Implant-abutment screw removal torque values between customized titanium abutment, straight titanium abutment, and hybrid zirconia abutment after a million cyclic loading: an in vitro comparative study
Purpose The aim of this study was to compare removal torque values after mechanical cyclic loading and bending moment after the static compression testing of customized titanium abutment compared with prefabricated and hybrid abutments. Materials and methods The study was developed according to ISO...
Ausführliche Beschreibung
Autor*in: |
Klongbunjit, Disayut [verfasserIn] Aunmeungtong, Weerapan [verfasserIn] Khongkhunthian, Pathawee [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of implant dentistry - Berlin : Springer, 2015, 7(2021), 1 vom: 04. Okt. |
---|---|
Übergeordnetes Werk: |
volume:7 ; year:2021 ; number:1 ; day:04 ; month:10 |
Links: |
---|
DOI / URN: |
10.1186/s40729-021-00378-z |
---|
Katalog-ID: |
SPR045211418 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR045211418 | ||
003 | DE-627 | ||
005 | 20230519155528.0 | ||
007 | cr uuu---uuuuu | ||
008 | 211005s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s40729-021-00378-z |2 doi | |
035 | |a (DE-627)SPR045211418 | ||
035 | |a (SPR)s40729-021-00378-z-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q ASE |
082 | 0 | 4 | |a 610 |q ASE |
100 | 1 | |a Klongbunjit, Disayut |e verfasserin |4 aut | |
245 | 1 | 0 | |a Implant-abutment screw removal torque values between customized titanium abutment, straight titanium abutment, and hybrid zirconia abutment after a million cyclic loading: an in vitro comparative study |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2021 | ||
520 | |a Purpose The aim of this study was to compare removal torque values after mechanical cyclic loading and bending moment after the static compression testing of customized titanium abutment compared with prefabricated and hybrid abutments. Materials and methods The study was developed according to ISO 14801:2016. Sixty implants were divided into three groups equally: Straight titanium abutment group, Customized titanium abutment group, and Hybrid zirconia abutment group. Abutments were fabricated with zirconia restoration. Forty five implants underwent for cyclic loading. The removal torque values were measured after a fatigue test was conducted at 0 cycles (control), 50,000 cycles and 1,000,000 cycles. In the second experiment, 15 implants were divided into the same groups. Then, bending moments were investigated. Results The mean initial removal torque value was significantly higher than 50,000 cycles and 1,000,000 cycles (P < 0.001). The comparison of mean removal torque value between types of abutments was not significantly different (P > 0.05), and the bending moments of all abutments were not significantly different (P > 0.05). Conclusions From the boundary of this in-vitro study, it could be concluded that customized titanium abutment and hybrid abutment were not significantly different in terms of removal torque values after the fatigue test. The bending moment between types of abutment were not significantly different. Thus, it could be concluded that abutment type does not significantly influence abutment stability or fracture strength. | ||
650 | 4 | |a Bending moment |7 (dpeaa)DE-He213 | |
650 | 4 | |a Removal torque |7 (dpeaa)DE-He213 | |
650 | 4 | |a Cyclic loading |7 (dpeaa)DE-He213 | |
650 | 4 | |a Abutment |7 (dpeaa)DE-He213 | |
700 | 1 | |a Aunmeungtong, Weerapan |e verfasserin |4 aut | |
700 | 1 | |a Khongkhunthian, Pathawee |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International journal of implant dentistry |d Berlin : Springer, 2015 |g 7(2021), 1 vom: 04. Okt. |w (DE-627)84409952X |w (DE-600)2842869-9 |x 2198-4034 |7 nnns |
773 | 1 | 8 | |g volume:7 |g year:2021 |g number:1 |g day:04 |g month:10 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s40729-021-00378-z |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 7 |j 2021 |e 1 |b 04 |c 10 |
author_variant |
d k dk w a wa p k pk |
---|---|
matchkey_str |
