The underlying components of data-driven smart sustainable cities of the future: a case study approach to an applied theoretical framework
Abstract The increased pressure on cities has led to a stronger need to build sustainable cities that can last. Planning sustainable cities of the future, educated by the lessons of the past and anticipating the challenges of the future, entails articulating a multi-scalar vision that, by further in...
Ausführliche Beschreibung
Autor*in: |
Bibri, Simon Elias [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: European Journal of Futures Research - Heidelberg : Springer, 2013, 9(2021), 1 vom: 11. Okt. |
---|---|
Übergeordnetes Werk: |
volume:9 ; year:2021 ; number:1 ; day:11 ; month:10 |
Links: |
---|
DOI / URN: |
10.1186/s40309-021-00182-3 |
---|
Katalog-ID: |
SPR045271259 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR045271259 | ||
003 | DE-627 | ||
005 | 20220112024407.0 | ||
007 | cr uuu---uuuuu | ||
008 | 211012s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s40309-021-00182-3 |2 doi | |
035 | |a (DE-627)SPR045271259 | ||
035 | |a (SPR)s40309-021-00182-3-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 330 |q ASE |
100 | 1 | |a Bibri, Simon Elias |e verfasserin |4 aut | |
245 | 1 | 4 | |a The underlying components of data-driven smart sustainable cities of the future: a case study approach to an applied theoretical framework |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2021 | ||
520 | |a Abstract The increased pressure on cities has led to a stronger need to build sustainable cities that can last. Planning sustainable cities of the future, educated by the lessons of the past and anticipating the challenges of the future, entails articulating a multi-scalar vision that, by further interplaying with major societal trends and paradigm shifts in science and technology, produce new opportunities towards reaching the goals of sustainability. Enabled by big data science and analytics, the ongoing transformative processes within sustainable cities are motivated by the need to address and overcome the challenges hampering progress towards sustainability. This means that sustainable cities should be understood, analyzed, planned, designed, and managed in new and innovative ways in order to improve and advance their contribution to sustainability. Therefore, sustainable cities are increasingly embracing and leveraging what smart cities have to offer in terms of data-driven technologies and applied solutions so as to optimize, enhance, and maintain their performance and thus achieve the desired outcomes of sustainability—under what has been termed “data-driven smart sustainable cities.” Based on a case study analysis, this paper develops an applied theoretical framework for strategic sustainable urban development planning. This entails identifying and integrating the underlying components of data-driven smart sustainable cities of the future in terms of the dimensions, strategies, and solutions of the leading global paradigms of sustainable urbanism and smart urbanism. The novelty of the proposed framework lies in combining compact urban design strategies, eco-city design strategies and technology solutions; data-driven smart city technologies, competences, and solutions for sustainability; and environmentally data-driven smart sustainable city solutions and strategies. These combined have great potential to improve and advance the contribution of sustainable cities to the goals of sustainability through harnessing its synergistic effects and balancing the integration of its dimensions. The main contribution of this work lies in providing new insights into guiding the development of various types of strategic planning processes of transformative change towards sustainability, as well as to stimulate and inspire future research endeavors in this direction. This study informs policymakers and planners about the opportunity of attaining important advances in sustainability by integrating the established models of sustainable urbanism and the emerging models of smart urbanism thanks to the proven role and untapped potential of data-driven technologies in catalyzing sustainable development and thus boosting sustainability benefits. | ||
650 | 4 | |a Sustainable cities |7 (dpeaa)DE-He213 | |
650 | 4 | |a Compact cities |7 (dpeaa)DE-He213 | |
650 | 4 | |a Eco-cities |7 (dpeaa)DE-He213 | |
650 | 4 | |a Data-driven smart cities |7 (dpeaa)DE-He213 | |
650 | 4 | |a Data-driven smart sustainable cities |7 (dpeaa)DE-He213 | |
650 | 4 | |a Sustainability |7 (dpeaa)DE-He213 | |
650 | 4 | |a Sustainable urbanism |7 (dpeaa)DE-He213 | |
650 | 4 | |a Smart urbanism |7 (dpeaa)DE-He213 | |
650 | 4 | |a Big data technologies |7 (dpeaa)DE-He213 | |
773 | 0 | 8 | |i Enthalten in |t European Journal of Futures Research |d Heidelberg : Springer, 2013 |g 9(2021), 1 vom: 11. Okt. |w (DE-627)769223966 |w (DE-600)2735107-5 |x 2195-2248 |7 nnns |
773 | 1 | 8 | |g volume:9 |g year:2021 |g number:1 |g day:11 |g month:10 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s40309-021-00182-3 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_26 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2086 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 9 |j 2021 |e 1 |b 11 |c 10 |
author_variant |
s e b se seb |
---|---|
matchkey_str |
