Accuracy analysis of 2D numerical methods of deep-seated failure analysis in embankments on stone column reinforced ground
Abstract Global instability analysis using two dimensional (2D) numerical methods are based on the conversion of a real-world situation into the simplified two-dimensional plain-strain condition. These methods are simpler compared to the complex three dimensional (3D) numerical methods of analysis,...
Ausführliche Beschreibung
Autor*in: |
Dar, Lateef Ahmad [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Nature Switzerland AG 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: Innovative infrastructure solutions - Cham, Switzerland : Springer International Publishing, 2016, 7(2021), 1 vom: 11. Nov. |
---|---|
Übergeordnetes Werk: |
volume:7 ; year:2021 ; number:1 ; day:11 ; month:11 |
Links: |
---|
DOI / URN: |
10.1007/s41062-021-00681-z |
---|
Katalog-ID: |
SPR045545898 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR045545898 | ||
003 | DE-627 | ||
005 | 20230507111907.0 | ||
007 | cr uuu---uuuuu | ||
008 | 211112s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s41062-021-00681-z |2 doi | |
035 | |a (DE-627)SPR045545898 | ||
035 | |a (SPR)s41062-021-00681-z-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Dar, Lateef Ahmad |e verfasserin |0 (orcid)0000-0001-9786-9105 |4 aut | |
245 | 1 | 0 | |a Accuracy analysis of 2D numerical methods of deep-seated failure analysis in embankments on stone column reinforced ground |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Springer Nature Switzerland AG 2021 | ||
520 | |a Abstract Global instability analysis using two dimensional (2D) numerical methods are based on the conversion of a real-world situation into the simplified two-dimensional plain-strain condition. These methods are simpler compared to the complex three dimensional (3D) numerical methods of analysis, hence they are more commonly used. These methods are indirect and approximate and the existing 2D methods viz. the column wall (CW) and equivalent area (EA) methods give different values of factor of safety (FOS) for a single embankment. This study is aimed at analysing the accuracy of the existing 2D methods of analysis compared to the three dimensional (3D) numerical environment. To achieve this, stability analysis of embankments on stone column reinforced soil was carried out using the existing 2D numerical methods of analysis. The results of the 2D analysis were then compared with the values obtained from the 3D numerical method. The embankments were analysed by varying various material and geometrical parameters viz. S/D ratio, the cohesion of soil, friction angle of stone column infill, friction angle of embankment fill, the height of embankment and slope of the embankment. The detailed parametric analysis was carried out using 2D and 3D numerical methods to generalise the performance of the existing 2D numerical methods. Finite element programme PLAXIS2D and PLAXIS3D were used to carry the 2D and 3D analysis, respectively. The results show that the CW method underestimates the FOS values whereas the EA method overestimates the FOS values compared to the 3D numerical analysis. Since the 3D numerical method is more accurate, conversion factors of 1.033 for the CW method and 0.929 for the EA method are proposed to get more accurate FOS values. Two regression equations were also proposed for conversion of FOS values obtained by the 2D numerical methods into the values of equivalent 3D numerical analysis. It is concluded that among the two methods of 2D analysis, the estimation of FOS values using the CW method is more accurate and conservative than the EA method. | ||
650 | 4 | |a Embankment |7 (dpeaa)DE-He213 | |
650 | 4 | |a FOS |7 (dpeaa)DE-He213 | |
650 | 4 | |a Deep-seated failure |7 (dpeaa)DE-He213 | |
650 | 4 | |a FEM |7 (dpeaa)DE-He213 | |
700 | 1 | |a Shah, Mohammad Yousuf |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Innovative infrastructure solutions |d Cham, Switzerland : Springer International Publishing, 2016 |g 7(2021), 1 vom: 11. Nov. |w (DE-627)84438626X |w (DE-600)2843079-7 |x 2364-4184 |7 nnns |
773 | 1 | 8 | |g volume:7 |g year:2021 |g number:1 |g day:11 |g month:11 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s41062-021-00681-z |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_266 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 7 |j 2021 |e 1 |b 11 |c 11 |
author_variant |
l a d la lad m y s my mys |
---|---|
matchkey_str |
