High-Sensitive Numerical Gas Detection Using LSPR Effect and Fano Resonance in a Slotted MDM Structure
Abstract A high-sensitive numerical measurement of methane based on the combined use of the localized surface plasmon resonance (LSPR) and Fano resonance in a slotted metal-dielectric-metal (MDM) periodic structure is numerically investigated. A groove is etched in an original MDM structure to excit...
Ausführliche Beschreibung
Autor*in: |
Liu, Hai [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: Photonic sensors - Berlin : Springer, 2011, 12(2021), 2 vom: 02. Aug., Seite 164-174 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2021 ; number:2 ; day:02 ; month:08 ; pages:164-174 |
Links: |
---|
DOI / URN: |
10.1007/s13320-021-0634-5 |
---|
Katalog-ID: |
SPR04577367X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR04577367X | ||
003 | DE-627 | ||
005 | 20230509095553.0 | ||
007 | cr uuu---uuuuu | ||
008 | 211211s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s13320-021-0634-5 |2 doi | |
035 | |a (DE-627)SPR04577367X | ||
035 | |a (SPR)s13320-021-0634-5-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Liu, Hai |e verfasserin |4 aut | |
245 | 1 | 0 | |a High-Sensitive Numerical Gas Detection Using LSPR Effect and Fano Resonance in a Slotted MDM Structure |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2021 | ||
520 | |a Abstract A high-sensitive numerical measurement of methane based on the combined use of the localized surface plasmon resonance (LSPR) and Fano resonance in a slotted metal-dielectric-metal (MDM) periodic structure is numerically investigated. A groove is etched in an original MDM structure to excite the diploe mode at both sides of the groove, and the coherent coupling of two dipole modes is enhanced to realize a fast response, which is beneficial to gas-sensing. The influence of geometric parameters on the reflection spectra and methane sensitivity are analyzed to obtain optimal geometry. Moreover, an etching ring is introduced on the top metal to further raise the coupling area and coupling strength. The Fano resonance is subtly integrated into the optimized structure with asymmetry to achieve greater gas sensitivity. After the introduction of the Fano resonance, the field enhancement caused by the LSPR effect becomes greater and the methane sensitivity can reach up to 8.421 nm/% in numerical calculations, which increases 56.8% more than that of the original one. The combined use of the LSPR and Fano resonance in an optimized MDM structure provides an effective method for high-sensitive gas detection. | ||
650 | 4 | |a Localized surface plasmon resonance |7 (dpeaa)DE-He213 | |
650 | 4 | |a Fano resonance |7 (dpeaa)DE-He213 | |
650 | 4 | |a gas sensors |7 (dpeaa)DE-He213 | |
650 | 4 | |a MDM structure |7 (dpeaa)DE-He213 | |
700 | 1 | |a Zhao, Benlei |4 aut | |
700 | 1 | |a Zhang, Xu |4 aut | |
700 | 1 | |a Zhang, Hancheng |4 aut | |
700 | 1 | |a Wu, Bo |4 aut | |
700 | 1 | |a Tang, Shoufeng |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Photonic sensors |d Berlin : Springer, 2011 |g 12(2021), 2 vom: 02. Aug., Seite 164-174 |w (DE-627)638064023 |w (DE-600)2577939-4 |x 2190-7439 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2021 |g number:2 |g day:02 |g month:08 |g pages:164-174 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s13320-021-0634-5 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2021 |e 2 |b 02 |c 08 |h 164-174 |
author_variant |
h l hl b z bz x z xz h z hz b w bw s t st |
---|---|
matchkey_str |
article:21907439:2021----::ihestvnmrcladtcinsnlpefcadaoeoa |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1007/s13320-021-0634-5 doi (DE-627)SPR04577367X (SPR)s13320-021-0634-5-e DE-627 ger DE-627 rakwb eng Liu, Hai verfasserin aut High-Sensitive Numerical Gas Detection Using LSPR Effect and Fano Resonance in a Slotted MDM Structure 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2021 Abstract A high-sensitive numerical measurement of methane based on the combined use of the localized surface plasmon resonance (LSPR) and Fano resonance in a slotted metal-dielectric-metal (MDM) periodic structure is numerically investigated. A groove is etched in an original MDM structure to excite the diploe mode at both sides of the groove, and the coherent coupling of two dipole modes is enhanced to realize a fast response, which is beneficial to gas-sensing. The influence of geometric parameters on the reflection spectra and methane sensitivity are analyzed to obtain optimal geometry. Moreover, an etching ring is introduced on the top metal to further raise the coupling