MicroRNA clustering on the biogenesis of suboptimal microRNAs
Abstract Most microRNAs (miRNAs) are processed by two ribonuclease III enzymes. The first cleavage is performed by Microprocessor that is composed of RNase III enzyme Drosha and DGCR8, and the second by another RNase III enzyme Dicer. There are many examples of miRNAs that are poor substrates for Dr...
Ausführliche Beschreibung
Autor*in: |
Park, Sehee [verfasserIn] Kang, Igojo [verfasserIn] Shin, Chanseok [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of the Korean Society for Applied Biological Chemistry - [Seoul] : The Korean Society for Applied Biological Chemistry, co-published with Springer, 2009, 64(2021), 1 vom: 15. Juli |
---|---|
Übergeordnetes Werk: |
volume:64 ; year:2021 ; number:1 ; day:15 ; month:07 |
Links: |
---|
DOI / URN: |
10.1186/s13765-021-00624-3 |
---|
Katalog-ID: |
SPR044567855 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR044567855 | ||
003 | DE-627 | ||
005 | 20230519163234.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210716s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s13765-021-00624-3 |2 doi | |
035 | |a (DE-627)SPR044567855 | ||
035 | |a (SPR)s13765-021-00624-3-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 630 |a 640 |a 540 |q ASE |
100 | 1 | |a Park, Sehee |e verfasserin |4 aut | |
245 | 1 | 0 | |a MicroRNA clustering on the biogenesis of suboptimal microRNAs |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2021 | ||
520 | |a Abstract Most microRNAs (miRNAs) are processed by two ribonuclease III enzymes. The first cleavage is performed by Microprocessor that is composed of RNase III enzyme Drosha and DGCR8, and the second by another RNase III enzyme Dicer. There are many examples of miRNAs that are poor substrates for Drosha and Dicer, owing to their suboptimal structures. However, a number of these suboptimal miRNAs are known to be expressed at the same or higher level as their neighboring structurally-optimal miRNAs. Recent studies suggest that the clustered orientation of these suboptimal miRNAs is the explanation for this phenomenon. It has been observed that the biogenesis of these suboptimal miRNAs can be affected by the expression of their neighboring optimal miRNAs. This principle is expected to apply more broadly, as it has been shown that a large percentage of suboptimal miRNAs reside within operons. | ||
650 | 4 | |a miRNA cluster |7 (dpeaa)DE-He213 | |
650 | 4 | |a Pri-miR-144~451 |7 (dpeaa)DE-He213 | |
650 | 4 | |a Suboptimal structure |7 (dpeaa)DE-He213 | |
650 | 4 | |a Non-canonical biogenesis |7 (dpeaa)DE-He213 | |
650 | 4 | |a Microprocessor |7 (dpeaa)DE-He213 | |
700 | 1 | |a Kang, Igojo |e verfasserin |4 aut | |
700 | 1 | |a Shin, Chanseok |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of the Korean Society for Applied Biological Chemistry |d [Seoul] : The Korean Society for Applied Biological Chemistry, co-published with Springer, 2009 |g 64(2021), 1 vom: 15. Juli |w (DE-627)684967510 |w (DE-600)2649483-8 |x 2234-344X |7 nnns |
773 | 1 | 8 | |g volume:64 |g year:2021 |g number:1 |g day:15 |g month:07 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s13765-021-00624-3 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2116 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
951 | |a AR | ||
952 | |d 64 |j 2021 |e 1 |b 15 |c 07 |
author_variant |
s p sp i k ik c s cs |
---|---|
matchkey_str |
article:2234344X:2021----::irralseignhboeeiosb |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1186/s13765-021-00624-3 doi (DE-627)SPR044567855 (SPR)s13765-021-00624-3-e DE-627 ger DE-627 rakwb eng 630 640 540 ASE Park, Sehee verfasserin aut MicroRNA clustering on the biogenesis of suboptimal microRNAs 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2021 Abstract Most microRNAs (miRNAs) are processed by two ribonuclease III enzymes. The first cleavage is performed by Microprocessor that is composed of RNase III enzyme Drosha and DGCR8, and the second by another RNase III enzyme Dicer. There are many examples of miRNAs that are poor substrates for Drosha and Dicer, owing to their suboptimal structures. However, a number of these suboptimal miRNAs are known to be expressed at the same or higher level as their neighboring structurally-optimal