Bifurcation and Stability Analysis of Glucose-Insulin Regulatory System in the Presence of β-Cells
Abstract Diabetes mellitus is one of the most extensive diseases in the world. The mathematical models are prevalent to study the dynamics of glucose, insulin, and β-cells non-invasively. Therefore, to study the impact of β-cells on the glucose-insulin regulatory system, a non-linear three-dimension...
Ausführliche Beschreibung
Autor*in: |
Kumari, Preety [verfasserIn] Singh, Swarn [verfasserIn] Singh, Harendra Pal [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Shiraz University 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: Iranian journal of science and technology - Cham, Switzerland : Springer International Pubishing, 2004, 45(2021), 5 vom: 11. Juli, Seite 1743-1756 |
---|---|
Übergeordnetes Werk: |
volume:45 ; year:2021 ; number:5 ; day:11 ; month:07 ; pages:1743-1756 |
Links: |
---|
DOI / URN: |
10.1007/s40995-021-01152-x |
---|
Katalog-ID: |
SPR044957203 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR044957203 | ||
003 | DE-627 | ||
005 | 20230519083338.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210831s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s40995-021-01152-x |2 doi | |
035 | |a (DE-627)SPR044957203 | ||
035 | |a (SPR)s40995-021-01152-x-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 500 |a 600 |q ASE |
082 | 0 | 4 | |a 500 |a 600 |q ASE |
100 | 1 | |a Kumari, Preety |e verfasserin |4 aut | |
245 | 1 | 0 | |a Bifurcation and Stability Analysis of Glucose-Insulin Regulatory System in the Presence of β-Cells |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Shiraz University 2021 | ||
520 | |a Abstract Diabetes mellitus is one of the most extensive diseases in the world. The mathematical models are prevalent to study the dynamics of glucose, insulin, and β-cells non-invasively. Therefore, to study the impact of β-cells on the glucose-insulin regulatory system, a non-linear three-dimensional mathematical model is proposed. The dynamics of the glucose-insulin regulatory system comprising of boundedness of solutions, existence, and stability condition of equilibria are explored theoretically. Additionally, the conditions for saddle-node, transcritical, and Hopf-bifurcation are also examined. The results illustrate that the glucose-insulin regulatory system offers various dynamics in distinct circumstances. The proposed model is in good agreement with the real-life physical significance of glucose-insulin dynamics. Different types of diabetes conditions such as type 2 diabetes and hyperinsulinemia are also observed through the bifurcation analysis. | ||
650 | 4 | |a Glucose |7 (dpeaa)DE-He213 | |
650 | 4 | |a Insulin |7 (dpeaa)DE-He213 | |
650 | 4 | |a -cells |7 (dpeaa)DE-He213 | |
650 | 4 | |a Equilibrium |7 (dpeaa)DE-He213 | |
650 | 4 | |a Stability |7 (dpeaa)DE-He213 | |
650 | 4 | |a Bifurcation |7 (dpeaa)DE-He213 | |
700 | 1 | |a Singh, Swarn |e verfasserin |4 aut | |
700 | 1 | |a Singh, Harendra Pal |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Iranian journal of science and technology |d Cham, Switzerland : Springer International Pubishing, 2004 |g 45(2021), 5 vom: 11. Juli, Seite 1743-1756 |w (DE-627)SPR038034816 |w (DE-600)2843077-3 |x 2364-1819 |7 nnns |
773 | 1 | 8 | |g volume:45 |g year:2021 |g number:5 |g day:11 |g month:07 |g pages:1743-1756 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s40995-021-01152-x |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
951 | |a AR | ||
952 | |d 45 |j 2021 |e 5 |b 11 |c 07 |h 1743-1756 |
author_variant |
p k pk s s ss h p s hp hps |
---|---|
matchkey_str |
article:23641819:2021----::iuctoadtbltaayioguoenuirgltrss |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1007/s40995-021-01152-x doi (DE-627)SPR044957203 (SPR)s40995-021-01152-x-e DE-627 ger DE-627 rakwb eng 500 600 ASE 500 600 ASE Kumari, Preety verfasserin aut Bifurcation and Stability Analysis of Glucose-Insulin Regulatory System in the Presence of β-Cells 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Shiraz University 2021 Abstract Diabetes mellitus is one of the most extensive diseases in the world. The mathematical models are prevalent to study the dynamics of glucose, insulin, and β-cells non-invasively. Therefore, to study the impact of β-cells on the glucose-insulin regulatory system, a non-linear three-dimensional mathematical model is proposed. The dynamics of the glucose-insulin regulatory system