area and coupling strength. The Fano resonance is subtly integrated into the optimized structure with asymmetry to achieve greater gas sensitivity. After the introduction of the Fano resonance, the field enhancement caused by the LSPR effect becomes greater and the methane sensitivity can reach up to 8.421 nm/% in numerical calculations, which increases 56.8% more than that of the original one. The combined use of the LSPR and Fano resonance in an optimized MDM structure provides an effective method for high-sensitive gas detection. Localized surface plasmon resonance (dpeaa)DE-He213 Fano resonance (dpeaa)DE-He213 gas sensors (dpeaa)DE-He213 MDM structure (dpeaa)DE-He213 Zhao, Benlei aut Zhang, Xu aut Zhang, Hancheng aut Wu, Bo aut Tang, Shoufeng aut Enthalten in Photonic sensors Berlin : Springer, 2011 12(2021), 2 vom: 02. Aug., Seite 164-174 (DE-627)638064023 (DE-600)2577939-4 2190-7439 nnns volume:12 year:2021 number:2 day:02 month:08 pages:164-174 https://dx.doi.org/10.1007/s13320-021-0634-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2021 2 02 08 164-174 |
spelling |
10.1007/s13320-021-0634-5 doi (DE-627)SPR04577367X (SPR)s13320-021-0634-5-e DE-627 ger DE-627 rakwb eng Liu, Hai verfasserin aut High-Sensitive Numerical Gas Detection Using LSPR Effect and Fano Resonance in a Slotted MDM Structure 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2021 Abstract A high-sensitive numerical measurement of methane based on the combined use of the localized surface plasmon resonance (LSPR) and Fano resonance in a slotted metal-dielectric-metal (MDM) periodic structure is numerically investigated. A groove is etched in an original MDM structure to excite the diploe mode at both sides of the groove, and the coherent coupling of two dipole modes is enhanced to realize a fast response, which is beneficial to gas-sensing. The influence of geometric parameters on the reflection spectra and methane sensitivity are analyzed to obtain optimal geometry. Moreover, an etching ring is introduced on the top metal to further raise the coupling area and coupling strength. The Fano resonance is subtly integrated into the optimized structure with asymmetry to achieve greater gas sensitivity. After the introduction of the Fano resonance, the field enhancement caused by the LSPR effect becomes greater and the methane sensitivity can reach up to 8.421 nm/% in numerical calculations, which increases 56.8% more than that of the original one. The combined use of the LSPR and Fano resonance in an optimized MDM structure provides an effective method for high-sensitive gas detection. Localized surface plasmon resonance (dpeaa)DE-He213 Fano resonance (dpeaa)DE-He213 gas sensors (dpeaa)DE-He213 MDM structure (dpeaa)DE-He213 Zhao, Benlei aut Zhang, Xu aut Zhang, Hancheng aut Wu, Bo aut Tang, Shoufeng aut Enthalten in Photonic sensors Berlin : Springer, 2011 12(2021), 2 vom: 02. Aug., Seite 164-174 (DE-627)638064023 (DE-600)2577939-4 2190-7439 nnns volume:12 year:2021 number:2 day:02 month:08 pages:164-174 https://dx.doi.org/10.1007/s13320-021-0634-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2021 2 02 08 164-174 |
allfields_unstemmed |
10.1007/s13320-021-0634-5 doi (DE-627)SPR04577367X (SPR)s13320-021-0634-5-e DE-627 ger DE-627 rakwb eng Liu, Hai verfasserin aut High-Sensitive Numerical Gas Detection Using LSPR Effect and Fano Resonance in a Slotted MDM Structure 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2021 Abstract A high-sensitive numerical measurement of methane based on the combined use of the localized surface plasmon resonance (LSPR) and Fano resonance in a slotted metal-dielectric-metal (MDM) periodic structure is numerically investigated. A groove is etched in an original MDM structure to excite the diploe mode at both sides of the groove, and the coherent coupling of two dipole modes is enhanced to realize a fast response, which is beneficial to gas-sensing. The influence of geometric parameters on the reflection spectra and methane sensitivity are analyzed to obtain optimal geometry. Moreover, an etching ring is introduced on the top metal to further raise the coupling area and coupling strength. The Fano resonance is subtly integrated into the optimized structure with asymmetry to achieve greater gas sensitivity. After the introduction of the Fano resonance, the field enhancement caused by the LSPR effect becomes greater and the methane sensitivity can reach up to 8.421 nm/% in numerical calculations, which increases 56.8% more than that of the original one. The combined use of the LSPR and Fano resonance in an optimized MDM structure provides an effective method for high-sensitive gas detection. Localized surface plasmon resonance (dpeaa)DE-He213 Fano resonance (dpeaa)DE-He213 gas sensors (dpeaa)DE-He213 MDM structure (dpeaa)DE-He213 Zhao, Benlei aut Zhang, Xu aut Zhang, Hancheng aut Wu, Bo aut Tang, Shoufeng aut Enthalten in Photonic sensors Berlin : Springer, 2011 12(2021), 2 vom: 02. Aug., Seite 164-174 (DE-627)638064023 (DE-600)2577939-4 2190-7439 nnns volume:12 year:2021 number:2 day:02 month:08 pages:164-174 https://dx.doi.org/10.1007/s13320-021-0634-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2021 2 02 08 164-174 |
