High-Power Free-Electron Masers Based on Linear Induction Accelerators
We review the results of theoretical and experimental studies of high-power free-electron masers (FEMs), which are performed jointly by the Joint Institute for Nuclear Research (JINR) and the Institute of Applied Physics of the Russian Academy of Sciences (IAPRAS), using the LIU-3000 linear inductio...
Ausführliche Beschreibung
Autor*in: |
Peskov, N. Yu. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Anmerkung: |
© Springer Science+Business Media, LLC, part of Springer Nature 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: Radiophysics and quantum electronics - New York, NY [u.a.] : Consultants Bureau, 1965, 63(2021), 12 vom: Mai, Seite 931-975 |
---|---|
Übergeordnetes Werk: |
volume:63 ; year:2021 ; number:12 ; month:05 ; pages:931-975 |
Links: |
---|
DOI / URN: |
10.1007/s11141-021-10105-8 |
---|
Katalog-ID: |
SPR04546619X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR04546619X | ||
003 | DE-627 | ||
005 | 20230507114859.0 | ||
007 | cr uuu---uuuuu | ||
008 | 211103s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11141-021-10105-8 |2 doi | |
035 | |a (DE-627)SPR04546619X | ||
035 | |a (SPR)s11141-021-10105-8-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Peskov, N. Yu. |e verfasserin |4 aut | |
245 | 1 | 0 | |a High-Power Free-Electron Masers Based on Linear Induction Accelerators |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC, part of Springer Nature 2021 | ||
520 | |a We review the results of theoretical and experimental studies of high-power free-electron masers (FEMs), which are performed jointly by the Joint Institute for Nuclear Research (JINR) and the Institute of Applied Physics of the Russian Academy of Sciences (IAPRAS), using the LIU-3000 linear induction accelerator that has a particle energy of about 0.8 MeV, a beam current of up to 200 A, and a pulse duration of 200–250 ns. Various types of Bragg resonators are compared, including two-mirror schemes and resonator cavities with a jump in the corrugation phase. The nonlinear dynamics of FEMs with the cavities of the above-specified types is studied, and the regions of realization of single-mode, single-frequency regimes, when generators are excited by relativistic electron beams moving in a helical undulator and focused by a uniform longitudinal magnetic field, are found. The results of the theoretical analysis are confirmed by experimental studies. When a Bragg cavity with a corrugation phase jump is used in the regime of the reverse guiding field in the 8-mm wavelength range, a FEM with an output power of about 20–30 MW and a radiation spectrum width of 6–7 MHz is realized, which is close to the theoretical limit. The record-breaking set of parameters obtained for this class of generators (efficiency, power, stability of the single-mode generation regime in a sequence of up to $ 10^{6} $ pulses) made it possible to use FEM radiation in several applications, including the study of the resource of high-gradient accelerating structures under pulsed periodic thermal loads. To expand the spectrum of potential applications that require control over the frequency and phase of the radiation, the possibility to create wideband amplifying circuits of FEMs is demonstrated. In order to bring FEMs over to the short-wave part of the millimeter-wavelength range, it is proposed to use modified Bragg structures based on the coupling of traveling and quasi-critical waves. It is shown that including quasi-critical waves in the feedback circuit allows one to improve significantly the selectivity of Bragg cavities (as compared with their “conventional” analogs based on the coupling of counterpropagating wave beams with high group velocities) for the transverse dimensions that reach up to 10–20 wavelengths. Operability of novel cavities has been confirmed experimentally in prototypes of FEM oscillators operating in the $ K_{a} $- to W-bands at a multimegawatt power level and having a transverse dimension of up to 5 wavelengths. Prospects for advancing the studied class of generators to the subterahertz/terahertz frequency range on the basis of new-generation linear induction accelerators, which have been developed at the Budker Institute of Nuclear Physics (BINP), Siberian Branch of the Russian Academy of Sciences and form electron beams with a particle energy of 5–20 MeV and kiloampere currents, are discussed. | ||
700 | 1 | |a Ginzburg, N. S. |4 aut | |
700 | 1 | |a Kaminsky, A. K. |4 aut | |
700 | 1 | |a Sedykh, S. N. |4 aut | |
700 | 1 | |a Sergeev, A. S. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Radiophysics and quantum electronics |d New York, NY [u.a.] : Consultants Bureau, 1965 |g 63(2021), 12 vom: Mai, Seite 931-975 |w (DE-627)325573395 |w (DE-600)2037675-3 |x 1573-9120 |7 nnns |
773 | 1 | 8 | |g volume:63 |g year:2021 |g number:12 |g month:05 |g pages:931-975 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11141-021-10105-8 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_647 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 63 |j 2021 |e 12 |c 05 |h 931-975 |
author_variant |
n y p ny nyp n s g ns nsg a k k ak akk s n s sn sns a s s as ass |
---|---|
matchkey_str |