article:21984034:2021----::mlnaumnsrweoatruvlebtenutmzdiaimbtettagtiaimbtetnhbizroiaumnatrm |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1186/s40729-021-00378-z doi (DE-627)SPR045211418 (SPR)s40729-021-00378-z-e DE-627 ger DE-627 rakwb eng 610 ASE 610 ASE Klongbunjit, Disayut verfasserin aut Implant-abutment screw removal torque values between customized titanium abutment, straight titanium abutment, and hybrid zirconia abutment after a million cyclic loading: an in vitro comparative study 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2021 Purpose The aim of this study was to compare removal torque values after mechanical cyclic loading and bending moment after the static compression testing of customized titanium abutment compared with prefabricated and hybrid abutments. Materials and methods The study was developed according to ISO 14801:2016. Sixty implants were divided into three groups equally: Straight titanium abutment group, Customized titanium abutment group, and Hybrid zirconia abutment group. Abutments were fabricated with zirconia restoration. Forty five implants underwent for cyclic loading. The removal torque values were measured after a fatigue test was conducted at 0 cycles (control), 50,000 cycles and 1,000,000 cycles. In the second experiment, 15 implants were divided into the same groups. Then, bending moments were investigated. Results The mean initial removal torque value was significantly higher than 50,000 cycles and 1,000,000 cycles (P < 0.001). The comparison of mean removal torque value between types of abutments was not significantly different (P > 0.05), and the bending moments of all abutments were not significantly different (P > 0.05). Conclusions From the boundary of this in-vitro study, it could be concluded that customized titanium abutment and hybrid abutment were not significantly different in terms of removal torque values after the fatigue test. The bending moment between types of abutment were not significantly different. Thus, it could be concluded that abutment type does not significantly influence abutment stability or fracture strength. Bending moment (dpeaa)DE-He213 Removal torque (dpeaa)DE-He213 Cyclic loading (dpeaa)DE-He213 Abutment (dpeaa)DE-He213 Aunmeungtong, Weerapan verfasserin aut Khongkhunthian, Pathawee verfasserin aut Enthalten in International journal of implant dentistry Berlin : Springer, 2015 7(2021), 1 vom: 04. Okt. (DE-627)84409952X (DE-600)2842869-9 2198-4034 nnns volume:7 year:2021 number:1 day:04 month:10 https://dx.doi.org/10.1186/s40729-021-00378-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2021 1 04 10 |
spelling |
10.1186/s40729-021-00378-z doi (DE-627)SPR045211418 (SPR)s40729-021-00378-z-e DE-627 ger DE-627 rakwb eng 610 ASE 610 ASE Klongbunjit, Disayut verfasserin aut Implant-abutment screw removal torque values between customized titanium abutment, straight titanium abutment, and hybrid zirconia abutment after a million cyclic loading: an in vitro comparative study 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2021 Purpose The aim of this study was to compare removal torque values after mechanical cyclic loading and bending moment after the static compression testing of customized titanium abutment compared with prefabricated and hybrid abutments. Materials and methods The study was developed according to ISO 14801:2016. Sixty implants were divided into three groups equally: Straight titanium abutment group, Customized titanium abutment group, and Hybrid zirconia abutment group. Abutments were fabricated with zirconia restoration. Forty five implants underwent for cyclic loading. The removal torque values were measured after a fatigue test was conducted at 0 cycles (control), 50,000 cycles and 1,000,000 cycles. In the second experiment, 15 implants were divided into the same groups. Then, bending moments were investigated. Results The mean initial removal torque value was significantly higher than 50,000 cycles and 1,000,000 cycles (P < 0.001). The comparison of mean removal torque value between types of abutments was not significantly different (P > 0.05), and the bending moments of all abutments were not significantly different (P > 0.05). Conclusions From the boundary of this in-vitro study, it could be concluded that customized titanium abutment and hybrid abutment were not significantly different in terms of removal torque values after the fatigue test. The bending moment between types of abutment were not significantly different. Thus, it could be concluded that abutment type does not significantly influence abutment stability or fracture strength. Bending moment (dpeaa)DE-He213 Removal torque (dpeaa)DE-He213 Cyclic loading (dpeaa)DE-He213 Abutment (dpeaa)DE-He213 Aunmeungtong, Weerapan verfasserin aut Khongkhunthian, Pathawee verfasserin aut Enthalten in International journal of implant dentistry Berlin : Springer, 2015 7(2021), 1 vom: 04. Okt. (DE-627)84409952X (DE-600)2842869-9 2198-4034 nnns volume:7 year:2021 number:1 day:04 month:10 https://dx.doi.org/10.1186/s40729-021-00378-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2021 1 04 10 |
allfields_unstemmed |