miRNAs. Recent studies suggest that the clustered orientation of these suboptimal miRNAs is the explanation for this phenomenon. It has been observed that the biogenesis of these suboptimal miRNAs can be affected by the expression of their neighboring optimal miRNAs. This principle is expected to apply more broadly, as it has been shown that a large percentage of suboptimal miRNAs reside within operons. miRNA cluster (dpeaa)DE-He213 Pri-miR-144~451 (dpeaa)DE-He213 Suboptimal structure (dpeaa)DE-He213 Non-canonical biogenesis (dpeaa)DE-He213 Microprocessor (dpeaa)DE-He213 Kang, Igojo verfasserin aut Shin, Chanseok verfasserin aut Enthalten in Journal of the Korean Society for Applied Biological Chemistry [Seoul] : The Korean Society for Applied Biological Chemistry, co-published with Springer, 2009 64(2021), 1 vom: 15. Juli (DE-627)684967510 (DE-600)2649483-8 2234-344X nnns volume:64 year:2021 number:1 day:15 month:07 https://dx.doi.org/10.1186/s13765-021-00624-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_110 GBV_ILN_161 GBV_ILN_293 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 AR 64 2021 1 15 07 |
spelling |
10.1186/s13765-021-00624-3 doi (DE-627)SPR044567855 (SPR)s13765-021-00624-3-e DE-627 ger DE-627 rakwb eng 630 640 540 ASE Park, Sehee verfasserin aut MicroRNA clustering on the biogenesis of suboptimal microRNAs 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2021 Abstract Most microRNAs (miRNAs) are processed by two ribonuclease III enzymes. The first cleavage is performed by Microprocessor that is composed of RNase III enzyme Drosha and DGCR8, and the second by another RNase III enzyme Dicer. There are many examples of miRNAs that are poor substrates for Drosha and Dicer, owing to their suboptimal structures. However, a number of these suboptimal miRNAs are known to be expressed at the same or higher level as their neighboring structurally-optimal miRNAs. Recent studies suggest that the clustered orientation of these suboptimal miRNAs is the explanation for this phenomenon. It has been observed that the biogenesis of these suboptimal miRNAs can be affected by the expression of their neighboring optimal miRNAs. This principle is expected to apply more broadly, as it has been shown that a large percentage of suboptimal miRNAs reside within operons. miRNA cluster (dpeaa)DE-He213 Pri-miR-144~451 (dpeaa)DE-He213 Suboptimal structure (dpeaa)DE-He213 Non-canonical biogenesis (dpeaa)DE-He213 Microprocessor (dpeaa)DE-He213 Kang, Igojo verfasserin aut Shin, Chanseok verfasserin aut Enthalten in Journal of the Korean Society for Applied Biological Chemistry [Seoul] : The Korean Society for Applied Biological Chemistry, co-published with Springer, 2009 64(2021), 1 vom: 15. Juli (DE-627)684967510 (DE-600)2649483-8 2234-344X nnns volume:64 year:2021 number:1 day:15 month:07 https://dx.doi.org/10.1186/s13765-021-00624-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_110 GBV_ILN_161 GBV_ILN_293 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 AR 64 2021 1 15 07 |
allfields_unstemmed |
10.1186/s13765-021-00624-3 doi (DE-627)SPR044567855 (SPR)s13765-021-00624-3-e DE-627 ger DE-627 rakwb eng 630 640 540 ASE Park, Sehee verfasserin aut MicroRNA clustering on the biogenesis of suboptimal microRNAs 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2021 Abstract Most microRNAs (miRNAs) are processed by two ribonuclease III enzymes. The first cleavage is performed by Microprocessor that is composed of RNase III enzyme Drosha and DGCR8, and the second by another RNase III enzyme Dicer. There are many examples of miRNAs that are poor substrates for Drosha and Dicer, owing to their suboptimal structures. However, a number of these suboptimal miRNAs are known to be expressed at the same or higher level as their neighboring structurally-optimal miRNAs. Recent studies suggest that the clustered orientation of these suboptimal miRNAs is the explanation for this phenomenon. It has been observed that the biogenesis of these suboptimal miRNAs can be affected by the expression of their neighboring optimal miRNAs. This principle is expected to apply more broadly, as it has been shown that a large percentage of suboptimal miRNAs reside within operons. miRNA cluster (dpeaa)DE-He213 Pri-miR-144~451 (dpeaa)DE-He213 Suboptimal structure (dpeaa)DE-He213 Non-canonical biogenesis (dpeaa)DE-He213 Microprocessor (dpeaa)DE-He213 Kang, Igojo verfasserin aut Shin, Chanseok verfasserin aut Enthalten in Journal of the Korean Society for Applied Biological Chemistry [Seoul] : The Korean Society for Applied Biological Chemistry, co-published with Springer, 2009 64(2021), 1 vom: 15. Juli (DE-627)684967510 (DE-600)2649483-8 2234-344X nnns volume:64 year:2021 number:1 day:15 month:07 https://dx.doi.org/10.1186/s13765-021-00624-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_110 GBV_ILN_161 GBV_ILN_293 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 AR 64 2021 1 15 07 |
allfieldsGer |
10.1186/s13765-021-00624-3 doi (DE-627)SPR044567855 (SPR)s13765-021-00624-3-e DE-627 ger DE-627 rakwb eng 630 640 540 ASE Park, Sehee verfasserin aut MicroRNA clustering on the biogenesis of suboptimal microRNAs 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2021 Abstract Most microRNAs (miRNAs) are processed by two ribonuclease III enzymes. The first cleavage is performed by Microprocessor that is composed of RNase III enzyme Drosha and DGCR8, and the second by another RNase III enzyme Dicer. There are many examples of miRNAs that are poor substrates for Drosha and Dicer, owing to their suboptimal structures. However, a number of these suboptimal miRNAs are known to be expressed at the same or higher level as their neighboring structurally-optimal miRNAs. Recent studies suggest that the clustered orientation of these suboptimal miRNAs is the explanation for this phenomenon. It has been observed that the biogenesis of these suboptimal miRNAs can be affected by the expression of their neighboring optimal miRNAs. This principle is expected to apply more broadly, as it has been shown that a large percentage of suboptimal miRNAs reside within operons. miRNA cluster (dpeaa)DE-He213 Pri-miR-144~451 (dpeaa)DE-He213 Suboptimal structure (dpeaa)DE-He213 Non-canonical biogenesis (dpeaa)DE-He213 Microprocessor (dpeaa)DE-He213 Kang, Igojo verfasserin aut Shin, Chanseok verfasserin aut Enthalten in Journal of the Korean Society for Applied Biological Chemistry [Seoul] : The Korean Society for Applied Biological Chemistry, co-published with Springer, 2009 64(2021), 1 vom: 15. Juli (DE-627)684967510 (DE-600)2649483-8 2234-344X nnns volume:64 year:2021 number:1 day:15 month:07 https://dx.doi.org/10.1186/s13765-021-00624-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_110 GBV_ILN_161 GBV_ILN_293 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 AR 64 2021 1 15 07 |
allfieldsSound |
10.1186/s13765-021-00624-3 doi (DE-627)SPR044567855 (SPR)s13765-021-00624-3-e DE-627 ger DE-627 rakwb eng 630 640 540 ASE Park, Sehee verfasserin aut MicroRNA clustering on the biogenesis of suboptimal microRNAs 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2021 Abstract Most microRNAs (miRNAs) are processed by two ribonuclease III enzymes. The first cleavage is performed by Microprocessor that is composed of RNase III enzyme Drosha and DGCR8, and the second by another RNase III enzyme Dicer. There are many examples of miRNAs that are poor substrates for Drosha and Dicer, owing to their suboptimal structures. However, a number of these suboptimal miRNAs are known to be expressed at the same or higher level as their neighboring structurally-optimal miRNAs. Recent studies suggest that the clustered orientation of these suboptimal miRNAs is the explanation for this phenomenon. It has been observed that the biogenesis of these suboptimal miRNAs can be affected by the expression of their neighboring optimal miRNAs. This principle is expected to apply more broadly, as it has been shown that a large percentage of suboptimal miRNAs reside within operons. miRNA cluster (dpeaa)DE-He213 Pri-miR-144~451 (dpeaa)DE-He213 Suboptimal structure (dpeaa)DE-He213 Non-canonical biogenesis (dpeaa)DE-He213 Microprocessor (dpeaa)DE-He213 Kang, Igojo verfasserin aut Shin, Chanseok verfasserin aut Enthalten in Journal of the Korean Society for Applied Biological Chemistry [Seoul] : The Korean Society for Applied Biological Chemistry, co-published with Springer, 2009 64(2021), 1 vom: 15. Juli (DE-627)684967510 (DE-600)2649483-8 2234-344X nnns volume:64 year:2021 number:1 day:15 month:07 https://dx.doi.org/10.1186/s13765-021-00624-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_110 GBV_ILN_161 GBV_ILN_293 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 AR 64 2021 1 15 07 |