article:15739120:2021----::ihoefeeetomsrbsdniernu |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1007/s11141-021-10105-8 doi (DE-627)SPR04546619X (SPR)s11141-021-10105-8-e DE-627 ger DE-627 rakwb eng Peskov, N. Yu. verfasserin aut High-Power Free-Electron Masers Based on Linear Induction Accelerators 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2021 We review the results of theoretical and experimental studies of high-power free-electron masers (FEMs), which are performed jointly by the Joint Institute for Nuclear Research (JINR) and the Institute of Applied Physics of the Russian Academy of Sciences (IAPRAS), using the LIU-3000 linear induction accelerator that has a particle energy of about 0.8 MeV, a beam current of up to 200 A, and a pulse duration of 200–250 ns. Various types of Bragg resonators are compared, including two-mirror schemes and resonator cavities with a jump in the corrugation phase. The nonlinear dynamics of FEMs with the cavities of the above-specified types is studied, and the regions of realization of single-mode, single-frequency regimes, when generators are excited by relativistic electron beams moving in a helical undulator and focused by a uniform longitudinal magnetic field, are found. The results of the theoretical analysis are confirmed by experimental studies. When a Bragg cavity with a corrugation phase jump is used in the regime of the reverse guiding field in the 8-mm wavelength range, a FEM with an output power of about 20–30 MW and a radiation spectrum width of 6–7 MHz is realized, which is close to the theoretical limit. The record-breaking set of parameters obtained for this class of generators (efficiency, power, stability of the single-mode generation regime in a sequence of up to $ 10^{6} $ pulses) made it possible to use FEM radiation in several applications, including the study of the resource of high-gradient accelerating structures under pulsed periodic thermal loads. To expand the spectrum of potential applications that require control over the frequency and phase of the radiation, the possibility to create wideband amplifying circuits of FEMs is demonstrated. In order to bring FEMs over to the short-wave part of the millimeter-wavelength range, it is proposed to use modified Bragg structures based on the coupling of traveling and quasi-critical waves. It is shown that including quasi-critical waves in the feedback circuit allows one to improve significantly the selectivity of Bragg cavities (as compared with their “conventional” analogs based on the coupling of counterpropagating wave beams with high group velocities) for the transverse dimensions that reach up to 10–20 wavelengths. Operability of novel cavities has been confirmed experimentally in prototypes of FEM oscillators operating in the $ K_{a} $- to W-bands at a multimegawatt power level and having a transverse dimension of up to 5 wavelengths. Prospects for advancing the studied class of generators to the subterahertz/terahertz frequency range on the basis of new-generation linear induction accelerators, which have been developed at the Budker Institute of Nuclear Physics (BINP), Siberian Branch of the Russian Academy of Sciences and form electron beams with a particle energy of 5–20 MeV and kiloampere currents, are discussed. Ginzburg, N. S. aut Kaminsky, A. K. aut Sedykh, S. N. aut Sergeev, A. S. aut Enthalten in Radiophysics and quantum electronics New York, NY [u.a.] : Consultants Bureau, 1965 63(2021), 12 vom: Mai, Seite 931-975 (DE-627)325573395 (DE-600)2037675-3 1573-9120 nnns volume:63 year:2021 number:12 month:05 pages:931-975 https://dx.doi.org/10.1007/s11141-021-10105-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 63 2021 12 05 931-975 |
spelling |
10.1007/s11141-021-10105-8 doi (DE-627)SPR04546619X (SPR)s11141-021-10105-8-e DE-627 ger DE-627 rakwb eng Peskov, N. Yu. verfasserin aut High-Power Free-Electron Masers Based on Linear Induction Accelerators 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2021 We review the results of theoretical and experimental studies of high-power free-electron masers (FEMs), which are performed jointly by the Joint Institute for Nuclear Research (JINR) and the Institute of Applied Physics of the Russian Academy of Sciences (IAPRAS), using the LIU-3000 linear induction accelerator that has a particle energy of about 0.8 MeV, a beam current of up to 200 A, and a pulse duration of 200–250 ns. Various types of Bragg resonators are compared, including two-mirror schemes and resonator cavities with a jump in the corrugation phase. The nonlinear dynamics of FEMs with the cavities of the above-specified types is studied, and the regions of realization of single-mode, single-frequency regimes, when generators are excited by relativistic electron beams moving in a helical undulator and focused by a uniform longitudinal magnetic field, are found. The results of the theoretical analysis are confirmed by experimental studies. When a Bragg cavity with a corrugation phase jump is used in the regime of the reverse guiding field in the 8-mm wavelength range, a FEM with an output power of about 20–30 MW and a radiation spectrum width of 6–7 MHz is realized, which is close to the theoretical limit. The record-breaking set of parameters obtained for this class of generators (efficiency, power, stability of the single-mode generation regime in a sequence of up to $ 10^{6} $ pulses) made it possible to use FEM radiation in several applications, including the study of the resource of high-gradient accelerating structures under pulsed periodic thermal loads. To expand the spectrum of potential applications that require control over the frequency and phase of the radiation, the possibility to create wideband amplifying circuits of FEMs is demonstrated. In order to bring FEMs over to the short-wave part of the millimeter-wavelength range, it is proposed to use modified Bragg structures based