10.1186/s40729-021-00378-z doi (DE-627)SPR045211418 (SPR)s40729-021-00378-z-e DE-627 ger DE-627 rakwb eng 610 ASE 610 ASE Klongbunjit, Disayut verfasserin aut Implant-abutment screw removal torque values between customized titanium abutment, straight titanium abutment, and hybrid zirconia abutment after a million cyclic loading: an in vitro comparative study 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2021 Purpose The aim of this study was to compare removal torque values after mechanical cyclic loading and bending moment after the static compression testing of customized titanium abutment compared with prefabricated and hybrid abutments. Materials and methods The study was developed according to ISO 14801:2016. Sixty implants were divided into three groups equally: Straight titanium abutment group, Customized titanium abutment group, and Hybrid zirconia abutment group. Abutments were fabricated with zirconia restoration. Forty five implants underwent for cyclic loading. The removal torque values were measured after a fatigue test was conducted at 0 cycles (control), 50,000 cycles and 1,000,000 cycles. In the second experiment, 15 implants were divided into the same groups. Then, bending moments were investigated. Results The mean initial removal torque value was significantly higher than 50,000 cycles and 1,000,000 cycles (P < 0.001). The comparison of mean removal torque value between types of abutments was not significantly different (P > 0.05), and the bending moments of all abutments were not significantly different (P > 0.05). Conclusions From the boundary of this in-vitro study, it could be concluded that customized titanium abutment and hybrid abutment were not significantly different in terms of removal torque values after the fatigue test. The bending moment between types of abutment were not significantly different. Thus, it could be concluded that abutment type does not significantly influence abutment stability or fracture strength. Bending moment (dpeaa)DE-He213 Removal torque (dpeaa)DE-He213 Cyclic loading (dpeaa)DE-He213 Abutment (dpeaa)DE-He213 Aunmeungtong, Weerapan verfasserin aut Khongkhunthian, Pathawee verfasserin aut Enthalten in International journal of implant dentistry Berlin : Springer, 2015 7(2021), 1 vom: 04. Okt. (DE-627)84409952X (DE-600)2842869-9 2198-4034 nnns volume:7 year:2021 number:1 day:04 month:10 https://dx.doi.org/10.1186/s40729-021-00378-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2021 1 04 10 |
allfieldsGer |
10.1186/s40729-021-00378-z doi (DE-627)SPR045211418 (SPR)s40729-021-00378-z-e DE-627 ger DE-627 rakwb eng 610 ASE 610 ASE Klongbunjit, Disayut verfasserin aut Implant-abutment screw removal torque values between customized titanium abutment, straight titanium abutment, and hybrid zirconia abutment after a million cyclic loading: an in vitro comparative study 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2021 Purpose The aim of this study was to compare removal torque values after mechanical cyclic loading and bending moment after the static compression testing of customized titanium abutment compared with prefabricated and hybrid abutments. Materials and methods The study was developed according to ISO 14801:2016. Sixty implants were divided into three groups equally: Straight titanium abutment group, Customized titanium abutment group, and Hybrid zirconia abutment group. Abutments were fabricated with zirconia restoration. Forty five implants underwent for cyclic loading. The removal torque values were measured after a fatigue test was conducted at 0 cycles (control), 50,000 cycles and 1,000,000 cycles. In the second experiment, 15 implants were divided into the same groups. Then, bending moments were investigated. Results The mean initial removal torque value was significantly higher than 50,000 cycles and 1,000,000 cycles (P < 0.001). The comparison of mean removal torque value between types of abutments was not significantly different (P > 0.05), and the bending moments of all abutments were not significantly different (P > 0.05). Conclusions From the boundary of this in-vitro study, it could be concluded that customized titanium abutment and hybrid abutment were not significantly different in terms of removal torque values after the fatigue test. The bending moment between types of abutment were not significantly different. Thus, it could be concluded that abutment type does not significantly influence abutment stability or fracture strength. Bending moment (dpeaa)DE-He213 Removal torque (dpeaa)DE-He213 Cyclic loading (dpeaa)DE-He213 Abutment (dpeaa)DE-He213 Aunmeungtong, Weerapan verfasserin aut Khongkhunthian, Pathawee verfasserin aut Enthalten in International journal of implant dentistry Berlin : Springer, 2015 7(2021), 1 vom: 04. Okt. (DE-627)84409952X (DE-600)2842869-9 2198-4034 nnns volume:7 year:2021 number:1 day:04 month:10 https://dx.doi.org/10.1186/s40729-021-00378-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2021 1 04 10 |