article:23644184:2021----::cuaynlssfdueiamtosfepetdalraayiiebnmnsn |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1007/s41062-021-00681-z doi (DE-627)SPR045545898 (SPR)s41062-021-00681-z-e DE-627 ger DE-627 rakwb eng Dar, Lateef Ahmad verfasserin (orcid)0000-0001-9786-9105 aut Accuracy analysis of 2D numerical methods of deep-seated failure analysis in embankments on stone column reinforced ground 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer Nature Switzerland AG 2021 Abstract Global instability analysis using two dimensional (2D) numerical methods are based on the conversion of a real-world situation into the simplified two-dimensional plain-strain condition. These methods are simpler compared to the complex three dimensional (3D) numerical methods of analysis, hence they are more commonly used. These methods are indirect and approximate and the existing 2D methods viz. the column wall (CW) and equivalent area (EA) methods give different values of factor of safety (FOS) for a single embankment. This study is aimed at analysing the accuracy of the existing 2D methods of analysis compared to the three dimensional (3D) numerical environment. To achieve this, stability analysis of embankments on stone column reinforced soil was carried out using the existing 2D numerical methods of analysis. The results of the 2D analysis were then compared with the values obtained from the 3D numerical method. The embankments were analysed by varying various material and geometrical parameters viz. S/D ratio, the cohesion of soil, friction angle of stone column infill, friction angle of embankment fill, the height of embankment and slope of the embankment. The detailed parametric analysis was carried out using 2D and 3D numerical methods to generalise the performance of the existing 2D numerical methods. Finite element programme PLAXIS2D and PLAXIS3D were used to carry the 2D and 3D analysis, respectively. The results show that the CW method underestimates the FOS values whereas the EA method overestimates the FOS values compared to the 3D numerical analysis. Since the 3D numerical method is more accurate, conversion factors of 1.033 for the CW method and 0.929 for the EA method are proposed to get more accurate FOS values. Two regression equations were also proposed for conversion of FOS values obtained by the 2D numerical methods into the values of equivalent 3D numerical analysis. It is concluded that among the two methods of 2D analysis, the estimation of FOS values using the CW method is more accurate and conservative than the EA method. Embankment (dpeaa)DE-He213 FOS (dpeaa)DE-He213 Deep-seated failure (dpeaa)DE-He213 FEM (dpeaa)DE-He213 Shah, Mohammad Yousuf aut Enthalten in Innovative infrastructure solutions Cham, Switzerland : Springer International Publishing, 2016 7(2021), 1 vom: 11. Nov. (DE-627)84438626X (DE-600)2843079-7 2364-4184 nnns volume:7 year:2021 number:1 day:11 month:11 https://dx.doi.org/10.1007/s41062-021-00681-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_266 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 7 2021 1 11 11 |
spelling |
10.1007/s41062-021-00681-z doi (DE-627)SPR045545898 (SPR)s41062-021-00681-z-e DE-627 ger DE-627 rakwb eng Dar, Lateef Ahmad verfasserin (orcid)0000-0001-9786-9105 aut Accuracy analysis of 2D numerical methods of deep-seated failure analysis in embankments on stone column reinforced ground 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer Nature Switzerland AG 2021 Abstract Global instability analysis using two dimensional (2D) numerical methods are based on the conversion of a real-world situation into the simplified two-dimensional plain-strain condition. These methods are simpler compared to the complex three dimensional (3D) numerical methods of analysis, hence they are more commonly used. These methods are indirect and approximate and the existing 2D methods viz. the column wall (CW) and equivalent area (EA) methods give different values of factor of safety (FOS) for a single embankment. This study is aimed at analysing the accuracy of the existing 2D methods of analysis compared to the three dimensional (3D) numerical environment. To achieve this, stability analysis of embankments on stone column reinforced soil was carried out using the existing 2D numerical methods of analysis. The results of the 2D analysis were then compared with the values obtained from the 3D numerical method. The embankments were analysed by varying various material and geometrical parameters viz. S/D ratio, the cohesion of soil, friction angle of stone column infill, friction angle of embankment fill, the height of embankment and slope of the embankment. The detailed parametric analysis was carried out using 2D and 3D numerical methods to generalise the performance of the existing 2D numerical