on the coupling of traveling and quasi-critical waves. It is shown that including quasi-critical waves in the feedback circuit allows one to improve significantly the selectivity of Bragg cavities (as compared with their “conventional” analogs based on the coupling of counterpropagating wave beams with high group velocities) for the transverse dimensions that reach up to 10–20 wavelengths. Operability of novel cavities has been confirmed experimentally in prototypes of FEM oscillators operating in the $ K_{a} $- to W-bands at a multimegawatt power level and having a transverse dimension of up to 5 wavelengths. Prospects for advancing the studied class of generators to the subterahertz/terahertz frequency range on the basis of new-generation linear induction accelerators, which have been developed at the Budker Institute of Nuclear Physics (BINP), Siberian Branch of the Russian Academy of Sciences and form electron beams with a particle energy of 5–20 MeV and kiloampere currents, are discussed. Ginzburg, N. S. aut Kaminsky, A. K. aut Sedykh, S. N. aut Sergeev, A. S. aut Enthalten in Radiophysics and quantum electronics New York, NY [u.a.] : Consultants Bureau, 1965 63(2021), 12 vom: Mai, Seite 931-975 (DE-627)325573395 (DE-600)2037675-3 1573-9120 nnns volume:63 year:2021 number:12 month:05 pages:931-975 https://dx.doi.org/10.1007/s11141-021-10105-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 63 2021 12 05 931-975 |
allfields_unstemmed |
10.1007/s11141-021-10105-8 doi (DE-627)SPR04546619X (SPR)s11141-021-10105-8-e DE-627 ger DE-627 rakwb eng Peskov, N. Yu. verfasserin aut High-Power Free-Electron Masers Based on Linear Induction Accelerators 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2021 We review the results of theoretical and experimental studies of high-power free-electron masers (FEMs), which are performed jointly by the Joint Institute for Nuclear Research (JINR) and the Institute of Applied Physics of the Russian Academy of Sciences (IAPRAS), using the LIU-3000 linear induction accelerator that has a particle energy of about 0.8 MeV, a beam current of up to 200 A, and a pulse duration of 200–250 ns. Various types of Bragg resonators are compared, including two-mirror schemes and resonator cavities with a jump in the corrugation phase. The nonlinear dynamics of FEMs with the cavities of the above-specified types is studied, and the regions of realization of single-mode, single-frequency regimes, when generators are excited by relativistic electron beams moving in a helical undulator and focused by a uniform longitudinal magnetic field, are found. The results of the theoretical analysis are confirmed by experimental studies. When a Bragg cavity with a corrugation phase jump is used in the regime of the reverse guiding field in the 8-mm wavelength range, a FEM with an output power of about 20–30 MW and a radiation spectrum width of 6–7 MHz is realized, which is close to the theoretical limit. The record-breaking set of parameters obtained for this class of generators (efficiency, power, stability of the single-mode generation regime in a sequence of up to $ 10^{6} $ pulses) made it possible to use FEM radiation in several applications, including the study of the resource of high-gradient accelerating structures under pulsed periodic thermal loads. To expand the spectrum of potential applications that require control over the frequency and phase of the radiation, the possibility to create wideband amplifying circuits of FEMs is demonstrated. In order to bring FEMs over to the short-wave part of the millimeter-wavelength range, it is proposed to use modified Bragg structures based on the coupling of traveling and quasi-critical waves. It is shown that including quasi-critical waves in the feedback circuit allows one to improve significantly the selectivity of Bragg cavities (as compared with their “conventional” analogs based on the coupling of counterpropagating wave beams with high group velocities) for the transverse dimensions that reach up to 10–20 wavelengths. Operability of novel cavities has been confirmed experimentally in prototypes of FEM oscillators operating in the $ K_{a} $- to W-bands at a multimegawatt power level and having a transverse dimension of up to 5 wavelengths. Prospects for advancing the studied class of generators to the subterahertz/terahertz frequency range on the basis of new-generation linear induction accelerators, which have been developed at the Budker Institute of Nuclear Physics (BINP), Siberian Branch of the Russian Academy of Sciences and form electron beams with a particle energy of 5–20 MeV and kiloampere currents, are discussed. Ginzburg, N. S. aut Kaminsky, A. K. aut Sedykh, S. N. aut Sergeev, A. S. aut Enthalten in Radiophysics and quantum electronics New York, NY [u.a.] : Consultants Bureau, 1965 63(2021), 12 vom: Mai, Seite 931-975 (DE-627)325573395 (DE-600)2037675-3 1573-9120 nnns volume:63 year:2021 number:12 month:05 pages:931-975 https://dx.doi.org/10.1007/s11141-021-10105-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 63 2021 12 05 931-975 |
allfieldsGer |
