should not cause data mismatch/detachment; and (3) medical image should not be modified accidentally or intentionally as they are transmitted over the insecure medium. Thus, it is highly essential to ensure the integrity of the medical image, especially the region of interest (ROI) before taking any diagnostic decisions. Watermarking is a well-known technique used to overcome these challenges. The current research work has developed a watermarking algorithm to ensure integrity and authentication of the medical data and image. In this paper, a novel watermarking algorithm is designed based on Integer Wavelet Transform (IWT), combined chaotic map, recovery bit generation and SHA-256 to address the objective as mentioned earlier. The paper’s significant contribution is divided into four phases, namely, watermark generation and data embedding phase, authentication phase, tamper detection phase and localisation and lossless recovery phase. Experiments are carried out to prove that the developed IWT-based data embedding scheme offers high robustness to the data embedded in region of non-interest (RONI), detects and localises the tampered blocks inside ROI with 100% accuracy and recovers the tampered segments of ROI with zero MSE. Further, a comparison is made with the state-of-art schemes to verify the sternness of the developed system. Graphical abstract © International Federation for Medical and Biological Engineering 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
6 |
title_short |
ROI-based medical image watermarking for accurate tamper detection, localisation and recovery |
url |
https://dx.doi.org/10.1007/s11517-021-02374-2 |
remote_bool |
true |
author2 |
Praveenkumar, Padmapriya Rajagopalan, Sundararaman Rayappan, John Bosco Balaguru Amirtharajan, Rengarajan |
author2Str |
Praveenkumar, Padmapriya Rajagopalan, Sundararaman Rayappan, John Bosco Balaguru Amirtharajan, Rengarajan |
ppnlink |
331747456 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11517-021-02374-2 |
up_date |
2024-07-04T00:00:56.523Z |
_version_ |
1803604466364055552 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR044304447</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519182057.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210615s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11517-021-02374-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR044304447</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11517-021-02374-2-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="a">660</subfield><subfield code="a">570</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.09</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.11</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ravichandran, Dhivya</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">ROI-based medical image watermarking for accurate tamper detection, localisation and recovery</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© International Federation for Medical and Biological Engineering 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Smart healthcare systems play a vital role in the current era of Internet of Things (IoT) and Cyber-Physical Systems (CPS); i.e. Industry 4.0. Medical data security has become the integral part of smart hospital applications to ensure data privacy and patient data security. Usually, patient medical reports and diagnostic images are transferred to the specialist physician in other hospitals for effective diagnostics. Therefore, the transmission of medical data over the internet has attained significant interest among many researchers. The three main challenges associated with the e-healthcare systems are the following: (1) ensuring authentication of medical information; (2) transmission of medical image and patient health record (PHR) should not cause data mismatch/detachment; and (3) medical image should not be modified accidentally or intentionally as they are transmitted over the insecure medium. Thus, it is highly essential to ensure the integrity of the medical image, especially the region of interest (ROI) before taking any diagnostic decisions. Watermarking is a well-known technique used to overcome these challenges. The current research work has developed a watermarking algorithm to ensure integrity and authentication of the medical data and image. In this paper, a novel watermarking algorithm is designed based on Integer Wavelet Transform (IWT), combined chaotic map, recovery bit generation and SHA-256 to address the objective as mentioned earlier. The paper’s significant contribution is divided into four phases, namely, watermark generation and data embedding phase, authentication phase, tamper detection phase and localisation and lossless recovery phase. Experiments are carried out to prove that the developed IWT-based data embedding scheme offers high robustness to the data embedded in region of non-interest (RONI), detects and localises the tampered blocks inside ROI with 100% accuracy and recovers the tampered segments of ROI with zero MSE. Further, a comparison is made with the state-of-art schemes to verify the sternness of the developed system. Graphical abstract</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Watermarking</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">IWT</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chaotic embedding</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tamper detection</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Localisation and lossless recovery</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Patient health record</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Praveenkumar, Padmapriya</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rajagopalan, Sundararaman</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rayappan, John Bosco Balaguru</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Amirtharajan, Rengarajan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Medical & biological engineering & computing</subfield><subfield code="d">Cham : Springer Nature, 1963</subfield><subfield code="g">59(2021), 6 vom: 14. Mai, Seite 1355-1372</subfield><subfield code="w">(DE-627)331747456</subfield><subfield code="w">(DE-600)2052667-2</subfield><subfield code="x">1741-0444</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:59</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:6</subfield><subfield code="g">day:14</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:1355-1372</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11517-021-02374-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.09</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.11</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">59</subfield><subfield code="j">2021</subfield><subfield code="e">6</subfield><subfield code="b">14</subfield><subfield code="c">05</subfield><subfield code="h">1355-1372</subfield></datafield></record></collection>
|
score |
7.401639 |