allfieldsGer |
10.1007/s13320-021-0634-5 doi (DE-627)SPR04577367X (SPR)s13320-021-0634-5-e DE-627 ger DE-627 rakwb eng Liu, Hai verfasserin aut High-Sensitive Numerical Gas Detection Using LSPR Effect and Fano Resonance in a Slotted MDM Structure 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2021 Abstract A high-sensitive numerical measurement of methane based on the combined use of the localized surface plasmon resonance (LSPR) and Fano resonance in a slotted metal-dielectric-metal (MDM) periodic structure is numerically investigated. A groove is etched in an original MDM structure to excite the diploe mode at both sides of the groove, and the coherent coupling of two dipole modes is enhanced to realize a fast response, which is beneficial to gas-sensing. The influence of geometric parameters on the reflection spectra and methane sensitivity are analyzed to obtain optimal geometry. Moreover, an etching ring is introduced on the top metal to further raise the coupling area and coupling strength. The Fano resonance is subtly integrated into the optimized structure with asymmetry to achieve greater gas sensitivity. After the introduction of the Fano resonance, the field enhancement caused by the LSPR effect becomes greater and the methane sensitivity can reach up to 8.421 nm/% in numerical calculations, which increases 56.8% more than that of the original one. The combined use of the LSPR and Fano resonance in an optimized MDM structure provides an effective method for high-sensitive gas detection. Localized surface plasmon resonance (dpeaa)DE-He213 Fano resonance (dpeaa)DE-He213 gas sensors (dpeaa)DE-He213 MDM structure (dpeaa)DE-He213 Zhao, Benlei aut Zhang, Xu aut Zhang, Hancheng aut Wu, Bo aut Tang, Shoufeng aut Enthalten in Photonic sensors Berlin : Springer, 2011 12(2021), 2 vom: 02. Aug., Seite 164-174 (DE-627)638064023 (DE-600)2577939-4 2190-7439 nnns volume:12 year:2021 number:2 day:02 month:08 pages:164-174 https://dx.doi.org/10.1007/s13320-021-0634-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2021 2 02 08 164-174 |
allfieldsSound |
10.1007/s13320-021-0634-5 doi (DE-627)SPR04577367X (SPR)s13320-021-0634-5-e DE-627 ger DE-627 rakwb eng Liu, Hai verfasserin aut High-Sensitive Numerical Gas Detection Using LSPR Effect and Fano Resonance in a Slotted MDM Structure 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2021 Abstract A high-sensitive numerical measurement of methane based on the combined use of the localized surface plasmon resonance (LSPR) and Fano resonance in a slotted metal-dielectric-metal (MDM) periodic structure is numerically investigated. A groove is etched in an original MDM structure to excite the diploe mode at both sides of the groove, and the coherent coupling of two dipole modes is enhanced to realize a fast response, which is beneficial to gas-sensing. The influence of geometric parameters on the reflection spectra and methane sensitivity are analyzed to obtain optimal geometry. Moreover, an etching ring is introduced on the top metal to further raise the coupling area and coupling strength. The Fano resonance is subtly integrated into the optimized structure with asymmetry to achieve greater gas sensitivity. After the introduction of the Fano resonance, the field enhancement caused by the LSPR effect becomes greater and the methane sensitivity can reach up to 8.421 nm/% in numerical calculations, which increases 56.8% more than that of the original one. The combined use of the LSPR and Fano resonance in an optimized MDM structure provides an effective method for high-sensitive gas detection. Localized surface plasmon resonance (dpeaa)DE-He213 Fano resonance (dpeaa)DE-He213 gas sensors (dpeaa)DE-He213 MDM structure (dpeaa)DE-He213 Zhao, Benlei aut Zhang, Xu aut Zhang, Hancheng aut Wu, Bo aut Tang, Shoufeng aut Enthalten in Photonic sensors Berlin : Springer, 2011 12(2021), 2 vom: 02. Aug., Seite 164-174 (DE-627)638064023 (DE-600)2577939-4 2190-7439 nnns volume:12 year:2021 number:2 day:02 month:08 pages:164-174 https://dx.doi.org/10.1007/s13320-021-0634-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2021 2 02 08 164-174 |