10.1007/s11141-021-10105-8 doi (DE-627)SPR04546619X (SPR)s11141-021-10105-8-e DE-627 ger DE-627 rakwb eng Peskov, N. Yu. verfasserin aut High-Power Free-Electron Masers Based on Linear Induction Accelerators 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2021 We review the results of theoretical and experimental studies of high-power free-electron masers (FEMs), which are performed jointly by the Joint Institute for Nuclear Research (JINR) and the Institute of Applied Physics of the Russian Academy of Sciences (IAPRAS), using the LIU-3000 linear induction accelerator that has a particle energy of about 0.8 MeV, a beam current of up to 200 A, and a pulse duration of 200–250 ns. Various types of Bragg resonators are compared, including two-mirror schemes and resonator cavities with a jump in the corrugation phase. The nonlinear dynamics of FEMs with the cavities of the above-specified types is studied, and the regions of realization of single-mode, single-frequency regimes, when generators are excited by relativistic electron beams moving in a helical undulator and focused by a uniform longitudinal magnetic field, are found. The results of the theoretical analysis are confirmed by experimental studies. When a Bragg cavity with a corrugation phase jump is used in the regime of the reverse guiding field in the 8-mm wavelength range, a FEM with an output power of about 20–30 MW and a radiation spectrum width of 6–7 MHz is realized, which is close to the theoretical limit. The record-breaking set of parameters obtained for this class of generators (efficiency, power, stability of the single-mode generation regime in a sequence of up to $ 10^{6} $ pulses) made it possible to use FEM radiation in several applications, including the study of the resource of high-gradient accelerating structures under pulsed periodic thermal loads. To expand the spectrum of potential applications that require control over the frequency and phase of the radiation, the possibility to create wideband amplifying circuits of FEMs is demonstrated. In order to bring FEMs over to the short-wave part of the millimeter-wavelength range, it is proposed to use modified Bragg structures based on the coupling of traveling and quasi-critical waves. It is shown that including quasi-critical waves in the feedback circuit allows one to improve significantly the selectivity of Bragg cavities (as compared with their “conventional” analogs based on the coupling of counterpropagating wave beams with high group velocities) for the transverse dimensions that reach up to 10–20 wavelengths. Operability of novel cavities has been confirmed experimentally in prototypes of FEM oscillators operating in the $ K_{a} $- to W-bands at a multimegawatt power level and having a transverse dimension of up to 5 wavelengths. Prospects for advancing the studied class of generators to the subterahertz/terahertz frequency range on the basis of new-generation linear induction accelerators, which have been developed at the Budker Institute of Nuclear Physics (BINP), Siberian Branch of the Russian Academy of Sciences and form electron beams with a particle energy of 5–20 MeV and kiloampere currents, are discussed. Ginzburg, N. S. aut Kaminsky, A. K. aut Sedykh, S. N. aut Sergeev, A. S. aut Enthalten in Radiophysics and quantum electronics New York, NY [u.a.] : Consultants Bureau, 1965 63(2021), 12 vom: Mai, Seite 931-975 (DE-627)325573395 (DE-600)2037675-3 1573-9120 nnns volume:63 year:2021 number:12 month:05 pages:931-975 https://dx.doi.org/10.1007/s11141-021-10105-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 63 2021 12 05 931-975 |
allfieldsSound |
10.1007/s11141-021-10105-8 doi (DE-627)SPR04546619X (SPR)s11141-021-10105-8-e DE-627 ger DE-627 rakwb eng Peskov, N. Yu. verfasserin aut High-Power Free-Electron Masers Based on Linear Induction Accelerators 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2021 We review the results of theoretical and experimental studies of high-power free-electron masers (FEMs), which are performed jointly by the Joint Institute for Nuclear Research (JINR) and the Institute of Applied Physics of the Russian Academy of Sciences (IAPRAS), using the LIU-3000 linear induction accelerator that has a particle energy of about 0.8 MeV, a beam current of up to 200 A, and a pulse duration of 200–250 ns. Various types of Bragg resonators are compared, including two-mirror schemes and resonator cavities with a jump in the corrugation phase. The nonlinear dynamics of FEMs with the cavities of the above-specified types is studied, and the regions of realization of single-mode, single-frequency regimes, when generators are excited by relativistic electron beams moving in a helical undulator and focused by a uniform longitudinal magnetic field, are found. The results of the theoretical analysis are confirmed by experimental studies. When a Bragg cavity with a corrugation phase jump is used in the regime of the reverse guiding field in the 8-mm wavelength range, a FEM with an output power of about 20–30 MW and a radiation spectrum width of 6–7 MHz is realized, which is close to the theoretical limit. The record-breaking set of parameters obtained for this class of generators (efficiency, power, stability of the single-mode generation regime in a sequence of up to $ 10^{6} $ pulses) made it possible to use FEM radiation in several applications, including the study of the resource of high-gradient accelerating structures under pulsed periodic thermal loads. To expand the spectrum of potential applications that require control over the frequency and phase of the radiation, the possibility to create wideband amplifying circuits of FEMs is demonstrated. In order to bring FEMs over to the short-wave part of the millimeter-wavelength range, it is proposed to use modified Bragg structures based on the coupling of traveling and quasi-critical waves. It is shown that including quasi-critical waves in the feedback circuit allows one to improve significantly the selectivity of Bragg cavities (as compared with their “conventional” analogs based on the coupling of counterpropagating wave beams with high group velocities) for the transverse dimensions that reach up to 10–20 wavelengths. Operability of novel cavities has been confirmed experimentally in prototypes of FEM oscillators operating in the $ K_{a} $- to W-bands at a multimegawatt power level and having a transverse dimension of up to 5 wavelengths. Prospects for advancing the studied class of generators to the subterahertz/terahertz frequency range on the basis of new-generation linear induction accelerators, which have been developed at the Budker Institute of Nuclear Physics (BINP), Siberian Branch of the Russian Academy of Sciences and form electron beams with a particle energy of 5–20 MeV and kiloampere currents, are discussed. Ginzburg, N. S. aut Kaminsky, A. K. aut Sedykh, S. N. aut Sergeev, A. S. aut Enthalten in Radiophysics and quantum electronics New York, NY [u.a.] : Consultants Bureau, 1965 63(2021), 12 vom: Mai, Seite 931-975 (DE-627)325573395 (DE-600)2037675-3 1573-9120 nnns volume:63 year:2021 number:12 month:05 pages:931-975 https://dx.doi.org/10.1007/s11141-021-10105-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 63 2021 12 05 931-975 |
language |
English |
source |
Enthalten in Radiophysics and quantum electronics 63(2021), 12 vom: Mai, Seite 931-975 volume:63 year:2021 number:12 month:05 pages:931-975 |
sourceStr |
Enthalten in Radiophysics and quantum electronics 63(2021), 12 vom: Mai, Seite 931-975 volume:63 year:2021 number:12 month:05 pages:931-975 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
isfreeaccess_bool |
false |
container_title |
Radiophysics and quantum electronics |
authorswithroles_txt_mv |
Peskov, N. Yu. @@aut@@ Ginzburg, N. S. @@aut@@ Kaminsky, A. K. @@aut@@ Sedykh, S. N. @@aut@@ Sergeev, A. S. @@aut@@ |
publishDateDaySort_date |
2021-05-01T00:00:00Z |
hierarchy_top_id |
325573395 |
id |
SPR04546619X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR04546619X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507114859.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">211103s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11141-021-10105-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR04546619X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11141-021-10105-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Peskov, N. Yu.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">High-Power Free-Electron Masers Based on Linear Induction Accelerators</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We review the results of theoretical and experimental studies of high-power free-electron masers (FEMs), which are performed jointly by the Joint Institute for Nuclear Research (JINR) and the Institute of Applied Physics of the Russian Academy of Sciences (IAPRAS), using the LIU-3000 linear induction accelerator that has a particle energy of about 0.8 MeV, a beam current of up to 200 A, and a pulse duration of 200–250 ns. Various types of Bragg resonators are compared, including two-mirror schemes and resonator cavities with a jump in the corrugation phase. The nonlinear dynamics of FEMs with the cavities of the above-specified types is studied, and the regions of realization of single-mode, single-frequency regimes, when generators are excited by relativistic electron beams moving in a helical undulator and focused by a uniform longitudinal magnetic field, are found. The results of the theoretical analysis are confirmed by experimental studies. When a Bragg cavity with a corrugation phase jump is used in the regime of the reverse guiding field in the 8-mm wavelength range, a FEM with an output power of about 20–30 MW and a radiation spectrum width of 6–7 MHz is realized, which is close to the theoretical limit. The record-breaking set of parameters obtained for this class of generators (efficiency, power, stability of the single-mode generation regime in a sequence of up to $ 10^{6} $ pulses) made it possible to use FEM radiation in several applications, including the study of the resource of high-gradient accelerating structures under pulsed periodic thermal loads. To expand the spectrum of potential applications that require control over the frequency and phase of the radiation, the possibility to create wideband amplifying circuits of FEMs is demonstrated. In order to bring FEMs over to the short-wave part of the millimeter-wavelength range, it is proposed to use modified Bragg structures based on the coupling of traveling and quasi-critical waves. It is shown that including quasi-critical waves in the feedback circuit allows one to improve significantly the selectivity of Bragg cavities (as compared with their “conventional” analogs based on the coupling of counterpropagating wave beams with high group velocities) for the transverse dimensions that reach up to 10–20 wavelengths. Operability of novel cavities has been confirmed experimentally in prototypes of FEM oscillators operating in the $ K_{a} $- to W-bands at a multimegawatt power level and having a transverse dimension of up to 5 wavelengths. Prospects for advancing the studied class of generators to the subterahertz/terahertz frequency range on the basis of new-generation linear induction accelerators, which have been developed at the Budker Institute of Nuclear Physics (BINP), Siberian Branch of the Russian Academy of Sciences and form electron beams with a particle energy of 5–20 MeV and kiloampere currents, are discussed.