article:21952248:2021----::hudryncmoetodtdiesatutialcteoteuuecssuyprah |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1186/s40309-021-00182-3 doi (DE-627)SPR045271259 (SPR)s40309-021-00182-3-e DE-627 ger DE-627 rakwb eng 330 ASE Bibri, Simon Elias verfasserin aut The underlying components of data-driven smart sustainable cities of the future: a case study approach to an applied theoretical framework 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2021 Abstract The increased pressure on cities has led to a stronger need to build sustainable cities that can last. Planning sustainable cities of the future, educated by the lessons of the past and anticipating the challenges of the future, entails articulating a multi-scalar vision that, by further interplaying with major societal trends and paradigm shifts in science and technology, produce new opportunities towards reaching the goals of sustainability. Enabled by big data science and analytics, the ongoing transformative processes within sustainable cities are motivated by the need to address and overcome the challenges hampering progress towards sustainability. This means that sustainable cities should be understood, analyzed, planned, designed, and managed in new and innovative ways in order to improve and advance their contribution to sustainability. Therefore, sustainable cities are increasingly embracing and leveraging what smart cities have to offer in terms of data-driven technologies and applied solutions so as to optimize, enhance, and maintain their performance and thus achieve the desired outcomes of sustainability—under what has been termed “data-driven smart sustainable cities.” Based on a case study analysis, this paper develops an applied theoretical framework for strategic sustainable urban development planning. This entails identifying and integrating the underlying components of data-driven smart sustainable cities of the future in terms of the dimensions, strategies, and solutions of the leading global paradigms of sustainable urbanism and smart urbanism. The novelty of the proposed framework lies in combining compact urban design strategies, eco-city design strategies and technology solutions; data-driven smart city technologies, competences, and solutions for sustainability; and environmentally data-driven smart sustainable city solutions and strategies. These combined have great potential to improve and advance the contribution of sustainable cities to the goals of sustainability through harnessing its synergistic effects and balancing the integration of its dimensions. The main contribution of this work lies in providing new insights into guiding the development of various types of strategic planning processes of transformative change towards sustainability, as well as to stimulate and inspire future research endeavors in this direction. This study informs policymakers and planners about the opportunity of attaining important advances in sustainability by integrating the established models of sustainable urbanism and the emerging models of smart urbanism thanks to the proven role and untapped potential of data-driven technologies in catalyzing sustainable development and thus boosting sustainability benefits. Sustainable cities (dpeaa)DE-He213 Compact cities (dpeaa)DE-He213 Eco-cities (dpeaa)DE-He213 Data-driven smart cities (dpeaa)DE-He213 Data-driven smart sustainable cities (dpeaa)DE-He213 Sustainability (dpeaa)DE-He213 Sustainable urbanism (dpeaa)DE-He213 Smart urbanism (dpeaa)DE-He213 Big data technologies (dpeaa)DE-He213 Enthalten in European Journal of Futures Research Heidelberg : Springer, 2013 9(2021), 1 vom: 11. Okt. (DE-627)769223966 (DE-600)2735107-5 2195-2248 nnns volume:9 year:2021 number:1 day:11 month:10 https://dx.doi.org/10.1186/s40309-021-00182-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_26 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2086 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 1 11 10 |
spelling |
10.1186/s40309-021-00182-3 doi (DE-627)SPR045271259 (SPR)s40309-021-00182-3-e DE-627 ger DE-627 rakwb eng 330 ASE Bibri, Simon Elias verfasserin aut The underlying components of data-driven smart sustainable cities of the future: a case study approach to an applied theoretical framework 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2021 Abstract The increased pressure on cities has led to a stronger need to build sustainable cities that can last. Planning sustainable cities of the future, educated by the lessons of the past and anticipating the challenges of the future, entails articulating a multi-scalar vision that, by further interplaying with major societal trends and paradigm shifts in science and technology, produce new opportunities towards reaching the goals of sustainability. Enabled by big data science and analytics, the ongoing transformative processes within sustainable cities are motivated by the need to address and overcome the challenges hampering progress towards sustainability. This means that sustainable cities should be understood, analyzed, planned, designed, and managed in new and innovative ways in order to improve and advance their contribution to sustainability. Therefore, sustainable cities are increasingly embracing and leveraging what smart cities have to offer in terms of data-driven technologies and applied solutions so as to optimize, enhance, and maintain their performance and thus achieve the desired outcomes of sustainability—under what has been termed “data-driven smart sustainable cities.” Based on a case study analysis, this paper develops an applied theoretical framework for strategic sustainable urban development planning. This entails identifying and integrating the underlying components of data-driven smart sustainable cities of the future in terms of the dimensions, strategies, and solutions of the leading global paradigms of sustainable urbanism and smart urbanism. The novelty of the proposed framework lies in combining compact urban design strategies, eco-city design strategies and technology solutions; data-driven smart city technologies, competences, and solutions for sustainability; and environmentally data-driven smart sustainable city solutions and strategies. These combined have great potential to improve and advance the contribution of sustainable cities to the goals of sustainability through harnessing its synergistic effects and balancing the integration of its dimensions. The main contribution of this work lies in providing new insights into guiding the development