language |
English |
source |
Enthalten in Photonic sensors 12(2021), 2 vom: 02. Aug., Seite 164-174 volume:12 year:2021 number:2 day:02 month:08 pages:164-174 |
sourceStr |
Enthalten in Photonic sensors 12(2021), 2 vom: 02. Aug., Seite 164-174 volume:12 year:2021 number:2 day:02 month:08 pages:164-174 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Localized surface plasmon resonance Fano resonance gas sensors MDM structure |
isfreeaccess_bool |
true |
container_title |
Photonic sensors |
authorswithroles_txt_mv |
Liu, Hai @@aut@@ Zhao, Benlei @@aut@@ Zhang, Xu @@aut@@ Zhang, Hancheng @@aut@@ Wu, Bo @@aut@@ Tang, Shoufeng @@aut@@ |
publishDateDaySort_date |
2021-08-02T00:00:00Z |
hierarchy_top_id |
638064023 |
id |
SPR04577367X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR04577367X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509095553.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">211211s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s13320-021-0634-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR04577367X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13320-021-0634-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Hai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">High-Sensitive Numerical Gas Detection Using LSPR Effect and Fano Resonance in a Slotted MDM Structure</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A high-sensitive numerical measurement of methane based on the combined use of the localized surface plasmon resonance (LSPR) and Fano resonance in a slotted metal-dielectric-metal (MDM) periodic structure is numerically investigated. A groove is etched in an original MDM structure to excite the diploe mode at both sides of the groove, and the coherent coupling of two dipole modes is enhanced to realize a fast response, which is beneficial to gas-sensing. The influence of geometric parameters on the reflection spectra and methane sensitivity are analyzed to obtain optimal geometry. Moreover, an etching ring is introduced on the top metal to further raise the coupling area and coupling strength. The Fano resonance is subtly integrated into the optimized structure with asymmetry to achieve greater gas sensitivity. After the introduction of the Fano resonance, the field enhancement caused by the LSPR effect becomes greater and the methane sensitivity can reach up to 8.421 nm/% in numerical calculations, which increases 56.8% more than that of the original one. The combined use of the LSPR and Fano resonance in an optimized MDM structure provides an effective method for high-sensitive gas detection.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Localized surface plasmon resonance</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fano resonance</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">gas sensors</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MDM structure</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Benlei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Xu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Hancheng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Bo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tang, Shoufeng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Photonic sensors</subfield><subfield code="d">Berlin : Springer, 2011</subfield><subfield code="g">12(2021), 2 vom: 02. Aug., Seite 164-174</subfield><subfield code="w">(DE-627)638064023</subfield><subfield code="w">(DE-600)2577939-4</subfield><subfield code="x">2190-7439</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:2</subfield><subfield code="g">day:02</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:164-174</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s13320-021-0634-5</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2021</subfield><subfield code="e">2</subfield><subfield code="b">02</subfield><subfield code="c">08</subfield><subfield code="h">164-174</subfield></datafield></record></collection>
|
author |
Liu, Hai |
spellingShingle |
Liu, Hai misc Localized surface plasmon resonance misc Fano resonance misc gas sensors misc MDM structure High-Sensitive Numerical Gas Detection Using LSPR Effect and Fano Resonance in a Slotted MDM Structure |
authorStr |
Liu, Hai |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)638064023 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2190-7439 |
topic_title |