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ginzburg, N. S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kaminsky, A. K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sedykh, S. N.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sergeev, A. S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Radiophysics and quantum electronics</subfield><subfield code="d">New York, NY [u.a.] : Consultants Bureau, 1965</subfield><subfield code="g">63(2021), 12 vom: Mai, Seite 931-975</subfield><subfield code="w">(DE-627)325573395</subfield><subfield code="w">(DE-600)2037675-3</subfield><subfield code="x">1573-9120</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:63</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:12</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:931-975</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11141-021-10105-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">63</subfield><subfield code="j">2021</subfield><subfield code="e">12</subfield><subfield code="c">05</subfield><subfield code="h">931-975</subfield></datafield></record></collection>
|
author |
Peskov, N. Yu. |
spellingShingle |
Peskov, N. Yu. High-Power Free-Electron Masers Based on Linear Induction Accelerators |
authorStr |
Peskov, N. Yu. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)325573395 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1573-9120 |
topic_title |
High-Power Free-Electron Masers Based on Linear Induction Accelerators |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Radiophysics and quantum electronics |
hierarchy_parent_id |
325573395 |
hierarchy_top_title |
Radiophysics and quantum electronics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)325573395 (DE-600)2037675-3 |
title |
High-Power Free-Electron Masers Based on Linear Induction Accelerators |
ctrlnum |
(DE-627)SPR04546619X (SPR)s11141-021-10105-8-e |
title_full |
High-Power Free-Electron Masers Based on Linear Induction Accelerators |
author_sort |
Peskov, N. Yu. |
journal |
Radiophysics and quantum electronics |
journalStr |
Radiophysics and quantum electronics |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
931 |
author_browse |
Peskov, N. Yu. Ginzburg, N. S. Kaminsky, A. K. Sedykh, S. N. Sergeev, A. S. |
container_volume |
63 |
format_se |
Elektronische Aufsätze |
author-letter |
Peskov, N. Yu. |
doi_str_mv |
10.1007/s11141-021-10105-8 |
title_sort |
high-power free-electron masers based on linear induction accelerators |
title_auth |
High-Power Free-Electron Masers Based on Linear Induction Accelerators |
abstract |
We review the results of theoretical and experimental studies of high-power free-electron masers (FEMs), which are performed jointly by the Joint Institute for Nuclear Research (JINR) and the Institute of Applied Physics of the Russian Academy of Sciences (IAPRAS), using the LIU-3000 linear induction accelerator that has a particle energy of about 0.8 MeV, a beam current of up to 200 A, and a pulse duration of 200–250 ns. Various types of Bragg resonators are compared, including two-mirror schemes and resonator cavities with a jump in the corrugation phase. The nonlinear dynamics of FEMs with the cavities of the above-specified types is studied, and the regions of realization of single-mode, single-frequency regimes, when generators are excited by relativistic electron beams moving in a helical undulator and focused by a uniform longitudinal magnetic field, are found. The results of the theoretical analysis are confirmed by experimental studies. When a Bragg cavity with a corrugation phase jump is used in the regime of the reverse guiding field in the 8-mm wavelength range, a FEM with an output power of about 20–30 MW and a radiation spectrum width of 6–7 MHz is realized, which is close to the theoretical limit. The record-breaking set of parameters obtained for this class of generators (efficiency, power, stability of the single-mode generation regime in a sequence of up to $ 10^{6} $ pulses) made it possible to use FEM radiation in several applications, including the study of the resource of high-gradient accelerating structures under pulsed periodic thermal loads. To expand the spectrum of potential applications that require control over the frequency and phase of the radiation, the possibility to create wideband amplifying circuits of FEMs is demonstrated. In order to bring FEMs over to the short-wave part of the millimeter-wavelength range, it is proposed to use modified Bragg structures based on the coupling of traveling and quasi-critical waves. It is shown that including quasi-critical waves in the feedback circuit allows one to improve significantly the selectivity of Bragg cavities (as compared with their “conventional” analogs based on the coupling of counterpropagating wave beams with high group velocities) for the transverse dimensions that reach up to 10–20 wavelengths. Operability of novel cavities has been confirmed experimentally in prototypes of FEM oscillators operating in the $ K_{a} $- to W-bands at a multimegawatt power level and having a transverse dimension of up to 5 wavelengths. Prospects for advancing the studied class of generators to the subterahertz/terahertz frequency range on the basis of new-generation linear induction accelerators, which have been developed at the Budker Institute of Nuclear Physics (BINP), Siberian Branch of the Russian Academy of Sciences and form electron beams with a particle energy of 5–20 MeV and kiloampere currents, are discussed. © Springer Science+Business Media, LLC, part of Springer Nature 2021 |
abstractGer |