methods. Finite element programme PLAXIS2D and PLAXIS3D were used to carry the 2D and 3D analysis, respectively. The results show that the CW method underestimates the FOS values whereas the EA method overestimates the FOS values compared to the 3D numerical analysis. Since the 3D numerical method is more accurate, conversion factors of 1.033 for the CW method and 0.929 for the EA method are proposed to get more accurate FOS values. Two regression equations were also proposed for conversion of FOS values obtained by the 2D numerical methods into the values of equivalent 3D numerical analysis. It is concluded that among the two methods of 2D analysis, the estimation of FOS values using the CW method is more accurate and conservative than the EA method. Embankment (dpeaa)DE-He213 FOS (dpeaa)DE-He213 Deep-seated failure (dpeaa)DE-He213 FEM (dpeaa)DE-He213 Shah, Mohammad Yousuf aut Enthalten in Innovative infrastructure solutions Cham, Switzerland : Springer International Publishing, 2016 7(2021), 1 vom: 11. Nov. (DE-627)84438626X (DE-600)2843079-7 2364-4184 nnns volume:7 year:2021 number:1 day:11 month:11 https://dx.doi.org/10.1007/s41062-021-00681-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_266 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 7 2021 1 11 11 |
allfields_unstemmed |
10.1007/s41062-021-00681-z doi (DE-627)SPR045545898 (SPR)s41062-021-00681-z-e DE-627 ger DE-627 rakwb eng Dar, Lateef Ahmad verfasserin (orcid)0000-0001-9786-9105 aut Accuracy analysis of 2D numerical methods of deep-seated failure analysis in embankments on stone column reinforced ground 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer Nature Switzerland AG 2021 Abstract Global instability analysis using two dimensional (2D) numerical methods are based on the conversion of a real-world situation into the simplified two-dimensional plain-strain condition. These methods are simpler compared to the complex three dimensional (3D) numerical methods of analysis, hence they are more commonly used. These methods are indirect and approximate and the existing 2D methods viz. the column wall (CW) and equivalent area (EA) methods give different values of factor of safety (FOS) for a single embankment. This study is aimed at analysing the accuracy of the existing 2D methods of analysis compared to the three dimensional (3D) numerical environment. To achieve this, stability analysis of embankments on stone column reinforced soil was carried out using the existing 2D numerical methods of analysis. The results of the 2D analysis were then compared with the values obtained from the 3D numerical method. The embankments were analysed by varying various material and geometrical parameters viz. S/D ratio, the cohesion of soil, friction angle of stone column infill, friction angle of embankment fill, the height of embankment and slope of the embankment. The detailed parametric analysis was carried out using 2D and 3D numerical methods to generalise the performance of the existing 2D numerical methods. Finite element programme PLAXIS2D and PLAXIS3D were used to carry the 2D and 3D analysis, respectively. The results show that the CW method underestimates the FOS values whereas the EA method overestimates the FOS values compared to the 3D numerical analysis. Since the 3D numerical method is more accurate, conversion factors of 1.033 for the CW method and 0.929 for the EA method are proposed to get more accurate FOS values. Two regression equations were also proposed for conversion of FOS values obtained by the 2D numerical methods into the values of equivalent 3D numerical analysis. It is concluded that among the two methods of 2D analysis, the estimation of FOS values using the CW method is more accurate and conservative than the EA method. Embankment (dpeaa)DE-He213 FOS (dpeaa)DE-He213 Deep-seated failure (dpeaa)DE-He213 FEM (dpeaa)DE-He213 Shah, Mohammad Yousuf aut Enthalten in Innovative infrastructure solutions Cham, Switzerland : Springer International Publishing, 2016 7(2021), 1 vom: 11. Nov. (DE-627)84438626X (DE-600)2843079-7 2364-4184 nnns volume:7 year:2021 number:1 day:11 month:11 https://dx.doi.org/10.1007/s41062-021-00681-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_266 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 7 2021 1 11 11 |
allfieldsGer |