High-Sensitive Numerical Gas Detection Using LSPR Effect and Fano Resonance in a Slotted MDM Structure Localized surface plasmon resonance (dpeaa)DE-He213 Fano resonance (dpeaa)DE-He213 gas sensors (dpeaa)DE-He213 MDM structure (dpeaa)DE-He213 |
topic |
misc Localized surface plasmon resonance misc Fano resonance misc gas sensors misc MDM structure |
topic_unstemmed |
misc Localized surface plasmon resonance misc Fano resonance misc gas sensors misc MDM structure |
topic_browse |
misc Localized surface plasmon resonance misc Fano resonance misc gas sensors misc MDM structure |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Photonic sensors |
hierarchy_parent_id |
638064023 |
hierarchy_top_title |
Photonic sensors |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)638064023 (DE-600)2577939-4 |
title |
High-Sensitive Numerical Gas Detection Using LSPR Effect and Fano Resonance in a Slotted MDM Structure |
ctrlnum |
(DE-627)SPR04577367X (SPR)s13320-021-0634-5-e |
title_full |
High-Sensitive Numerical Gas Detection Using LSPR Effect and Fano Resonance in a Slotted MDM Structure |
author_sort |
Liu, Hai |
journal |
Photonic sensors |
journalStr |
Photonic sensors |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
164 |
author_browse |
Liu, Hai Zhao, Benlei Zhang, Xu Zhang, Hancheng Wu, Bo Tang, Shoufeng |
container_volume |
12 |
format_se |
Elektronische Aufsätze |
author-letter |
Liu, Hai |
doi_str_mv |
10.1007/s13320-021-0634-5 |
title_sort |
high-sensitive numerical gas detection using lspr effect and fano resonance in a slotted mdm structure |
title_auth |
High-Sensitive Numerical Gas Detection Using LSPR Effect and Fano Resonance in a Slotted MDM Structure |
abstract |
Abstract A high-sensitive numerical measurement of methane based on the combined use of the localized surface plasmon resonance (LSPR) and Fano resonance in a slotted metal-dielectric-metal (MDM) periodic structure is numerically investigated. A groove is etched in an original MDM structure to excite the diploe mode at both sides of the groove, and the coherent coupling of two dipole modes is enhanced to realize a fast response, which is beneficial to gas-sensing. The influence of geometric parameters on the reflection spectra and methane sensitivity are analyzed to obtain optimal geometry. Moreover, an etching ring is introduced on the top metal to further raise the coupling area and coupling strength. The Fano resonance is subtly integrated into the optimized structure with asymmetry to achieve greater gas sensitivity. After the introduction of the Fano resonance, the field enhancement caused by the LSPR effect becomes greater and the methane sensitivity can reach up to 8.421 nm/% in numerical calculations, which increases 56.8% more than that of the original one. The combined use of the LSPR and Fano resonance in an optimized MDM structure provides an effective method for high-sensitive gas detection. © The Author(s) 2021 |
abstractGer |
Abstract A high-sensitive numerical measurement of methane based on the combined use of the localized surface plasmon resonance (LSPR) and Fano resonance in a slotted metal-dielectric-metal (MDM) periodic structure is numerically investigated. A groove is etched in an original MDM structure to excite the diploe mode at both sides of the groove, and the coherent coupling of two dipole modes is enhanced to realize a fast response, which is beneficial to gas-sensing. The influence of geometric parameters on the reflection spectra and methane sensitivity are analyzed to obtain optimal geometry. Moreover, an etching ring is introduced on the top metal to further raise the coupling area and coupling strength. The Fano resonance is subtly integrated into the optimized structure with asymmetry to achieve greater gas sensitivity. After the introduction of the Fano resonance, the field enhancement caused by the LSPR effect becomes greater and the methane sensitivity can reach up to 8.421 nm/% in numerical calculations, which increases 56.8% more than that of the original one. The combined use of the LSPR and Fano resonance in an optimized MDM structure provides an effective method for high-sensitive gas detection. © The Author(s) 2021 |
abstract_unstemmed |