of various types of strategic planning processes of transformative change towards sustainability, as well as to stimulate and inspire future research endeavors in this direction. This study informs policymakers and planners about the opportunity of attaining important advances in sustainability by integrating the established models of sustainable urbanism and the emerging models of smart urbanism thanks to the proven role and untapped potential of data-driven technologies in catalyzing sustainable development and thus boosting sustainability benefits. Sustainable cities (dpeaa)DE-He213 Compact cities (dpeaa)DE-He213 Eco-cities (dpeaa)DE-He213 Data-driven smart cities (dpeaa)DE-He213 Data-driven smart sustainable cities (dpeaa)DE-He213 Sustainability (dpeaa)DE-He213 Sustainable urbanism (dpeaa)DE-He213 Smart urbanism (dpeaa)DE-He213 Big data technologies (dpeaa)DE-He213 Enthalten in European Journal of Futures Research Heidelberg : Springer, 2013 9(2021), 1 vom: 11. Okt. (DE-627)769223966 (DE-600)2735107-5 2195-2248 nnns volume:9 year:2021 number:1 day:11 month:10 https://dx.doi.org/10.1186/s40309-021-00182-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_26 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2086 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 1 11 10 |
allfields_unstemmed |
10.1186/s40309-021-00182-3 doi (DE-627)SPR045271259 (SPR)s40309-021-00182-3-e DE-627 ger DE-627 rakwb eng 330 ASE Bibri, Simon Elias verfasserin aut The underlying components of data-driven smart sustainable cities of the future: a case study approach to an applied theoretical framework 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2021 Abstract The increased pressure on cities has led to a stronger need to build sustainable cities that can last. Planning sustainable cities of the future, educated by the lessons of the past and anticipating the challenges of the future, entails articulating a multi-scalar vision that, by further interplaying with major societal trends and paradigm shifts in science and technology, produce new opportunities towards reaching the goals of sustainability. Enabled by big data science and analytics, the ongoing transformative processes within sustainable cities are motivated by the need to address and overcome the challenges hampering progress towards sustainability. This means that sustainable cities should be understood, analyzed, planned, designed, and managed in new and innovative ways in order to improve and advance their contribution to sustainability. Therefore, sustainable cities are increasingly embracing and leveraging what smart cities have to offer in terms of data-driven technologies and applied solutions so as to optimize, enhance, and maintain their performance and thus achieve the desired outcomes of sustainability—under what has been termed “data-driven smart sustainable cities.” Based on a case study analysis, this paper develops an applied theoretical framework for strategic sustainable urban development planning. This entails identifying and integrating the underlying components of data-driven smart sustainable cities of the future in terms of the dimensions, strategies, and solutions of the leading global paradigms of sustainable urbanism and smart urbanism. The novelty of the proposed framework lies in combining compact urban design strategies, eco-city design strategies and technology solutions; data-driven smart city technologies, competences, and solutions for sustainability; and environmentally data-driven smart sustainable city solutions and strategies. These combined have great potential to improve and advance the contribution of sustainable cities to the goals of sustainability through harnessing its synergistic effects and balancing the integration of its dimensions. The main contribution of this work lies in providing new insights into guiding the development of various types of strategic planning processes of transformative change towards sustainability, as well as to stimulate and inspire future research endeavors in this direction. This study informs policymakers and planners about the opportunity of attaining important advances in sustainability by integrating the established models of sustainable urbanism and the emerging models of smart urbanism thanks to the proven role and untapped potential of data-driven technologies in catalyzing sustainable development and thus boosting sustainability benefits. Sustainable cities (dpeaa)DE-He213 Compact cities (dpeaa)DE-He213 Eco-cities (dpeaa)DE-He213 Data-driven smart cities (dpeaa)DE-He213 Data-driven smart sustainable cities (dpeaa)DE-He213 Sustainability (dpeaa)DE-He213 Sustainable urbanism (dpeaa)DE-He213 Smart urbanism (dpeaa)DE-He213 Big data technologies (dpeaa)DE-He213 Enthalten in European Journal of Futures Research Heidelberg : Springer, 2013 9(2021), 1 vom: 11. Okt. (DE-627)769223966 (DE-600)2735107-5 2195-2248 nnns volume:9 year:2021 number:1 day:11 month:10 https://dx.doi.org/10.1186/s40309-021-00182-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_26 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2086 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 1 11 10 |
allfieldsGer |