10.1007/s41062-021-00681-z doi (DE-627)SPR045545898 (SPR)s41062-021-00681-z-e DE-627 ger DE-627 rakwb eng Dar, Lateef Ahmad verfasserin (orcid)0000-0001-9786-9105 aut Accuracy analysis of 2D numerical methods of deep-seated failure analysis in embankments on stone column reinforced ground 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer Nature Switzerland AG 2021 Abstract Global instability analysis using two dimensional (2D) numerical methods are based on the conversion of a real-world situation into the simplified two-dimensional plain-strain condition. These methods are simpler compared to the complex three dimensional (3D) numerical methods of analysis, hence they are more commonly used. These methods are indirect and approximate and the existing 2D methods viz. the column wall (CW) and equivalent area (EA) methods give different values of factor of safety (FOS) for a single embankment. This study is aimed at analysing the accuracy of the existing 2D methods of analysis compared to the three dimensional (3D) numerical environment. To achieve this, stability analysis of embankments on stone column reinforced soil was carried out using the existing 2D numerical methods of analysis. The results of the 2D analysis were then compared with the values obtained from the 3D numerical method. The embankments were analysed by varying various material and geometrical parameters viz. S/D ratio, the cohesion of soil, friction angle of stone column infill, friction angle of embankment fill, the height of embankment and slope of the embankment. The detailed parametric analysis was carried out using 2D and 3D numerical methods to generalise the performance of the existing 2D numerical methods. Finite element programme PLAXIS2D and PLAXIS3D were used to carry the 2D and 3D analysis, respectively. The results show that the CW method underestimates the FOS values whereas the EA method overestimates the FOS values compared to the 3D numerical analysis. Since the 3D numerical method is more accurate, conversion factors of 1.033 for the CW method and 0.929 for the EA method are proposed to get more accurate FOS values. Two regression equations were also proposed for conversion of FOS values obtained by the 2D numerical methods into the values of equivalent 3D numerical analysis. It is concluded that among the two methods of 2D analysis, the estimation of FOS values using the CW method is more accurate and conservative than the EA method. Embankment (dpeaa)DE-He213 FOS (dpeaa)DE-He213 Deep-seated failure (dpeaa)DE-He213 FEM (dpeaa)DE-He213 Shah, Mohammad Yousuf aut Enthalten in Innovative infrastructure solutions Cham, Switzerland : Springer International Publishing, 2016 7(2021), 1 vom: 11. Nov. (DE-627)84438626X (DE-600)2843079-7 2364-4184 nnns volume:7 year:2021 number:1 day:11 month:11 https://dx.doi.org/10.1007/s41062-021-00681-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_266 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 7 2021 1 11 11 |
allfieldsSound |
10.1007/s41062-021-00681-z doi (DE-627)SPR045545898 (SPR)s41062-021-00681-z-e DE-627 ger DE-627 rakwb eng Dar, Lateef Ahmad verfasserin (orcid)0000-0001-9786-9105 aut Accuracy analysis of 2D numerical methods of deep-seated failure analysis in embankments on stone column reinforced ground 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer Nature Switzerland AG 2021 Abstract Global instability analysis using two dimensional (2D) numerical methods are based on the conversion of a real-world situation into the simplified two-dimensional plain-strain condition. These methods are simpler compared to the complex three dimensional (3D) numerical methods of analysis, hence they are more commonly used. These methods are indirect and approximate and the existing 2D methods viz. the column wall (CW) and equivalent area (EA) methods give different values of factor of safety (FOS) for a single embankment. This study is aimed at analysing the accuracy of the existing 2D methods of analysis compared to the three dimensional (3D) numerical environment. To achieve this, stability analysis of embankments on stone column reinforced soil was carried out using the existing 2D numerical methods of analysis. The results of the 2D analysis were then compared with the values obtained from the 3D numerical method. The embankments were analysed by varying various material and geometrical parameters viz. S/D ratio, the cohesion of soil, friction angle of stone column infill, friction angle of embankment fill, the height of embankment and slope of the embankment. The detailed parametric analysis was carried out using 2D and 3D numerical methods to generalise the performance of the existing 2D numerical methods. Finite element programme PLAXIS2D and PLAXIS3D were used to carry the 2D and 3D analysis, respectively. The results show that the CW method underestimates the FOS values whereas the EA method overestimates the FOS values compared to the 3D numerical analysis. Since the 3D numerical method is more