comprising of boundedness of solutions, existence, and stability condition of equilibria are explored theoretically. Additionally, the conditions for saddle-node, transcritical, and Hopf-bifurcation are also examined. The results illustrate that the glucose-insulin regulatory system offers various dynamics in distinct circumstances. The proposed model is in good agreement with the real-life physical significance of glucose-insulin dynamics. Different types of diabetes conditions such as type 2 diabetes and hyperinsulinemia are also observed through the bifurcation analysis. Glucose (dpeaa)DE-He213 Insulin (dpeaa)DE-He213 -cells (dpeaa)DE-He213 Equilibrium (dpeaa)DE-He213 Stability (dpeaa)DE-He213 Bifurcation (dpeaa)DE-He213 Singh, Swarn verfasserin aut Singh, Harendra Pal verfasserin aut Enthalten in Iranian journal of science and technology Cham, Switzerland : Springer International Pubishing, 2004 45(2021), 5 vom: 11. Juli, Seite 1743-1756 (DE-627)SPR038034816 (DE-600)2843077-3 2364-1819 nnns volume:45 year:2021 number:5 day:11 month:07 pages:1743-1756 https://dx.doi.org/10.1007/s40995-021-01152-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA AR 45 2021 5 11 07 1743-1756 |
spelling |
10.1007/s40995-021-01152-x doi (DE-627)SPR044957203 (SPR)s40995-021-01152-x-e DE-627 ger DE-627 rakwb eng 500 600 ASE 500 600 ASE Kumari, Preety verfasserin aut Bifurcation and Stability Analysis of Glucose-Insulin Regulatory System in the Presence of β-Cells 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Shiraz University 2021 Abstract Diabetes mellitus is one of the most extensive diseases in the world. The mathematical models are prevalent to study the dynamics of glucose, insulin, and β-cells non-invasively. Therefore, to study the impact of β-cells on the glucose-insulin regulatory system, a non-linear three-dimensional mathematical model is proposed. The dynamics of the glucose-insulin regulatory system comprising of boundedness of solutions, existence, and stability condition of equilibria are explored theoretically. Additionally, the conditions for saddle-node, transcritical, and Hopf-bifurcation are also examined. The results illustrate that the glucose-insulin regulatory system offers various dynamics in distinct circumstances. The proposed model is in good agreement with the real-life physical significance of glucose-insulin dynamics. Different types of diabetes conditions such as type 2 diabetes and hyperinsulinemia are also observed through the bifurcation analysis. Glucose (dpeaa)DE-He213 Insulin (dpeaa)DE-He213 -cells (dpeaa)DE-He213 Equilibrium (dpeaa)DE-He213 Stability (dpeaa)DE-He213 Bifurcation (dpeaa)DE-He213 Singh, Swarn verfasserin aut Singh, Harendra Pal verfasserin aut Enthalten in Iranian journal of science and technology Cham, Switzerland : Springer International Pubishing, 2004 45(2021), 5 vom: 11. Juli, Seite 1743-1756 (DE-627)SPR038034816 (DE-600)2843077-3 2364-1819 nnns volume:45 year:2021 number:5 day:11 month:07 pages:1743-1756 https://dx.doi.org/10.1007/s40995-021-01152-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA AR 45 2021 5 11 07 1743-1756 |
allfields_unstemmed |
10.1007/s40995-021-01152-x doi (DE-627)SPR044957203 (SPR)s40995-021-01152-x-e DE-627 ger DE-627 rakwb eng 500 600 ASE 500 600 ASE Kumari, Preety verfasserin aut Bifurcation and Stability Analysis of Glucose-Insulin Regulatory System in the Presence of β-Cells 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Shiraz University 2021 Abstract Diabetes mellitus is one of the most extensive diseases in the world. The mathematical models are prevalent to study the dynamics of glucose, insulin, and β-cells non-invasively. Therefore, to study the impact of β-cells on the glucose-insulin regulatory system, a non-linear three-dimensional mathematical model is proposed. The dynamics of the glucose-insulin regulatory system comprising of boundedness of solutions, existence, and stability condition of equilibria are explored theoretically. Additionally, the conditions for saddle-node, transcritical, and Hopf-bifurcation are also examined. The results illustrate that the glucose-insulin regulatory system offers various dynamics in distinct circumstances. The proposed model is in good agreement with the real-life physical significance of glucose-insulin dynamics. Different types of diabetes conditions such as type 2 diabetes and hyperinsulinemia are also observed through the bifurcation analysis. Glucose (dpeaa)DE-He213 Insulin (dpeaa)DE-He213 -cells (dpeaa)DE-He213 Equilibrium (dpeaa)DE-He213 Stability (dpeaa)DE-He213 Bifurcation (dpeaa)DE-He213 Singh, Swarn verfasserin aut Singh, Harendra Pal verfasserin aut Enthalten in Iranian journal of science and technology Cham, Switzerland : Springer International Pubishing, 2004 45(2021), 5 vom: 11. Juli, Seite 1743-1756 (DE-627)SPR038034816 (DE-600)2843077-3 2364-1819 nnns volume:45 year:2021 number:5 day:11 month:07 pages:1743-1756 https://dx.doi.org/10.1007/s40995-021-01152-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA AR 45 2021 5 11 07 1743-1756 |