language |
English |
source |
Enthalten in Journal of the Korean Society for Applied Biological Chemistry 64(2021), 1 vom: 15. Juli volume:64 year:2021 number:1 day:15 month:07 |
sourceStr |
Enthalten in Journal of the Korean Society for Applied Biological Chemistry 64(2021), 1 vom: 15. Juli volume:64 year:2021 number:1 day:15 month:07 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
miRNA cluster Pri-miR-144~451 Suboptimal structure Non-canonical biogenesis Microprocessor |
dewey-raw |
630 |
isfreeaccess_bool |
true |
container_title |
Journal of the Korean Society for Applied Biological Chemistry |
authorswithroles_txt_mv |
Park, Sehee @@aut@@ Kang, Igojo @@aut@@ Shin, Chanseok @@aut@@ |
publishDateDaySort_date |
2021-07-15T00:00:00Z |
hierarchy_top_id |
684967510 |
dewey-sort |
3630 |
id |
SPR044567855 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR044567855</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519163234.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210716s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13765-021-00624-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR044567855</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13765-021-00624-3-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="a">640</subfield><subfield code="a">540</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Park, Sehee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">MicroRNA clustering on the biogenesis of suboptimal microRNAs</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Most microRNAs (miRNAs) are processed by two ribonuclease III enzymes. The first cleavage is performed by Microprocessor that is composed of RNase III enzyme Drosha and DGCR8, and the second by another RNase III enzyme Dicer. There are many examples of miRNAs that are poor substrates for Drosha and Dicer, owing to their suboptimal structures. However, a number of these suboptimal miRNAs are known to be expressed at the same or higher level as their neighboring structurally-optimal miRNAs. Recent studies suggest that the clustered orientation of these suboptimal miRNAs is the explanation for this phenomenon. It has been observed that the biogenesis of these suboptimal miRNAs can be affected by the expression of their neighboring optimal miRNAs. This principle is expected to apply more broadly, as it has been shown that a large percentage of suboptimal miRNAs reside within operons.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">miRNA cluster</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pri-miR-144~451</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Suboptimal structure</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-canonical biogenesis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microprocessor</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kang, Igojo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shin, Chanseok</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of the Korean Society for Applied Biological Chemistry</subfield><subfield code="d">[Seoul] : The Korean Society for Applied Biological Chemistry, co-published with Springer, 2009</subfield><subfield code="g">64(2021), 1 vom: 15. Juli</subfield><subfield code="w">(DE-627)684967510</subfield><subfield code="w">(DE-600)2649483-8</subfield><subfield code="x">2234-344X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:64</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">day:15</subfield><subfield code="g">month:07</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13765-021-00624-3</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">64</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="b">15</subfield><subfield code="c">07</subfield></datafield></record></collection>
|
author |
Park, Sehee |
spellingShingle |
Park, Sehee ddc 630 misc miRNA cluster misc Pri-miR-144~451 misc Suboptimal structure misc Non-canonical biogenesis misc Microprocessor MicroRNA clustering on the biogenesis of suboptimal microRNAs |
authorStr |