accurate, conversion factors of 1.033 for the CW method and 0.929 for the EA method are proposed to get more accurate FOS values. Two regression equations were also proposed for conversion of FOS values obtained by the 2D numerical methods into the values of equivalent 3D numerical analysis. It is concluded that among the two methods of 2D analysis, the estimation of FOS values using the CW method is more accurate and conservative than the EA method. Embankment (dpeaa)DE-He213 FOS (dpeaa)DE-He213 Deep-seated failure (dpeaa)DE-He213 FEM (dpeaa)DE-He213 Shah, Mohammad Yousuf aut Enthalten in Innovative infrastructure solutions Cham, Switzerland : Springer International Publishing, 2016 7(2021), 1 vom: 11. Nov. (DE-627)84438626X (DE-600)2843079-7 2364-4184 nnns volume:7 year:2021 number:1 day:11 month:11 https://dx.doi.org/10.1007/s41062-021-00681-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_266 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 7 2021 1 11 11 |
language |
English |
source |
Enthalten in Innovative infrastructure solutions 7(2021), 1 vom: 11. Nov. volume:7 year:2021 number:1 day:11 month:11 |
sourceStr |
Enthalten in Innovative infrastructure solutions 7(2021), 1 vom: 11. Nov. volume:7 year:2021 number:1 day:11 month:11 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Embankment FOS Deep-seated failure FEM |
isfreeaccess_bool |
false |
container_title |
Innovative infrastructure solutions |
authorswithroles_txt_mv |
Dar, Lateef Ahmad @@aut@@ Shah, Mohammad Yousuf @@aut@@ |
publishDateDaySort_date |
2021-11-11T00:00:00Z |
hierarchy_top_id |
84438626X |
id |
SPR045545898 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR045545898</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507111907.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">211112s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s41062-021-00681-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR045545898</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s41062-021-00681-z-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dar, Lateef Ahmad</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-9786-9105</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Accuracy analysis of 2D numerical methods of deep-seated failure analysis in embankments on stone column reinforced ground</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Nature Switzerland AG 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Global instability analysis using two dimensional (2D) numerical methods are based on the conversion of a real-world situation into the simplified two-dimensional plain-strain condition. These methods are simpler compared to the complex three dimensional (3D) numerical methods of analysis, hence they are more commonly used. These methods are indirect and approximate and the existing 2D methods viz. the column wall (CW) and equivalent area (EA) methods give different values of factor of safety (FOS) for a single embankment. This study is aimed at analysing the accuracy of the existing 2D methods of analysis compared to the three dimensional (3D) numerical environment. To achieve this, stability analysis of embankments on stone column reinforced soil was carried out using the existing 2D numerical methods of analysis. The results of the 2D analysis were then compared with the values obtained from the 3D numerical method. The embankments were analysed by varying various material and geometrical parameters viz. S/D ratio, the cohesion of soil, friction angle of stone column infill, friction angle of embankment fill, the height of embankment and slope of the embankment. The detailed parametric analysis was carried out using 2D and 3D numerical methods to generalise the performance of the existing 2D numerical methods. Finite element programme PLAXIS2D and PLAXIS3D were used to carry the 2D and 3D analysis, respectively. The results show that the CW method underestimates the FOS values whereas the EA method overestimates the FOS values compared to the 3D numerical analysis. Since the 3D numerical method is more accurate, conversion factors of 1.033 for the CW method and 0.929 for the EA method are proposed to get more accurate FOS values. Two regression equations were also proposed for conversion of FOS values obtained by the 2D numerical methods into the values of equivalent 3D numerical analysis. It is concluded that among the two methods of 2D analysis, the estimation of FOS values using the CW method is more accurate and conservative than the EA method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Embankment</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">FOS</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deep-seated failure</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">FEM</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shah, Mohammad Yousuf</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Innovative infrastructure solutions</subfield><subfield code="d">Cham, Switzerland : Springer International Publishing, 2016</subfield><subfield code="g">7(2021), 1 vom: 11. Nov.