allfieldsGer |
10.1007/s40995-021-01152-x doi (DE-627)SPR044957203 (SPR)s40995-021-01152-x-e DE-627 ger DE-627 rakwb eng 500 600 ASE 500 600 ASE Kumari, Preety verfasserin aut Bifurcation and Stability Analysis of Glucose-Insulin Regulatory System in the Presence of β-Cells 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Shiraz University 2021 Abstract Diabetes mellitus is one of the most extensive diseases in the world. The mathematical models are prevalent to study the dynamics of glucose, insulin, and β-cells non-invasively. Therefore, to study the impact of β-cells on the glucose-insulin regulatory system, a non-linear three-dimensional mathematical model is proposed. The dynamics of the glucose-insulin regulatory system comprising of boundedness of solutions, existence, and stability condition of equilibria are explored theoretically. Additionally, the conditions for saddle-node, transcritical, and Hopf-bifurcation are also examined. The results illustrate that the glucose-insulin regulatory system offers various dynamics in distinct circumstances. The proposed model is in good agreement with the real-life physical significance of glucose-insulin dynamics. Different types of diabetes conditions such as type 2 diabetes and hyperinsulinemia are also observed through the bifurcation analysis. Glucose (dpeaa)DE-He213 Insulin (dpeaa)DE-He213 -cells (dpeaa)DE-He213 Equilibrium (dpeaa)DE-He213 Stability (dpeaa)DE-He213 Bifurcation (dpeaa)DE-He213 Singh, Swarn verfasserin aut Singh, Harendra Pal verfasserin aut Enthalten in Iranian journal of science and technology Cham, Switzerland : Springer International Pubishing, 2004 45(2021), 5 vom: 11. Juli, Seite 1743-1756 (DE-627)SPR038034816 (DE-600)2843077-3 2364-1819 nnns volume:45 year:2021 number:5 day:11 month:07 pages:1743-1756 https://dx.doi.org/10.1007/s40995-021-01152-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA AR 45 2021 5 11 07 1743-1756 |
allfieldsSound |
10.1007/s40995-021-01152-x doi (DE-627)SPR044957203 (SPR)s40995-021-01152-x-e DE-627 ger DE-627 rakwb eng 500 600 ASE 500 600 ASE Kumari, Preety verfasserin aut Bifurcation and Stability Analysis of Glucose-Insulin Regulatory System in the Presence of β-Cells 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Shiraz University 2021 Abstract Diabetes mellitus is one of the most extensive diseases in the world. The mathematical models are prevalent to study the dynamics of glucose, insulin, and β-cells non-invasively. Therefore, to study the impact of β-cells on the glucose-insulin regulatory system, a non-linear three-dimensional mathematical model is proposed. The dynamics of the glucose-insulin regulatory system comprising of boundedness of solutions, existence, and stability condition of equilibria are explored theoretically. Additionally, the conditions for saddle-node, transcritical, and Hopf-bifurcation are also examined. The results illustrate that the glucose-insulin regulatory system offers various dynamics in distinct circumstances. The proposed model is in good agreement with the real-life physical significance of glucose-insulin dynamics. Different types of diabetes conditions such as type 2 diabetes and hyperinsulinemia are also observed through the bifurcation analysis. Glucose (dpeaa)DE-He213 Insulin (dpeaa)DE-He213 -cells (dpeaa)DE-He213 Equilibrium (dpeaa)DE-He213 Stability (dpeaa)DE-He213 Bifurcation (dpeaa)DE-He213 Singh, Swarn verfasserin aut Singh, Harendra Pal verfasserin aut Enthalten in Iranian journal of science and technology Cham, Switzerland : Springer International Pubishing, 2004 45(2021), 5 vom: 11. Juli, Seite 1743-1756 (DE-627)SPR038034816 (DE-600)2843077-3 2364-1819 nnns volume:45 year:2021 number:5 day:11 month:07 pages:1743-1756 https://dx.doi.org/10.1007/s40995-021-01152-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA AR 45 2021 5 11 07 1743-1756 |