Park, Sehee |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)684967510 |
format |
electronic Article |
dewey-ones |
630 - Agriculture & related technologies 640 - Home & family management 540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2234-344X |
topic_title |
630 640 540 ASE MicroRNA clustering on the biogenesis of suboptimal microRNAs miRNA cluster (dpeaa)DE-He213 Pri-miR-144~451 (dpeaa)DE-He213 Suboptimal structure (dpeaa)DE-He213 Non-canonical biogenesis (dpeaa)DE-He213 Microprocessor (dpeaa)DE-He213 |
topic |
ddc 630 misc miRNA cluster misc Pri-miR-144~451 misc Suboptimal structure misc Non-canonical biogenesis misc Microprocessor |
topic_unstemmed |
ddc 630 misc miRNA cluster misc Pri-miR-144~451 misc Suboptimal structure misc Non-canonical biogenesis misc Microprocessor |
topic_browse |
ddc 630 misc miRNA cluster misc Pri-miR-144~451 misc Suboptimal structure misc Non-canonical biogenesis misc Microprocessor |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of the Korean Society for Applied Biological Chemistry |
hierarchy_parent_id |
684967510 |
dewey-tens |
630 - Agriculture 640 - Home & family management 540 - Chemistry |
hierarchy_top_title |
Journal of the Korean Society for Applied Biological Chemistry |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)684967510 (DE-600)2649483-8 |
title |
MicroRNA clustering on the biogenesis of suboptimal microRNAs |
ctrlnum |
(DE-627)SPR044567855 (SPR)s13765-021-00624-3-e |
title_full |
MicroRNA clustering on the biogenesis of suboptimal microRNAs |
author_sort |
Park, Sehee |
journal |
Journal of the Korean Society for Applied Biological Chemistry |
journalStr |
Journal of the Korean Society for Applied Biological Chemistry |
lang_code |
eng |
isOA_bool |
true |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Park, Sehee Kang, Igojo Shin, Chanseok |
container_volume |
64 |
class |
630 640 540 ASE |
format_se |
Elektronische Aufsätze |
author-letter |
Park, Sehee |
doi_str_mv |
10.1186/s13765-021-00624-3 |
dewey-full |
630 640 540 |
author2-role |
verfasserin |
title_sort |
microrna clustering on the biogenesis of suboptimal micrornas |
title_auth |
MicroRNA clustering on the biogenesis of suboptimal microRNAs |
abstract |
Abstract Most microRNAs (miRNAs) are processed by two ribonuclease III enzymes. The first cleavage is performed by Microprocessor that is composed of RNase III enzyme Drosha and DGCR8, and the second by another RNase III enzyme Dicer. There are many examples of miRNAs that are poor substrates for Drosha and Dicer, owing to their suboptimal structures. However, a number of these suboptimal miRNAs are known to be expressed at the same or higher level as their neighboring structurally-optimal miRNAs. Recent studies suggest that the clustered orientation of these suboptimal miRNAs is the explanation for this phenomenon. It has been observed that the biogenesis of these suboptimal miRNAs can be affected by the expression of their neighboring optimal miRNAs. This principle is expected to apply more broadly, as it has been shown that a large percentage of suboptimal miRNAs reside within operons. © The Author(s) 2021 |
abstractGer |
Abstract Most microRNAs (miRNAs) are processed by two ribonuclease III enzymes. The first cleavage is performed by Microprocessor that is composed of RNase III enzyme Drosha and DGCR8, and the second by another RNase III enzyme Dicer. There are many examples of miRNAs that are poor substrates for Drosha and Dicer, owing to their suboptimal structures. However, a number of these suboptimal miRNAs are known to be expressed at the same or higher level as their neighboring structurally-optimal miRNAs. Recent studies suggest that the clustered orientation of these suboptimal miRNAs is the explanation for this phenomenon. It has been observed that the biogenesis of these suboptimal miRNAs can be affected by the expression of their neighboring optimal miRNAs. This principle is expected to apply more broadly, as it has been shown that a large percentage of suboptimal miRNAs reside within operons. © The Author(s) 2021 |
abstract_unstemmed |