</subfield><subfield code="w">(DE-627)84438626X</subfield><subfield code="w">(DE-600)2843079-7</subfield><subfield code="x">2364-4184</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">day:11</subfield><subfield code="g">month:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s41062-021-00681-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="b">11</subfield><subfield code="c">11</subfield></datafield></record></collection>
|
author |
Dar, Lateef Ahmad |
spellingShingle |
Dar, Lateef Ahmad misc Embankment misc FOS misc Deep-seated failure misc FEM Accuracy analysis of 2D numerical methods of deep-seated failure analysis in embankments on stone column reinforced ground |
authorStr |
Dar, Lateef Ahmad |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)84438626X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2364-4184 |
topic_title |
Accuracy analysis of 2D numerical methods of deep-seated failure analysis in embankments on stone column reinforced ground Embankment (dpeaa)DE-He213 FOS (dpeaa)DE-He213 Deep-seated failure (dpeaa)DE-He213 FEM (dpeaa)DE-He213 |
topic |
misc Embankment misc FOS misc Deep-seated failure misc FEM |
topic_unstemmed |
misc Embankment misc FOS misc Deep-seated failure misc FEM |
topic_browse |
misc Embankment misc FOS misc Deep-seated failure misc FEM |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Innovative infrastructure solutions |
hierarchy_parent_id |
84438626X |
hierarchy_top_title |
Innovative infrastructure solutions |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)84438626X (DE-600)2843079-7 |
title |
Accuracy analysis of 2D numerical methods of deep-seated failure analysis in embankments on stone column reinforced ground |
ctrlnum |
(DE-627)SPR045545898 (SPR)s41062-021-00681-z-e |
title_full |
Accuracy analysis of 2D numerical methods of deep-seated failure analysis in embankments on stone column reinforced ground |
author_sort |
Dar, Lateef Ahmad |
journal |
Innovative infrastructure solutions |
journalStr |
Innovative infrastructure solutions |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Dar, Lateef Ahmad Shah, Mohammad Yousuf |
container_volume |
7 |
format_se |
Elektronische Aufsätze |
author-letter |
Dar, Lateef Ahmad |
doi_str_mv |
10.1007/s41062-021-00681-z |
normlink |
(ORCID)0000-0001-9786-9105 |
normlink_prefix_str_mv |
(orcid)0000-0001-9786-9105 |
title_sort |
accuracy analysis of 2d numerical methods of deep-seated failure analysis in embankments on stone column reinforced ground |
title_auth |
Accuracy analysis of 2D numerical methods of deep-seated failure analysis in embankments on stone column reinforced ground |
abstract |
Abstract Global instability analysis using two dimensional (2D) numerical methods are based on the conversion of a real-world situation into the simplified two-dimensional plain-strain condition. These methods are simpler compared to the complex three dimensional (3D) numerical methods of analysis, hence they are more commonly used. These methods are indirect and approximate and the existing 2D methods viz. the column wall (CW) and equivalent area (EA) methods give different values of factor of safety (FOS) for a single embankment. This study is aimed at analysing the accuracy of the existing 2D methods of analysis compared to the three dimensional (3D) numerical environment. To achieve this, stability analysis of embankments on stone column reinforced soil was carried out using the existing 2D numerical methods of analysis. The results of the 2D analysis were then compared with the values obtained from the 3D numerical method. The embankments were analysed by varying various material and geometrical parameters viz. S/D ratio, the cohesion of soil, friction angle of stone column infill, friction angle of embankment fill, the height of embankment and slope of the embankment. The detailed parametric analysis was carried out using 2D and 3D numerical methods to generalise the performance of the existing 2D numerical methods. Finite element programme PLAXIS2D and PLAXIS3D were used to carry the 2D and 3D analysis, respectively. The results show that the CW method underestimates the FOS values whereas the EA method overestimates the FOS values compared to the 3D numerical analysis. Since the 3D numerical method is more accurate, conversion factors of 1.033 for the CW method and 0.929 for the EA method are proposed to get more accurate FOS values. Two regression equations were also proposed for conversion of FOS values obtained by the 2D numerical methods into the values of equivalent 3D numerical analysis. It is concluded that among the two methods of 2D analysis, the estimation of FOS values using the CW method is more accurate and conservative than the EA method. © Springer Nature Switzerland AG 2021 |