language |
English |
source |
Enthalten in Iranian journal of science and technology 45(2021), 5 vom: 11. Juli, Seite 1743-1756 volume:45 year:2021 number:5 day:11 month:07 pages:1743-1756 |
sourceStr |
Enthalten in Iranian journal of science and technology 45(2021), 5 vom: 11. Juli, Seite 1743-1756 volume:45 year:2021 number:5 day:11 month:07 pages:1743-1756 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Glucose Insulin -cells Equilibrium Stability Bifurcation |
dewey-raw |
500 |
isfreeaccess_bool |
false |
container_title |
Iranian journal of science and technology |
authorswithroles_txt_mv |
Kumari, Preety @@aut@@ Singh, Swarn @@aut@@ Singh, Harendra Pal @@aut@@ |
publishDateDaySort_date |
2021-07-11T00:00:00Z |
hierarchy_top_id |
SPR038034816 |
dewey-sort |
3500 |
id |
SPR044957203 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR044957203</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519083338.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210831s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40995-021-01152-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR044957203</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40995-021-01152-x-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="a">600</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="a">600</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kumari, Preety</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bifurcation and Stability Analysis of Glucose-Insulin Regulatory System in the Presence of β-Cells</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Shiraz University 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Diabetes mellitus is one of the most extensive diseases in the world. The mathematical models are prevalent to study the dynamics of glucose, insulin, and β-cells non-invasively. Therefore, to study the impact of β-cells on the glucose-insulin regulatory system, a non-linear three-dimensional mathematical model is proposed. The dynamics of the glucose-insulin regulatory system comprising of boundedness of solutions, existence, and stability condition of equilibria are explored theoretically. Additionally, the conditions for saddle-node, transcritical, and Hopf-bifurcation are also examined. The results illustrate that the glucose-insulin regulatory system offers various dynamics in distinct circumstances. The proposed model is in good agreement with the real-life physical significance of glucose-insulin dynamics. Different types of diabetes conditions such as type 2 diabetes and hyperinsulinemia are also observed through the bifurcation analysis.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Glucose</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Insulin</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-cells</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Equilibrium</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stability</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bifurcation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Singh, Swarn</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Singh, Harendra Pal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Iranian journal of science and technology</subfield><subfield code="d">Cham, Switzerland : Springer International Pubishing, 2004</subfield><subfield code="g">45(2021), 5 vom: 11. Juli, Seite 1743-1756</subfield><subfield code="w">(DE-627)SPR038034816</subfield><subfield code="w">(DE-600)2843077-3</subfield><subfield code="x">2364-1819</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:45</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:5</subfield><subfield code="g">day:11</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:1743-1756</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40995-021-01152-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">45</subfield><subfield code="j">2021</subfield><subfield code="e">5</subfield><subfield code="b">11</subfield><subfield code="c">07</subfield><subfield code="h">1743-1756</subfield></datafield></record></collection>
|
author |
Kumari, Preety |
spellingShingle |
Kumari, Preety ddc 500 misc Glucose misc Insulin misc -cells misc Equilibrium misc Stability misc Bifurcation Bifurcation and Stability Analysis of Glucose-Insulin Regulatory System in the Presence of β-Cells |
authorStr |
Kumari, Preety |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)SPR038034816 |
format |