Abstract A high-sensitive numerical measurement of methane based on the combined use of the localized surface plasmon resonance (LSPR) and Fano resonance in a slotted metal-dielectric-metal (MDM) periodic structure is numerically investigated. A groove is etched in an original MDM structure to excite the diploe mode at both sides of the groove, and the coherent coupling of two dipole modes is enhanced to realize a fast response, which is beneficial to gas-sensing. The influence of geometric parameters on the reflection spectra and methane sensitivity are analyzed to obtain optimal geometry. Moreover, an etching ring is introduced on the top metal to further raise the coupling area and coupling strength. The Fano resonance is subtly integrated into the optimized structure with asymmetry to achieve greater gas sensitivity. After the introduction of the Fano resonance, the field enhancement caused by the LSPR effect becomes greater and the methane sensitivity can reach up to 8.421 nm/% in numerical calculations, which increases 56.8% more than that of the original one. The combined use of the LSPR and Fano resonance in an optimized MDM structure provides an effective method for high-sensitive gas detection. © The Author(s) 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2 |
title_short |
High-Sensitive Numerical Gas Detection Using LSPR Effect and Fano Resonance in a Slotted MDM Structure |
url |
https://dx.doi.org/10.1007/s13320-021-0634-5 |
remote_bool |
true |
author2 |
Zhao, Benlei Zhang, Xu Zhang, Hancheng Wu, Bo Tang, Shoufeng |
author2Str |
Zhao, Benlei Zhang, Xu Zhang, Hancheng Wu, Bo Tang, Shoufeng |
ppnlink |
638064023 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s13320-021-0634-5 |
up_date |
2024-07-03T18:12:36.027Z |
_version_ |
1803582550605561856 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR04577367X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509095553.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">211211s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s13320-021-0634-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR04577367X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13320-021-0634-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Hai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">High-Sensitive Numerical Gas Detection Using LSPR Effect and Fano Resonance in a Slotted MDM Structure</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A high-sensitive numerical measurement of methane based on the combined use of the localized surface plasmon resonance (LSPR) and Fano resonance in a slotted metal-dielectric-metal (MDM) periodic structure is numerically investigated. A groove is etched in an original MDM structure to excite the diploe mode at both sides of the groove, and the coherent coupling of two dipole modes is enhanced to realize a fast response, which is beneficial to gas-sensing. The influence of geometric parameters on the reflection spectra and methane sensitivity are analyzed to obtain optimal geometry. Moreover, an etching ring is introduced on the top metal to further raise the coupling area and coupling strength. The Fano resonance is subtly integrated into the optimized structure with asymmetry to achieve greater gas sensitivity. After the introduction of the Fano resonance, the field enhancement caused by the LSPR effect becomes greater and the methane sensitivity can reach up to 8.421 nm/% in numerical calculations, which increases 56.8% more than that of the original one. The combined use of the LSPR and Fano resonance in an optimized MDM structure provides an effective method for high-sensitive gas detection.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Localized surface plasmon resonance</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fano resonance</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">gas sensors</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MDM structure</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Benlei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Xu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Hancheng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Bo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tang, Shoufeng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Photonic sensors</subfield><subfield code="d">Berlin : Springer, 2011</subfield><subfield code="g">12(2021), 2 vom: 02. Aug., Seite 164-174</subfield><subfield code="w">(DE-627)638064023</subfield><subfield code="w">(DE-600)2577939-4</subfield><subfield code="x">2190-7439</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:2</subfield><subfield code="g">day:02</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:164-174</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s13320-021-0634-5</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2021</subfield><subfield code="e">2</subfield><subfield code="b">02</subfield><subfield code="c">08</subfield><subfield code="h">164-174</subfield></datafield></record></collection>
|
score |
7.40131 |