10.1186/s40309-021-00182-3 doi (DE-627)SPR045271259 (SPR)s40309-021-00182-3-e DE-627 ger DE-627 rakwb eng 330 ASE Bibri, Simon Elias verfasserin aut The underlying components of data-driven smart sustainable cities of the future: a case study approach to an applied theoretical framework 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2021 Abstract The increased pressure on cities has led to a stronger need to build sustainable cities that can last. Planning sustainable cities of the future, educated by the lessons of the past and anticipating the challenges of the future, entails articulating a multi-scalar vision that, by further interplaying with major societal trends and paradigm shifts in science and technology, produce new opportunities towards reaching the goals of sustainability. Enabled by big data science and analytics, the ongoing transformative processes within sustainable cities are motivated by the need to address and overcome the challenges hampering progress towards sustainability. This means that sustainable cities should be understood, analyzed, planned, designed, and managed in new and innovative ways in order to improve and advance their contribution to sustainability. Therefore, sustainable cities are increasingly embracing and leveraging what smart cities have to offer in terms of data-driven technologies and applied solutions so as to optimize, enhance, and maintain their performance and thus achieve the desired outcomes of sustainability—under what has been termed “data-driven smart sustainable cities.” Based on a case study analysis, this paper develops an applied theoretical framework for strategic sustainable urban development planning. This entails identifying and integrating the underlying components of data-driven smart sustainable cities of the future in terms of the dimensions, strategies, and solutions of the leading global paradigms of sustainable urbanism and smart urbanism. The novelty of the proposed framework lies in combining compact urban design strategies, eco-city design strategies and technology solutions; data-driven smart city technologies, competences, and solutions for sustainability; and environmentally data-driven smart sustainable city solutions and strategies. These combined have great potential to improve and advance the contribution of sustainable cities to the goals of sustainability through harnessing its synergistic effects and balancing the integration of its dimensions. The main contribution of this work lies in providing new insights into guiding the development of various types of strategic planning processes of transformative change towards sustainability, as well as to stimulate and inspire future research endeavors in this direction. This study informs policymakers and planners about the opportunity of attaining important advances in sustainability by integrating the established models of sustainable urbanism and the emerging models of smart urbanism thanks to the proven role and untapped potential of data-driven technologies in catalyzing sustainable development and thus boosting sustainability benefits. Sustainable cities (dpeaa)DE-He213 Compact cities (dpeaa)DE-He213 Eco-cities (dpeaa)DE-He213 Data-driven smart cities (dpeaa)DE-He213 Data-driven smart sustainable cities (dpeaa)DE-He213 Sustainability (dpeaa)DE-He213 Sustainable urbanism (dpeaa)DE-He213 Smart urbanism (dpeaa)DE-He213 Big data technologies (dpeaa)DE-He213 Enthalten in European Journal of Futures Research Heidelberg : Springer, 2013 9(2021), 1 vom: 11. Okt. (DE-627)769223966 (DE-600)2735107-5 2195-2248 nnns volume:9 year:2021 number:1 day:11 month:10 https://dx.doi.org/10.1186/s40309-021-00182-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_26 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2086 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 1 11 10 |
allfieldsSound |
10.1186/s40309-021-00182-3 doi (DE-627)SPR045271259 (SPR)s40309-021-00182-3-e DE-627 ger DE-627 rakwb eng 330 ASE Bibri, Simon Elias verfasserin aut The underlying components of data-driven smart sustainable cities of the future: a case study approach to an applied theoretical framework 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2021 Abstract The increased pressure on cities has led to a stronger need to build sustainable cities that can last. Planning sustainable cities of the future, educated by the lessons of the past and anticipating the challenges of the future, entails articulating a multi-scalar vision that, by further interplaying with major societal trends and paradigm shifts in science and technology, produce new opportunities towards reaching the goals of sustainability. Enabled by big data science and analytics, the ongoing transformative processes within sustainable cities are motivated by the need to address and overcome the challenges hampering progress towards sustainability. This means that sustainable cities should be understood, analyzed, planned, designed, and managed in new and innovative ways in order to improve and advance their contribution to sustainability. Therefore, sustainable cities are increasingly embracing and leveraging what smart cities have to offer in terms of data-driven technologies and applied solutions so as to optimize, enhance, and maintain their performance and thus achieve the desired outcomes of sustainability—under what has been termed “data-driven smart sustainable cities.” Based on a case study analysis, this paper develops an applied theoretical framework for strategic sustainable urban development planning. This entails identifying and integrating the underlying components of data-driven smart sustainable cities of the future in terms of the dimensions, strategies, and solutions of the leading global paradigms of sustainable urbanism and smart urbanism. The novelty of the proposed framework lies in combining compact urban design strategies, eco-city design strategies and technology solutions; data-driven smart city technologies, competences, and solutions for sustainability; and environmentally data-driven smart sustainable city solutions and strategies. These combined have great potential to improve and advance the contribution of sustainable cities to the goals of sustainability through harnessing its synergistic effects and balancing the integration of its dimensions. The main contribution of this work lies in providing new insights into guiding the development of various types of strategic planning processes of transformative change towards sustainability, as well as to stimulate and inspire future research endeavors in this direction. This study informs policymakers and planners about the opportunity of attaining important