electronic Article |
dewey-ones |
500 - Natural sciences & mathematics 600 - Technology |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2364-1819 |
topic_title |
500 600 ASE Bifurcation and Stability Analysis of Glucose-Insulin Regulatory System in the Presence of β-Cells Glucose (dpeaa)DE-He213 Insulin (dpeaa)DE-He213 -cells (dpeaa)DE-He213 Equilibrium (dpeaa)DE-He213 Stability (dpeaa)DE-He213 Bifurcation (dpeaa)DE-He213 |
topic |
ddc 500 misc Glucose misc Insulin misc -cells misc Equilibrium misc Stability misc Bifurcation |
topic_unstemmed |
ddc 500 misc Glucose misc Insulin misc -cells misc Equilibrium misc Stability misc Bifurcation |
topic_browse |
ddc 500 misc Glucose misc Insulin misc -cells misc Equilibrium misc Stability misc Bifurcation |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Iranian journal of science and technology |
hierarchy_parent_id |
SPR038034816 |
dewey-tens |
500 - Science 600 - Technology |
hierarchy_top_title |
Iranian journal of science and technology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)SPR038034816 (DE-600)2843077-3 |
title |
Bifurcation and Stability Analysis of Glucose-Insulin Regulatory System in the Presence of β-Cells |
ctrlnum |
(DE-627)SPR044957203 (SPR)s40995-021-01152-x-e |
title_full |
Bifurcation and Stability Analysis of Glucose-Insulin Regulatory System in the Presence of β-Cells |
author_sort |
Kumari, Preety |
journal |
Iranian journal of science and technology |
journalStr |
Iranian journal of science and technology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
1743 |
author_browse |
Kumari, Preety Singh, Swarn Singh, Harendra Pal |
container_volume |
45 |
class |
500 600 ASE |
format_se |
Elektronische Aufsätze |
author-letter |
Kumari, Preety |
doi_str_mv |
10.1007/s40995-021-01152-x |
dewey-full |
500 600 |
author2-role |
verfasserin |
title_sort |
bifurcation and stability analysis of glucose-insulin regulatory system in the presence of β-cells |
title_auth |
Bifurcation and Stability Analysis of Glucose-Insulin Regulatory System in the Presence of β-Cells |
abstract |
Abstract Diabetes mellitus is one of the most extensive diseases in the world. The mathematical models are prevalent to study the dynamics of glucose, insulin, and β-cells non-invasively. Therefore, to study the impact of β-cells on the glucose-insulin regulatory system, a non-linear three-dimensional mathematical model is proposed. The dynamics of the glucose-insulin regulatory system comprising of boundedness of solutions, existence, and stability condition of equilibria are explored theoretically. Additionally, the conditions for saddle-node, transcritical, and Hopf-bifurcation are also examined. The results illustrate that the glucose-insulin regulatory system offers various dynamics in distinct circumstances. The proposed model is in good agreement with the real-life physical significance of glucose-insulin dynamics. Different types of diabetes conditions such as type 2 diabetes and hyperinsulinemia are also observed through the bifurcation analysis. © Shiraz University 2021 |
abstractGer |
Abstract Diabetes mellitus is one of the most extensive diseases in the world. The mathematical models are prevalent to study the dynamics of glucose, insulin, and β-cells non-invasively. Therefore, to study the impact of β-cells on the glucose-insulin regulatory system, a non-linear three-dimensional mathematical model is proposed. The dynamics of the glucose-insulin regulatory system comprising of boundedness of solutions, existence, and stability condition of equilibria are explored theoretically. Additionally, the conditions for saddle-node, transcritical, and Hopf-bifurcation are also examined. The results illustrate that the glucose-insulin regulatory system offers various dynamics in distinct circumstances. The proposed model is in good agreement with the real-life physical significance of glucose-insulin dynamics. Different types of diabetes conditions such as type 2 diabetes and hyperinsulinemia are also observed through the bifurcation analysis. © Shiraz University 2021 |
abstract_unstemmed |