allfieldsSound |
10.1186/s40729-021-00378-z doi (DE-627)SPR045211418 (SPR)s40729-021-00378-z-e DE-627 ger DE-627 rakwb eng 610 ASE 610 ASE Klongbunjit, Disayut verfasserin aut Implant-abutment screw removal torque values between customized titanium abutment, straight titanium abutment, and hybrid zirconia abutment after a million cyclic loading: an in vitro comparative study 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2021 Purpose The aim of this study was to compare removal torque values after mechanical cyclic loading and bending moment after the static compression testing of customized titanium abutment compared with prefabricated and hybrid abutments. Materials and methods The study was developed according to ISO 14801:2016. Sixty implants were divided into three groups equally: Straight titanium abutment group, Customized titanium abutment group, and Hybrid zirconia abutment group. Abutments were fabricated with zirconia restoration. Forty five implants underwent for cyclic loading. The removal torque values were measured after a fatigue test was conducted at 0 cycles (control), 50,000 cycles and 1,000,000 cycles. In the second experiment, 15 implants were divided into the same groups. Then, bending moments were investigated. Results The mean initial removal torque value was significantly higher than 50,000 cycles and 1,000,000 cycles (P < 0.001). The comparison of mean removal torque value between types of abutments was not significantly different (P > 0.05), and the bending moments of all abutments were not significantly different (P > 0.05). Conclusions From the boundary of this in-vitro study, it could be concluded that customized titanium abutment and hybrid abutment were not significantly different in terms of removal torque values after the fatigue test. The bending moment between types of abutment were not significantly different. Thus, it could be concluded that abutment type does not significantly influence abutment stability or fracture strength. Bending moment (dpeaa)DE-He213 Removal torque (dpeaa)DE-He213 Cyclic loading (dpeaa)DE-He213 Abutment (dpeaa)DE-He213 Aunmeungtong, Weerapan verfasserin aut Khongkhunthian, Pathawee verfasserin aut Enthalten in International journal of implant dentistry Berlin : Springer, 2015 7(2021), 1 vom: 04. Okt. (DE-627)84409952X (DE-600)2842869-9 2198-4034 nnns volume:7 year:2021 number:1 day:04 month:10 https://dx.doi.org/10.1186/s40729-021-00378-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2021 1 04 10 |
language |
English |
source |
Enthalten in International journal of implant dentistry 7(2021), 1 vom: 04. Okt. volume:7 year:2021 number:1 day:04 month:10 |
sourceStr |
Enthalten in International journal of implant dentistry 7(2021), 1 vom: 04. Okt. volume:7 year:2021 number:1 day:04 month:10 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Bending moment Removal torque Cyclic loading Abutment |
dewey-raw |
610 |
isfreeaccess_bool |
true |
container_title |
International journal of implant dentistry |
authorswithroles_txt_mv |
Klongbunjit, Disayut @@aut@@ Aunmeungtong, Weerapan @@aut@@ Khongkhunthian, Pathawee @@aut@@ |
publishDateDaySort_date |
2021-10-04T00:00:00Z |
hierarchy_top_id |
84409952X |
dewey-sort |
3610 |
id |
SPR045211418 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR045211418</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519155528.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">211005s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40729-021-00378-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR045211418</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40729-021-00378-z-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Klongbunjit, Disayut</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Implant-abutment screw removal torque values between customized titanium abutment, straight titanium abutment, and hybrid zirconia abutment after a million cyclic loading: an in vitro comparative study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Purpose The aim of this study was to compare removal torque values after mechanical cyclic loading and bending moment after the static compression testing of customized titanium abutment compared with prefabricated and hybrid abutments. Materials and methods The study was developed according to ISO 14801:2016. Sixty implants were divided into three groups equally: Straight titanium abutment group, Customized titanium abutment group, and Hybrid zirconia abutment group. Abutments were fabricated with zirconia restoration. Forty five implants underwent for cyclic loading. The removal torque values were measured after a fatigue test was conducted at 0 cycles (control), 50,000 cycles and 1,000,000 cycles. In the second experiment, 15 implants were divided into the same groups. Then, bending moments were investigated. Results The mean initial removal torque value was significantly higher than 50,000 cycles and 1,000,000 cycles (P < 0.001). The comparison of mean removal torque value between types of abutments was not significantly different (P > 0.05), and the bending moments of all abutments were not significantly different (P > 0.05). Conclusions From the boundary of this in-vitro study, it could be concluded that customized titanium abutment and hybrid abutment were not significantly different in terms of removal torque values after the fatigue test. The bending moment between types of abutment were not significantly different. Thus, it could be concluded that abutment type does not significantly influence abutment stability or fracture strength.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bending moment</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Removal torque</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cyclic loading</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Abutment</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Aunmeungtong, Weerapan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Khongkhunthian, Pathawee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of implant dentistry</subfield><subfield code="d">Berlin : Springer, 2015</subfield><subfield code="g">7(2021), 1 vom: 04. Okt.</subfield><subfield code="w">(DE-627)84409952X</subfield><subfield code="w">(DE-600)2842869-9</subfield><subfield code="x">2198-4034</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">day:04</subfield><subfield code="g">month:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s40729-021-00378-z</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="b">04</subfield><subfield code="c">10</subfield></datafield></record></collection>
|
author |
Klongbunjit, Disayut |
spellingShingle |
Klongbunjit, Disayut ddc 610 misc Bending moment misc Removal torque misc Cyclic loading misc Abutment Implant-abutment screw removal torque values between customized titanium abutment, straight titanium abutment, and hybrid zirconia abutment after a million cyclic loading: an in vitro comparative study |
authorStr |
Klongbunjit, Disayut |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)84409952X |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2198-4034 |
topic_title |
610 ASE Implant-abutment screw removal torque values between customized titanium abutment, straight titanium abutment, and hybrid zirconia abutment after a million cyclic loading: an in vitro comparative study Bending moment (dpeaa)DE-He213 Removal torque (dpeaa)DE-He213 Cyclic loading (dpeaa)DE-He213 Abutment (dpeaa)DE-He213 |
topic |
ddc 610 misc Bending moment misc Removal torque misc Cyclic loading misc Abutment |
topic_unstemmed |
ddc 610 misc Bending moment misc Removal torque misc Cyclic loading misc Abutment |
topic_browse |
ddc 610 misc Bending moment misc Removal torque misc Cyclic loading misc Abutment |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International journal of implant dentistry |
hierarchy_parent_id |
84409952X |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
International journal of implant dentistry |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)84409952X (DE-600)2842869-9 |
title |
Implant-abutment screw removal torque values between customized titanium abutment, straight titanium abutment, and hybrid zirconia abutment after a million cyclic loading: an in vitro comparative study |
ctrlnum |
(DE-627)SPR045211418 (SPR)s40729-021-00378-z-e |
title_full |
Implant-abutment screw removal torque values between customized titanium abutment, straight titanium abutment, and hybrid zirconia abutment after a million cyclic loading: an in vitro comparative study |
author_sort |
Klongbunjit, Disayut |
journal |
International journal of implant dentistry |
journalStr |
International journal of implant dentistry |
lang_code |
eng |
isOA_bool |
true |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Klongbunjit, Disayut Aunmeungtong, Weerapan Khongkhunthian, Pathawee |
container_volume |
7 |
class |
610 ASE |
format_se |
Elektronische Aufsätze |
author-letter |
Klongbunjit, Disayut |
doi_str_mv |
10.1186/s40729-021-00378-z |