advances in sustainability by integrating the established models of sustainable urbanism and the emerging models of smart urbanism thanks to the proven role and untapped potential of data-driven technologies in catalyzing sustainable development and thus boosting sustainability benefits. Sustainable cities (dpeaa)DE-He213 Compact cities (dpeaa)DE-He213 Eco-cities (dpeaa)DE-He213 Data-driven smart cities (dpeaa)DE-He213 Data-driven smart sustainable cities (dpeaa)DE-He213 Sustainability (dpeaa)DE-He213 Sustainable urbanism (dpeaa)DE-He213 Smart urbanism (dpeaa)DE-He213 Big data technologies (dpeaa)DE-He213 Enthalten in European Journal of Futures Research Heidelberg : Springer, 2013 9(2021), 1 vom: 11. Okt. (DE-627)769223966 (DE-600)2735107-5 2195-2248 nnns volume:9 year:2021 number:1 day:11 month:10 https://dx.doi.org/10.1186/s40309-021-00182-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_26 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2086 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 1 11 10 |
language |
English |
source |
Enthalten in European Journal of Futures Research 9(2021), 1 vom: 11. Okt. volume:9 year:2021 number:1 day:11 month:10 |
sourceStr |
Enthalten in European Journal of Futures Research 9(2021), 1 vom: 11. Okt. volume:9 year:2021 number:1 day:11 month:10 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Sustainable cities Compact cities Eco-cities Data-driven smart cities Data-driven smart sustainable cities Sustainability Sustainable urbanism Smart urbanism Big data technologies |
dewey-raw |
330 |
isfreeaccess_bool |
true |
container_title |
European Journal of Futures Research |
authorswithroles_txt_mv |
Bibri, Simon Elias @@aut@@ |
publishDateDaySort_date |
2021-10-11T00:00:00Z |
hierarchy_top_id |
769223966 |
dewey-sort |
3330 |
id |
SPR045271259 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR045271259</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220112024407.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">211012s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40309-021-00182-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR045271259</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40309-021-00182-3-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">330</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bibri, Simon Elias</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The underlying components of data-driven smart sustainable cities of the future: a case study approach to an applied theoretical framework</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The increased pressure on cities has led to a stronger need to build sustainable cities that can last. Planning sustainable cities of the future, educated by the lessons of the past and anticipating the challenges of the future, entails articulating a multi-scalar vision that, by further interplaying with major societal trends and paradigm shifts in science and technology, produce new opportunities towards reaching the goals of sustainability. Enabled by big data science and analytics, the ongoing transformative processes within sustainable cities are motivated by the need to address and overcome the challenges hampering progress towards sustainability. This means that sustainable cities should be understood, analyzed, planned, designed, and managed in new and innovative ways in order to improve and advance their contribution to sustainability. Therefore, sustainable cities are increasingly embracing and leveraging what smart cities have to offer in terms of data-driven technologies and applied solutions so as to optimize, enhance, and maintain their performance and thus achieve the desired outcomes of sustainability—under what has been termed “data-driven smart sustainable cities.” Based on a case study analysis, this paper develops an applied theoretical framework for strategic sustainable urban development planning. This entails identifying and integrating the underlying components of data-driven smart sustainable cities of the future in terms of the dimensions, strategies, and solutions of the leading global paradigms of sustainable urbanism and smart urbanism. The novelty of the proposed framework lies in combining compact urban design strategies, eco-city design strategies and technology solutions; data-driven smart city technologies, competences, and solutions for sustainability; and environmentally data-driven smart sustainable city solutions and strategies. These combined have great potential to improve and advance the contribution of sustainable cities to the goals of sustainability through harnessing its synergistic effects and balancing the integration of its dimensions. The main contribution of this work lies in providing new insights into guiding the development of various types of strategic planning processes of transformative change towards sustainability, as well as to stimulate and inspire future research endeavors in this direction. This study informs policymakers and planners about the opportunity of attaining important advances in sustainability by integrating the established models of sustainable urbanism and the emerging models of smart urbanism thanks to the proven role and untapped potential of data-driven technologies in catalyzing sustainable development and thus boosting sustainability benefits.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sustainable cities</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Compact cities</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eco-cities</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data-driven smart cities</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data-driven smart sustainable cities</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sustainability</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sustainable urbanism</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Smart urbanism</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Big data technologies</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">European Journal of Futures Research</subfield><subfield code="d">Heidelberg : Springer, 2013</subfield><subfield code="g">9(2021), 1 vom: 11. Okt.</subfield><subfield code="w">(DE-627)769223966</subfield><subfield code="w">(DE-600)2735107-5</subfield><subfield code="x">2195-2248</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">day:11</subfield><subfield code="g">month:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s40309-021-00182-3</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="b">11</subfield><subfield code="c">10</subfield></datafield></record></collection>