abstractGer |
Abstract Global instability analysis using two dimensional (2D) numerical methods are based on the conversion of a real-world situation into the simplified two-dimensional plain-strain condition. These methods are simpler compared to the complex three dimensional (3D) numerical methods of analysis, hence they are more commonly used. These methods are indirect and approximate and the existing 2D methods viz. the column wall (CW) and equivalent area (EA) methods give different values of factor of safety (FOS) for a single embankment. This study is aimed at analysing the accuracy of the existing 2D methods of analysis compared to the three dimensional (3D) numerical environment. To achieve this, stability analysis of embankments on stone column reinforced soil was carried out using the existing 2D numerical methods of analysis. The results of the 2D analysis were then compared with the values obtained from the 3D numerical method. The embankments were analysed by varying various material and geometrical parameters viz. S/D ratio, the cohesion of soil, friction angle of stone column infill, friction angle of embankment fill, the height of embankment and slope of the embankment. The detailed parametric analysis was carried out using 2D and 3D numerical methods to generalise the performance of the existing 2D numerical methods. Finite element programme PLAXIS2D and PLAXIS3D were used to carry the 2D and 3D analysis, respectively. The results show that the CW method underestimates the FOS values whereas the EA method overestimates the FOS values compared to the 3D numerical analysis. Since the 3D numerical method is more accurate, conversion factors of 1.033 for the CW method and 0.929 for the EA method are proposed to get more accurate FOS values. Two regression equations were also proposed for conversion of FOS values obtained by the 2D numerical methods into the values of equivalent 3D numerical analysis. It is concluded that among the two methods of 2D analysis, the estimation of FOS values using the CW method is more accurate and conservative than the EA method. © Springer Nature Switzerland AG 2021 |
abstract_unstemmed |
Abstract Global instability analysis using two dimensional (2D) numerical methods are based on the conversion of a real-world situation into the simplified two-dimensional plain-strain condition. These methods are simpler compared to the complex three dimensional (3D) numerical methods of analysis, hence they are more commonly used. These methods are indirect and approximate and the existing 2D methods viz. the column wall (CW) and equivalent area (EA) methods give different values of factor of safety (FOS) for a single embankment. This study is aimed at analysing the accuracy of the existing 2D methods of analysis compared to the three dimensional (3D) numerical environment. To achieve this, stability analysis of embankments on stone column reinforced soil was carried out using the existing 2D numerical methods of analysis. The results of the 2D analysis were then compared with the values obtained from the 3D numerical method. The embankments were analysed by varying various material and geometrical parameters viz. S/D ratio, the cohesion of soil, friction angle of stone column infill, friction angle of embankment fill, the height of embankment and slope of the embankment. The detailed parametric analysis was carried out using 2D and 3D numerical methods to generalise the performance of the existing 2D numerical methods. Finite element programme PLAXIS2D and PLAXIS3D were used to carry the 2D and 3D analysis, respectively. The results show that the CW method underestimates the FOS values whereas the EA method overestimates the FOS values compared to the 3D numerical analysis. Since the 3D numerical method is more accurate, conversion factors of 1.033 for the CW method and 0.929 for the EA method are proposed to get more accurate FOS values. Two regression equations were also proposed for conversion of FOS values obtained by the 2D numerical methods into the values of equivalent 3D numerical analysis. It is concluded that among the two methods of 2D analysis, the estimation of FOS values using the CW method is more accurate and conservative than the EA method. © Springer Nature Switzerland AG 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_266 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Accuracy analysis of 2D numerical methods of deep-seated failure analysis in embankments on stone column reinforced ground |