We review the results of theoretical and experimental studies of high-power free-electron masers (FEMs), which are performed jointly by the Joint Institute for Nuclear Research (JINR) and the Institute of Applied Physics of the Russian Academy of Sciences (IAPRAS), using the LIU-3000 linear induction accelerator that has a particle energy of about 0.8 MeV, a beam current of up to 200 A, and a pulse duration of 200–250 ns. Various types of Bragg resonators are compared, including two-mirror schemes and resonator cavities with a jump in the corrugation phase. The nonlinear dynamics of FEMs with the cavities of the above-specified types is studied, and the regions of realization of single-mode, single-frequency regimes, when generators are excited by relativistic electron beams moving in a helical undulator and focused by a uniform longitudinal magnetic field, are found. The results of the theoretical analysis are confirmed by experimental studies. When a Bragg cavity with a corrugation phase jump is used in the regime of the reverse guiding field in the 8-mm wavelength range, a FEM with an output power of about 20–30 MW and a radiation spectrum width of 6–7 MHz is realized, which is close to the theoretical limit. The record-breaking set of parameters obtained for this class of generators (efficiency, power, stability of the single-mode generation regime in a sequence of up to $ 10^{6} $ pulses) made it possible to use FEM radiation in several applications, including the study of the resource of high-gradient accelerating structures under pulsed periodic thermal loads. To expand the spectrum of potential applications that require control over the frequency and phase of the radiation, the possibility to create wideband amplifying circuits of FEMs is demonstrated. In order to bring FEMs over to the short-wave part of the millimeter-wavelength range, it is proposed to use modified Bragg structures based on the coupling of traveling and quasi-critical waves. It is shown that including quasi-critical waves in the feedback circuit allows one to improve significantly the selectivity of Bragg cavities (as compared with their “conventional” analogs based on the coupling of counterpropagating wave beams with high group velocities) for the transverse dimensions that reach up to 10–20 wavelengths. Operability of novel cavities has been confirmed experimentally in prototypes of FEM oscillators operating in the $ K_{a} $- to W-bands at a multimegawatt power level and having a transverse dimension of up to 5 wavelengths. Prospects for advancing the studied class of generators to the subterahertz/terahertz frequency range on the basis of new-generation linear induction accelerators, which have been developed at the Budker Institute of Nuclear Physics (BINP), Siberian Branch of the Russian Academy of Sciences and form electron beams with a particle energy of 5–20 MeV and kiloampere currents, are discussed. © Springer Science+Business Media, LLC, part of Springer Nature 2021 |
abstract_unstemmed |
We review the results of theoretical and experimental studies of high-power free-electron masers (FEMs), which are performed jointly by the Joint Institute for Nuclear Research (JINR) and the Institute of Applied Physics of the Russian Academy of Sciences (IAPRAS), using the LIU-3000 linear induction accelerator that has a particle energy of about 0.8 MeV, a beam current of up to 200 A, and a pulse duration of 200–250 ns. Various types of Bragg resonators are compared, including two-mirror schemes and resonator cavities with a jump in the corrugation phase. The nonlinear dynamics of FEMs with the cavities of the above-specified types is studied, and the regions of realization of single-mode, single-frequency regimes, when generators are excited by relativistic electron beams moving in a helical undulator and focused by a uniform longitudinal magnetic field, are found. The results of the theoretical analysis are confirmed by experimental studies. When a Bragg cavity with a corrugation phase jump is used in the regime of the reverse guiding field in the 8-mm wavelength range, a FEM with an output power of about 20–30 MW and a radiation spectrum width of 6–7 MHz is realized, which is close to the theoretical limit. The record-breaking set of parameters obtained for this class of generators (efficiency, power, stability of the single-mode generation regime in a sequence of up to $ 10^{6} $ pulses) made it possible to use FEM radiation in several applications, including the study of the resource of high-gradient accelerating structures under pulsed periodic thermal loads. To expand the spectrum of potential applications that require control over the frequency and phase of the radiation, the possibility to create wideband amplifying circuits of FEMs is demonstrated. In order to bring FEMs over to the short-wave part of the millimeter-wavelength range, it is proposed to use modified Bragg structures based on the coupling of traveling and quasi-critical waves. It is shown that including quasi-critical waves in the feedback circuit allows one to improve significantly the selectivity of Bragg cavities (as compared with their “conventional” analogs based on the coupling of counterpropagating wave beams with high group velocities) for the transverse dimensions that reach up to 10–20 wavelengths. Operability of novel cavities has been confirmed experimentally in prototypes of FEM oscillators operating in the $ K_{a} $- to W-bands at a multimegawatt power level and having a transverse dimension of up to 5 wavelengths. Prospects for advancing the studied class of generators to the subterahertz/terahertz frequency range on the basis of new-generation linear induction accelerators, which have been developed at the Budker Institute of Nuclear Physics (BINP), Siberian Branch of the Russian Academy of Sciences and form electron beams with a particle energy of 5–20 MeV and kiloampere currents, are discussed. © Springer Science+Business Media, LLC, part of Springer Nature 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