|
author |
Bibri, Simon Elias |
spellingShingle |
Bibri, Simon Elias ddc 330 misc Sustainable cities misc Compact cities misc Eco-cities misc Data-driven smart cities misc Data-driven smart sustainable cities misc Sustainability misc Sustainable urbanism misc Smart urbanism misc Big data technologies The underlying components of data-driven smart sustainable cities of the future: a case study approach to an applied theoretical framework |
authorStr |
Bibri, Simon Elias |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)769223966 |
format |
electronic Article |
dewey-ones |
330 - Economics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2195-2248 |
topic_title |
330 ASE The underlying components of data-driven smart sustainable cities of the future: a case study approach to an applied theoretical framework Sustainable cities (dpeaa)DE-He213 Compact cities (dpeaa)DE-He213 Eco-cities (dpeaa)DE-He213 Data-driven smart cities (dpeaa)DE-He213 Data-driven smart sustainable cities (dpeaa)DE-He213 Sustainability (dpeaa)DE-He213 Sustainable urbanism (dpeaa)DE-He213 Smart urbanism (dpeaa)DE-He213 Big data technologies (dpeaa)DE-He213 |
topic |
ddc 330 misc Sustainable cities misc Compact cities misc Eco-cities misc Data-driven smart cities misc Data-driven smart sustainable cities misc Sustainability misc Sustainable urbanism misc Smart urbanism misc Big data technologies |
topic_unstemmed |
ddc 330 misc Sustainable cities misc Compact cities misc Eco-cities misc Data-driven smart cities misc Data-driven smart sustainable cities misc Sustainability misc Sustainable urbanism misc Smart urbanism misc Big data technologies |
topic_browse |
ddc 330 misc Sustainable cities misc Compact cities misc Eco-cities misc Data-driven smart cities misc Data-driven smart sustainable cities misc Sustainability misc Sustainable urbanism misc Smart urbanism misc Big data technologies |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
European Journal of Futures Research |
hierarchy_parent_id |
769223966 |
dewey-tens |
330 - Economics |
hierarchy_top_title |
European Journal of Futures Research |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)769223966 (DE-600)2735107-5 |
title |
The underlying components of data-driven smart sustainable cities of the future: a case study approach to an applied theoretical framework |
ctrlnum |
(DE-627)SPR045271259 (SPR)s40309-021-00182-3-e |
title_full |
The underlying components of data-driven smart sustainable cities of the future: a case study approach to an applied theoretical framework |
author_sort |
Bibri, Simon Elias |
journal |
European Journal of Futures Research |
journalStr |
European Journal of Futures Research |
lang_code |
eng |
isOA_bool |
true |
dewey-hundreds |
300 - Social sciences |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Bibri, Simon Elias |
container_volume |
9 |
class |
330 ASE |
format_se |
Elektronische Aufsätze |
author-letter |
Bibri, Simon Elias |
doi_str_mv |
10.1186/s40309-021-00182-3 |
dewey-full |
330 |
title_sort |
underlying components of data-driven smart sustainable cities of the future: a case study approach to an applied theoretical framework |
title_auth |
The underlying components of data-driven smart sustainable cities of the future: a case study approach to an applied theoretical framework |
abstract |
Abstract The increased pressure on cities has led to a stronger need to build sustainable cities that can last. Planning sustainable cities of the future, educated by the lessons of the past and anticipating the challenges of the future, entails articulating a multi-scalar vision that, by further interplaying with major societal trends and paradigm shifts in science and technology, produce new opportunities towards reaching the goals of sustainability. Enabled by big data science and analytics, the ongoing transformative processes within sustainable cities are motivated by the need to address and overcome the challenges hampering progress towards sustainability. This means that sustainable cities should be understood, analyzed, planned, designed, and managed in new and innovative ways in order to improve and advance their contribution to sustainability. Therefore, sustainable cities are increasingly embracing and leveraging what smart cities have to offer in terms of data-driven technologies and applied solutions so as to optimize, enhance, and maintain their performance and thus achieve the desired outcomes of sustainability—under what has been termed “data-driven smart sustainable cities.” Based on a case study analysis, this paper develops an applied theoretical framework for strategic sustainable urban development planning. This entails identifying and integrating the underlying components of data-driven smart sustainable cities of the future in terms of the dimensions, strategies, and solutions of the leading global paradigms of sustainable urbanism and smart urbanism. The novelty of the proposed framework lies in combining compact urban design strategies, eco-city design strategies and technology solutions; data-driven smart city technologies, competences, and solutions for sustainability; and environmentally data-driven smart sustainable city solutions and strategies. These combined have great potential to improve and advance the contribution of sustainable cities to the goals of sustainability through harnessing its synergistic effects and balancing the integration of its dimensions. The main contribution of this work lies in providing new insights into guiding the development of various types of strategic planning processes of transformative change towards sustainability, as well as to stimulate and inspire future research endeavors in this direction. This study informs policymakers and planners about the opportunity of attaining important advances in sustainability by integrating the established models of sustainable urbanism and the emerging models of smart urbanism thanks to the proven role and untapped potential of data-driven technologies in catalyzing sustainable development and thus boosting sustainability benefits. © The Author(s) 2021 |