url |
https://dx.doi.org/10.1007/s41062-021-00681-z |
remote_bool |
true |
author2 |
Shah, Mohammad Yousuf |
author2Str |
Shah, Mohammad Yousuf |
ppnlink |
84438626X |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s41062-021-00681-z |
up_date |
2024-07-03T16:42:47.028Z |
_version_ |
1803576899826352128 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR045545898</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507111907.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">211112s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s41062-021-00681-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR045545898</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s41062-021-00681-z-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dar, Lateef Ahmad</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-9786-9105</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Accuracy analysis of 2D numerical methods of deep-seated failure analysis in embankments on stone column reinforced ground</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Nature Switzerland AG 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Global instability analysis using two dimensional (2D) numerical methods are based on the conversion of a real-world situation into the simplified two-dimensional plain-strain condition. These methods are simpler compared to the complex three dimensional (3D) numerical methods of analysis, hence they are more commonly used. These methods are indirect and approximate and the existing 2D methods viz. the column wall (CW) and equivalent area (EA) methods give different values of factor of safety (FOS) for a single embankment. This study is aimed at analysing the accuracy of the existing 2D methods of analysis compared to the three dimensional (3D) numerical environment. To achieve this, stability analysis of embankments on stone column reinforced soil was carried out using the existing 2D numerical methods of analysis. The results of the 2D analysis were then compared with the values obtained from the 3D numerical method. The embankments were analysed by varying various material and geometrical parameters viz. S/D ratio, the cohesion of soil, friction angle of stone column infill, friction angle of embankment fill, the height of embankment and slope of the embankment. The detailed parametric analysis was carried out using 2D and 3D numerical methods to generalise the performance of the existing 2D numerical methods. Finite element programme PLAXIS2D and PLAXIS3D were used to carry the 2D and 3D analysis, respectively. The results show that the CW method underestimates the FOS values whereas the EA method overestimates the FOS values compared to the 3D numerical analysis. Since the 3D numerical method is more accurate, conversion factors of 1.033 for the CW method and 0.929 for the EA method are proposed to get more accurate FOS values. Two regression equations were also proposed for conversion of FOS values obtained by the 2D numerical methods into the values of equivalent 3D numerical analysis. It is concluded that among the two methods of 2D analysis, the estimation of FOS values using the CW method is more accurate and conservative than the EA method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Embankment</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">FOS</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deep-seated failure</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">FEM</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shah, Mohammad Yousuf</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Innovative infrastructure solutions</subfield><subfield code="d">Cham, Switzerland : Springer International Publishing, 2016</subfield><subfield code="g">7(2021), 1 vom: 11. Nov.</subfield><subfield code="w">(DE-627)84438626X</subfield><subfield code="w">(DE-600)2843079-7</subfield><subfield code="x">2364-4184</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">day:11</subfield><subfield code="g">month:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s41062-021-00681-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="b">11</subfield><subfield code="c">11</subfield></datafield></record></collection>
|
score |
7.4014063 |