12 |
title_short |
High-Power Free-Electron Masers Based on Linear Induction Accelerators |
url |
https://dx.doi.org/10.1007/s11141-021-10105-8 |
remote_bool |
true |
author2 |
Ginzburg, N. S. Kaminsky, A. K. Sedykh, S. N. Sergeev, A. S. |
author2Str |
Ginzburg, N. S. Kaminsky, A. K. Sedykh, S. N. Sergeev, A. S. |
ppnlink |
325573395 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11141-021-10105-8 |
up_date |
2024-07-03T16:10:48.503Z |
_version_ |
1803574888110227456 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR04546619X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507114859.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">211103s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11141-021-10105-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR04546619X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11141-021-10105-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Peskov, N. Yu.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">High-Power Free-Electron Masers Based on Linear Induction Accelerators</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We review the results of theoretical and experimental studies of high-power free-electron masers (FEMs), which are performed jointly by the Joint Institute for Nuclear Research (JINR) and the Institute of Applied Physics of the Russian Academy of Sciences (IAPRAS), using the LIU-3000 linear induction accelerator that has a particle energy of about 0.8 MeV, a beam current of up to 200 A, and a pulse duration of 200–250 ns. Various types of Bragg resonators are compared, including two-mirror schemes and resonator cavities with a jump in the corrugation phase. The nonlinear dynamics of FEMs with the cavities of the above-specified types is studied, and the regions of realization of single-mode, single-frequency regimes, when generators are excited by relativistic electron beams moving in a helical undulator and focused by a uniform longitudinal magnetic field, are found. The results of the theoretical analysis are confirmed by experimental studies. When a Bragg cavity with a corrugation phase jump is used in the regime of the reverse guiding field in the 8-mm wavelength range, a FEM with an output power of about 20–30 MW and a radiation spectrum width of 6–7 MHz is realized, which is close to the theoretical limit. The record-breaking set of parameters obtained for this class of generators (efficiency, power, stability of the single-mode generation regime in a sequence of up to $ 10^{6} $ pulses) made it possible to use FEM radiation in several applications, including the study of the resource of high-gradient accelerating structures under pulsed periodic thermal loads. To expand the spectrum of potential applications that require control over the frequency and phase of the radiation, the possibility to create wideband amplifying circuits of FEMs is demonstrated. In order to bring FEMs over to the short-wave part of the millimeter-wavelength range, it is proposed to use modified Bragg structures based on the coupling of traveling and quasi-critical waves. It is shown that including quasi-critical waves in the feedback circuit allows one to improve significantly the selectivity of Bragg cavities (as compared with their “conventional” analogs based on the coupling of counterpropagating wave beams with high group velocities) for the transverse dimensions that reach up to 10–20 wavelengths. Operability of novel cavities has been confirmed experimentally in prototypes of FEM oscillators operating in the $ K_{a} $- to W-bands at a multimegawatt power level and having a transverse dimension of up to 5 wavelengths. Prospects for advancing the studied class of generators to the subterahertz/terahertz frequency range on the basis of new-generation linear induction accelerators, which have been developed at the Budker Institute of Nuclear Physics (BINP), Siberian Branch of the Russian Academy of Sciences and form electron beams with a particle energy of 5–20 MeV and kiloampere currents, are discussed.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ginzburg, N. S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kaminsky, A. K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sedykh, S. N.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sergeev, A. S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Radiophysics and quantum electronics</subfield><subfield code="d">New York, NY [u.a.] : Consultants Bureau, 1965</subfield><subfield code="g">63(2021), 12 vom: Mai, Seite 931-975</subfield><subfield code="w">(DE-627)325573395</subfield><subfield code="w">(DE-600)2037675-3</subfield><subfield code="x">1573-9120</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:63</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:12</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:931-975</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11141-021-10105-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">63</subfield><subfield code="j">2021</subfield><subfield code="e">12</subfield><subfield code="c">05</subfield><subfield code="h">931-975</subfield></datafield></record></collection>
|
score |
7.4018965 |