dewey-full |
610 |
author2-role |
verfasserin |
title_sort |
implant-abutment screw removal torque values between customized titanium abutment, straight titanium abutment, and hybrid zirconia abutment after a million cyclic loading: an in vitro comparative study |
title_auth |
Implant-abutment screw removal torque values between customized titanium abutment, straight titanium abutment, and hybrid zirconia abutment after a million cyclic loading: an in vitro comparative study |
abstract |
Purpose The aim of this study was to compare removal torque values after mechanical cyclic loading and bending moment after the static compression testing of customized titanium abutment compared with prefabricated and hybrid abutments. Materials and methods The study was developed according to ISO 14801:2016. Sixty implants were divided into three groups equally: Straight titanium abutment group, Customized titanium abutment group, and Hybrid zirconia abutment group. Abutments were fabricated with zirconia restoration. Forty five implants underwent for cyclic loading. The removal torque values were measured after a fatigue test was conducted at 0 cycles (control), 50,000 cycles and 1,000,000 cycles. In the second experiment, 15 implants were divided into the same groups. Then, bending moments were investigated. Results The mean initial removal torque value was significantly higher than 50,000 cycles and 1,000,000 cycles (P < 0.001). The comparison of mean removal torque value between types of abutments was not significantly different (P > 0.05), and the bending moments of all abutments were not significantly different (P > 0.05). Conclusions From the boundary of this in-vitro study, it could be concluded that customized titanium abutment and hybrid abutment were not significantly different in terms of removal torque values after the fatigue test. The bending moment between types of abutment were not significantly different. Thus, it could be concluded that abutment type does not significantly influence abutment stability or fracture strength. © The Author(s) 2021 |
abstractGer |
Purpose The aim of this study was to compare removal torque values after mechanical cyclic loading and bending moment after the static compression testing of customized titanium abutment compared with prefabricated and hybrid abutments. Materials and methods The study was developed according to ISO 14801:2016. Sixty implants were divided into three groups equally: Straight titanium abutment group, Customized titanium abutment group, and Hybrid zirconia abutment group. Abutments were fabricated with zirconia restoration. Forty five implants underwent for cyclic loading. The removal torque values were measured after a fatigue test was conducted at 0 cycles (control), 50,000 cycles and 1,000,000 cycles. In the second experiment, 15 implants were divided into the same groups. Then, bending moments were investigated. Results The mean initial removal torque value was significantly higher than 50,000 cycles and 1,000,000 cycles (P < 0.001). The comparison of mean removal torque value between types of abutments was not significantly different (P > 0.05), and the bending moments of all abutments were not significantly different (P > 0.05). Conclusions From the boundary of this in-vitro study, it could be concluded that customized titanium abutment and hybrid abutment were not significantly different in terms of removal torque values after the fatigue test. The bending moment between types of abutment were not significantly different. Thus, it could be concluded that abutment type does not significantly influence abutment stability or fracture strength. © The Author(s) 2021 |
abstract_unstemmed |
Purpose The aim of this study was to compare removal torque values after mechanical cyclic loading and bending moment after the static compression testing of customized titanium abutment compared with prefabricated and hybrid abutments. Materials and methods The study was developed according to ISO 14801:2016. Sixty implants were divided into three groups equally: Straight titanium abutment group, Customized titanium abutment group, and Hybrid zirconia abutment group. Abutments were fabricated with zirconia restoration. Forty five implants underwent for cyclic loading. The removal torque values were measured after a fatigue test was conducted at 0 cycles (control), 50,000 cycles and 1,000,000 cycles. In the second experiment, 15 implants were divided into the same groups. Then, bending moments were investigated. Results The mean initial removal torque value was significantly higher than 50,000 cycles and 1,000,000 cycles (P < 0.001). The