Abstract Most microRNAs (miRNAs) are processed by two ribonuclease III enzymes. The first cleavage is performed by Microprocessor that is composed of RNase III enzyme Drosha and DGCR8, and the second by another RNase III enzyme Dicer. There are many examples of miRNAs that are poor substrates for Drosha and Dicer, owing to their suboptimal structures. However, a number of these suboptimal miRNAs are known to be expressed at the same or higher level as their neighboring structurally-optimal miRNAs. Recent studies suggest that the clustered orientation of these suboptimal miRNAs is the explanation for this phenomenon. It has been observed that the biogenesis of these suboptimal miRNAs can be affected by the expression of their neighboring optimal miRNAs. This principle is expected to apply more broadly, as it has been shown that a large percentage of suboptimal miRNAs reside within operons. © The Author(s) 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_110 GBV_ILN_161 GBV_ILN_293 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 |
container_issue |
1 |
title_short |
MicroRNA clustering on the biogenesis of suboptimal microRNAs |
url |
https://dx.doi.org/10.1186/s13765-021-00624-3 |
remote_bool |
true |
author2 |
Kang, Igojo Shin, Chanseok |
author2Str |
Kang, Igojo Shin, Chanseok |
ppnlink |
684967510 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s13765-021-00624-3 |
up_date |
2024-07-04T01:19:54.323Z |
_version_ |
1803609434309525504 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR044567855</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519163234.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210716s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13765-021-00624-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR044567855</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13765-021-00624-3-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="a">640</subfield><subfield code="a">540</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Park, Sehee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">MicroRNA clustering on the biogenesis of suboptimal microRNAs</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Most microRNAs (miRNAs) are processed by two ribonuclease III enzymes. The first cleavage is performed by Microprocessor that is composed of RNase III enzyme Drosha and DGCR8, and the second by another RNase III enzyme Dicer. There are many examples of miRNAs that are poor substrates for Drosha and Dicer, owing to their suboptimal structures. However, a number of these suboptimal miRNAs are known to be expressed at the same or higher level as their neighboring structurally-optimal miRNAs. Recent studies suggest that the clustered orientation of these suboptimal miRNAs is the explanation for this phenomenon. It has been observed that the biogenesis of these suboptimal miRNAs can be affected by the expression of their neighboring optimal miRNAs. This principle is expected to apply more broadly, as it has been shown that a large percentage of suboptimal miRNAs reside within operons.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">miRNA cluster</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pri-miR-144~451</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Suboptimal structure</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-canonical biogenesis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microprocessor</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kang, Igojo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shin, Chanseok</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of the Korean Society for Applied Biological Chemistry</subfield><subfield code="d">[Seoul] : The Korean Society for Applied Biological Chemistry, co-published with Springer, 2009</subfield><subfield code="g">64(2021), 1 vom: 15. Juli</subfield><subfield code="w">(DE-627)684967510</subfield><subfield code="w">(DE-600)2649483-8</subfield><subfield code="x">2234-344X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:64</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">day:15</subfield><subfield code="g">month:07</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13765-021-00624-3</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">64</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="b">15</subfield><subfield code="c">07</subfield></datafield></record></collection>
|
score |
7.4011183 |