abstractGer |
Abstract The increased pressure on cities has led to a stronger need to build sustainable cities that can last. Planning sustainable cities of the future, educated by the lessons of the past and anticipating the challenges of the future, entails articulating a multi-scalar vision that, by further interplaying with major societal trends and paradigm shifts in science and technology, produce new opportunities towards reaching the goals of sustainability. Enabled by big data science and analytics, the ongoing transformative processes within sustainable cities are motivated by the need to address and overcome the challenges hampering progress towards sustainability. This means that sustainable cities should be understood, analyzed, planned, designed, and managed in new and innovative ways in order to improve and advance their contribution to sustainability. Therefore, sustainable cities are increasingly embracing and leveraging what smart cities have to offer in terms of data-driven technologies and applied solutions so as to optimize, enhance, and maintain their performance and thus achieve the desired outcomes of sustainability—under what has been termed “data-driven smart sustainable cities.” Based on a case study analysis, this paper develops an applied theoretical framework for strategic sustainable urban development planning. This entails identifying and integrating the underlying components of data-driven smart sustainable cities of the future in terms of the dimensions, strategies, and solutions of the leading global paradigms of sustainable urbanism and smart urbanism. The novelty of the proposed framework lies in combining compact urban design strategies, eco-city design strategies and technology solutions; data-driven smart city technologies, competences, and solutions for sustainability; and environmentally data-driven smart sustainable city solutions and strategies. These combined have great potential to improve and advance the contribution of sustainable cities to the goals of sustainability through harnessing its synergistic effects and balancing the integration of its dimensions. The main contribution of this work lies in providing new insights into guiding the development of various types of strategic planning processes of transformative change towards sustainability, as well as to stimulate and inspire future research endeavors in this direction. This study informs policymakers and planners about the opportunity of attaining important advances in sustainability by integrating the established models of sustainable urbanism and the emerging models of smart urbanism thanks to the proven role and untapped potential of data-driven technologies in catalyzing sustainable development and thus boosting sustainability benefits. © The Author(s) 2021 |
abstract_unstemmed |
Abstract The increased pressure on cities has led to a stronger need to build sustainable cities that can last. Planning sustainable cities of the future, educated by the lessons of the past and anticipating the challenges of the future, entails articulating a multi-scalar vision that, by further interplaying with major societal trends and paradigm shifts in science and technology, produce new opportunities towards reaching the goals of sustainability. Enabled by big data science and analytics, the ongoing transformative processes within sustainable cities are motivated by the need to address and overcome the challenges hampering progress towards sustainability. This means that sustainable cities should be understood, analyzed, planned, designed, and managed in new and innovative ways in order to improve and advance their contribution to sustainability. Therefore, sustainable cities are increasingly embracing and leveraging what smart cities have to offer in terms of data-driven technologies and applied solutions so as to optimize, enhance, and maintain their performance and thus achieve the desired outcomes of sustainability—under what has been termed “data-driven smart sustainable cities.” Based on a case study analysis, this paper develops an applied theoretical framework for strategic sustainable urban development planning. This entails identifying and integrating the underlying components of data-driven smart sustainable cities of the future in terms of the dimensions, strategies, and solutions of the leading global paradigms of sustainable urbanism and smart urbanism. The novelty of the proposed framework lies in combining compact urban design strategies, eco-city design strategies and technology solutions; data-driven smart city technologies, competences, and solutions for sustainability; and environmentally data-driven smart sustainable city solutions and strategies. These combined have great potential to improve and advance the contribution of sustainable cities to the goals of sustainability through harnessing its synergistic effects and balancing the integration of its dimensions. The main contribution of this work lies in providing new insights into guiding the development of various types of strategic planning processes of transformative change towards sustainability, as well as to stimulate and inspire future research endeavors in this direction. This study informs policymakers and planners about the opportunity of attaining important advances in sustainability by integrating the established models of sustainable urbanism and the emerging models of smart urbanism thanks to the proven role and untapped potential of data-driven technologies in catalyzing sustainable development and thus boosting sustainability benefits. © The Author(s) 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_26 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2086 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