Abstract Diabetes mellitus is one of the most extensive diseases in the world. The mathematical models are prevalent to study the dynamics of glucose, insulin, and β-cells non-invasively. Therefore, to study the impact of β-cells on the glucose-insulin regulatory system, a non-linear three-dimensional mathematical model is proposed. The dynamics of the glucose-insulin regulatory system comprising of boundedness of solutions, existence, and stability condition of equilibria are explored theoretically. Additionally, the conditions for saddle-node, transcritical, and Hopf-bifurcation are also examined. The results illustrate that the glucose-insulin regulatory system offers various dynamics in distinct circumstances. The proposed model is in good agreement with the real-life physical significance of glucose-insulin dynamics. Different types of diabetes conditions such as type 2 diabetes and hyperinsulinemia are also observed through the bifurcation analysis. © Shiraz University 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA |
container_issue |
5 |
title_short |
Bifurcation and Stability Analysis of Glucose-Insulin Regulatory System in the Presence of β-Cells |
url |
https://dx.doi.org/10.1007/s40995-021-01152-x |
remote_bool |
true |
author2 |
Singh, Swarn Singh, Harendra Pal |
author2Str |
Singh, Swarn Singh, Harendra Pal |
ppnlink |
SPR038034816 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s40995-021-01152-x |
up_date |
2024-07-04T02:56:44.960Z |
_version_ |
1803615527198785536 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR044957203</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519083338.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210831s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40995-021-01152-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR044957203</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40995-021-01152-x-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="a">600</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="a">600</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kumari, Preety</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bifurcation and Stability Analysis of Glucose-Insulin Regulatory System in the Presence of β-Cells</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Shiraz University 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Diabetes mellitus is one of the most extensive diseases in the world. The mathematical models are prevalent to study the dynamics of glucose, insulin, and β-cells non-invasively. Therefore, to study the impact of β-cells on the glucose-insulin regulatory system, a non-linear three-dimensional mathematical model is proposed. The dynamics of the glucose-insulin regulatory system comprising of boundedness of solutions, existence, and stability condition of equilibria are explored theoretically. Additionally, the conditions for saddle-node, transcritical, and Hopf-bifurcation are also examined. The results illustrate that the glucose-insulin regulatory system offers various dynamics in distinct circumstances. The proposed model is in good agreement with the real-life physical significance of glucose-insulin dynamics. Different types of diabetes conditions such as type 2 diabetes and hyperinsulinemia are also observed through the bifurcation analysis.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Glucose</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Insulin</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-cells</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Equilibrium</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stability</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bifurcation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Singh, Swarn</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Singh, Harendra Pal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Iranian journal of science and technology</subfield><subfield code="d">Cham, Switzerland : Springer International Pubishing, 2004</subfield><subfield code="g">45(2021), 5 vom: 11. Juli, Seite 1743-1756</subfield><subfield code="w">(DE-627)SPR038034816</subfield><subfield code="w">(DE-600)2843077-3</subfield><subfield code="x">2364-1819</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:45</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:5</subfield><subfield code="g">day:11</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:1743-1756</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40995-021-01152-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">45</subfield><subfield code="j">2021</subfield><subfield code="e">5</subfield><subfield code="b">11</subfield><subfield code="c">07</subfield><subfield code="h">1743-1756</subfield></datafield></record></collection>
|
score |
7.4020357 |