comparison of mean removal torque value between types of abutments was not significantly different (P > 0.05), and the bending moments of all abutments were not significantly different (P > 0.05). Conclusions From the boundary of this in-vitro study, it could be concluded that customized titanium abutment and hybrid abutment were not significantly different in terms of removal torque values after the fatigue test. The bending moment between types of abutment were not significantly different. Thus, it could be concluded that abutment type does not significantly influence abutment stability or fracture strength. © The Author(s) 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Implant-abutment screw removal torque values between customized titanium abutment, straight titanium abutment, and hybrid zirconia abutment after a million cyclic loading: an in vitro comparative study |
url |
https://dx.doi.org/10.1186/s40729-021-00378-z |
remote_bool |
true |
author2 |
Aunmeungtong, Weerapan Khongkhunthian, Pathawee |
author2Str |
Aunmeungtong, Weerapan Khongkhunthian, Pathawee |
ppnlink |
84409952X |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s40729-021-00378-z |
up_date |
2024-07-03T14:29:56.619Z |
_version_ |
1803568542252007425 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR045211418</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519155528.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">211005s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40729-021-00378-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR045211418</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40729-021-00378-z-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Klongbunjit, Disayut</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Implant-abutment screw removal torque values between customized titanium abutment, straight titanium abutment, and hybrid zirconia abutment after a million cyclic loading: an in vitro comparative study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Purpose The aim of this study was to compare removal torque values after mechanical cyclic loading and bending moment after the static compression testing of customized titanium abutment compared with prefabricated and hybrid abutments. Materials and methods The study was developed according to ISO 14801:2016. Sixty implants were divided into three groups equally: Straight titanium abutment group, Customized titanium abutment group, and Hybrid zirconia abutment group. Abutments were fabricated with zirconia restoration. Forty five implants underwent for cyclic loading. The removal torque values were measured after a fatigue test was conducted at 0 cycles (control), 50,000 cycles and 1,000,000 cycles. In the second experiment, 15 implants were divided into the same groups. Then, bending moments were investigated. Results The mean initial removal torque value was significantly higher than 50,000 cycles and 1,000,000 cycles (P < 0.001). The comparison of mean removal torque value between types of abutments was not significantly different (P > 0.05), and the bending moments of all abutments were not significantly different (P > 0.05). Conclusions From the boundary of this in-vitro study, it could be concluded that customized titanium abutment and hybrid abutment were not significantly different in terms of removal torque values after the fatigue test. The bending moment between types of abutment were not significantly different. Thus, it could be concluded that abutment type does not significantly influence abutment stability or fracture strength.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bending moment</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Removal torque</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cyclic loading</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Abutment</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Aunmeungtong, Weerapan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Khongkhunthian, Pathawee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of implant dentistry</subfield><subfield code="d">Berlin : Springer, 2015</subfield><subfield code="g">7(2021), 1 vom: 04. Okt.</subfield><subfield code="w">(DE-627)84409952X</subfield><subfield code="w">(DE-600)2842869-9</subfield><subfield code="x">2198-4034</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">day:04</subfield><subfield code="g">month:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s40729-021-00378-z</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="b">04</subfield><subfield code="c">10</subfield></datafield></record></collection>
|
score |
7.4032135 |