The underlying components of data-driven smart sustainable cities of the future: a case study approach to an applied theoretical framework |
url |
https://dx.doi.org/10.1186/s40309-021-00182-3 |
remote_bool |
true |
ppnlink |
769223966 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s40309-021-00182-3 |
up_date |
2024-07-03T14:55:00.320Z |
_version_ |
1803570118995738624 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR045271259</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220112024407.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">211012s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40309-021-00182-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR045271259</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40309-021-00182-3-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">330</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bibri, Simon Elias</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The underlying components of data-driven smart sustainable cities of the future: a case study approach to an applied theoretical framework</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The increased pressure on cities has led to a stronger need to build sustainable cities that can last. Planning sustainable cities of the future, educated by the lessons of the past and anticipating the challenges of the future, entails articulating a multi-scalar vision that, by further interplaying with major societal trends and paradigm shifts in science and technology, produce new opportunities towards reaching the goals of sustainability. Enabled by big data science and analytics, the ongoing transformative processes within sustainable cities are motivated by the need to address and overcome the challenges hampering progress towards sustainability. This means that sustainable cities should be understood, analyzed, planned, designed, and managed in new and innovative ways in order to improve and advance their contribution to sustainability. Therefore, sustainable cities are increasingly embracing and leveraging what smart cities have to offer in terms of data-driven technologies and applied solutions so as to optimize, enhance, and maintain their performance and thus achieve the desired outcomes of sustainability—under what has been termed “data-driven smart sustainable cities.” Based on a case study analysis, this paper develops an applied theoretical framework for strategic sustainable urban development planning. This entails identifying and integrating the underlying components of data-driven smart sustainable cities of the future in terms of the dimensions, strategies, and solutions of the leading global paradigms of sustainable urbanism and smart urbanism. The novelty of the proposed framework lies in combining compact urban design strategies, eco-city design strategies and technology solutions; data-driven smart city technologies, competences, and solutions for sustainability; and environmentally data-driven smart sustainable city solutions and strategies. These combined have great potential to improve and advance the contribution of sustainable cities to the goals of sustainability through harnessing its synergistic effects and balancing the integration of its dimensions. The main contribution of this work lies in providing new insights into guiding the development of various types of strategic planning processes of transformative change towards sustainability, as well as to stimulate and inspire future research endeavors in this direction. This study informs policymakers and planners about the opportunity of attaining important advances in sustainability by integrating the established models of sustainable urbanism and the emerging models of smart urbanism thanks to the proven role and untapped potential of data-driven technologies in catalyzing sustainable development and thus boosting sustainability benefits.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sustainable cities</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Compact cities</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eco-cities</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data-driven smart cities</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data-driven smart sustainable cities</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sustainability</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sustainable urbanism</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Smart urbanism</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Big data technologies</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">European Journal of Futures Research</subfield><subfield code="d">Heidelberg : Springer, 2013</subfield><subfield code="g">9(2021), 1 vom: 11. Okt.</subfield><subfield code="w">(DE-627)769223966</subfield><subfield code="w">(DE-600)2735107-5</subfield><subfield code="x">2195-2248</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">day:11</subfield><subfield code="g">month:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s40309-021-00182-3</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="b">11</subfield><subfield code="c">10</subfield></datafield></record></collection>
|
score |
7.401288 |