On three-term conjugate gradient method for optimization problems with applications on COVID-19 model and robotic motion control
Abstract The three-term conjugate gradient (CG) algorithms are among the efficient variants of CG algorithms for solving optimization models. This is due to their simplicity and low memory requirements. On the other hand, the regression model is one of the statistical relationship models whose solut...
Ausführliche Beschreibung
Autor*in: |
Sulaiman, Ibrahim Mohammed [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: Advances in difference equations - [S.l.] : Springer International, 2004, 2022(2022), 1 vom: 04. Jan. |
---|---|
Übergeordnetes Werk: |
volume:2022 ; year:2022 ; number:1 ; day:04 ; month:01 |
Links: |
---|
DOI / URN: |
10.1186/s13662-021-03638-9 |
---|
Katalog-ID: |
SPR045884218 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR045884218 | ||
003 | DE-627 | ||
005 | 20230519220138.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220105s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s13662-021-03638-9 |2 doi | |
035 | |a (DE-627)SPR045884218 | ||
035 | |a (SPR)s13662-021-03638-9-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Sulaiman, Ibrahim Mohammed |e verfasserin |0 (orcid)0000-0001-5246-6636 |4 aut | |
245 | 1 | 0 | |a On three-term conjugate gradient method for optimization problems with applications on COVID-19 model and robotic motion control |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2021 | ||
520 | |a Abstract The three-term conjugate gradient (CG) algorithms are among the efficient variants of CG algorithms for solving optimization models. This is due to their simplicity and low memory requirements. On the other hand, the regression model is one of the statistical relationship models whose solution is obtained using one of the least square methods including the CG-like method. In this paper, we present a modification of a three-term conjugate gradient method for unconstrained optimization models and further establish the global convergence under inexact line search. The proposed method was extended to formulate a regression model for the novel coronavirus (COVID-19). The study considers the globally infected cases from January to October 2020 in parameterizing the model. Preliminary results have shown that the proposed method is promising and produces efficient regression model for COVID-19 pandemic. Also, the method was extended to solve a motion control problem involving a two-joint planar robot. | ||
650 | 4 | |a Finite difference |7 (dpeaa)DE-He213 | |
650 | 4 | |a Three-term CG algorithms |7 (dpeaa)DE-He213 | |
650 | 4 | |a Optimization models |7 (dpeaa)DE-He213 | |
650 | 4 | |a Motion control |7 (dpeaa)DE-He213 | |
650 | 4 | |a Line search procedure |7 (dpeaa)DE-He213 | |
650 | 4 | |a Coronavirus (COVID-19) |7 (dpeaa)DE-He213 | |
650 | 4 | |a Regression analysis |7 (dpeaa)DE-He213 | |
700 | 1 | |a Malik, Maulana |0 (orcid)0000-0003-3060-0624 |4 aut | |
700 | 1 | |a Awwal, Aliyu Muhammed |0 (orcid)0000-0002-1040-3626 |4 aut | |
700 | 1 | |a Kumam, Poom |0 (orcid)0000-0002-5463-4581 |4 aut | |
700 | 1 | |a Mamat, Mustafa |0 (orcid)0000-0002-4802-3733 |4 aut | |
700 | 1 | |a Al-Ahmad, Shadi |0 (orcid)0000-0001-7690-1444 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Advances in difference equations |d [S.l.] : Springer International, 2004 |g 2022(2022), 1 vom: 04. Jan. |w (DE-627)377755699 |w (DE-600)2132815-8 |x 1687-1847 |7 nnns |
773 | 1 | 8 | |g volume:2022 |g year:2022 |g number:1 |g day:04 |g month:01 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s13662-021-03638-9 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4305 | ||
951 | |a AR | ||
952 | |d 2022 |j 2022 |e 1 |b 04 |c 01 |
author_variant |
i m s im ims m m mm a m a am ama p k pk m m mm s a a saa |
---|---|
matchkey_str |
article:16871847:2022----::nhetrcnuaerdetehdootmztopolmwtapiainocvd |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1186/s13662-021-03638-9 doi (DE-627)SPR045884218 (SPR)s13662-021-03638-9-e DE-627 ger DE-627 rakwb eng Sulaiman, Ibrahim Mohammed verfasserin (orcid)0000-0001-5246-6636 aut On three-term conjugate gradient method for optimization problems with applications on COVID-19 model and robotic motion control 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2021 Abstract The three-term conjugate gradient (CG) algorithms are among the efficient variants of CG algorithms for solving optimization models. This is due to their simplicity and low memory requirements. On the other hand, the regression model is one of the statistical relationship models whose solution is obtained using one of the least square methods including the CG-like method. In this paper, we present a modification of a three-term conjugate gradient method for unconstrained optimization models and further establish the global convergence under inexact line search. The proposed method was extended to formulate a regression model for the novel coronavirus (COVID-19). The study considers the globally infected cases from January to October 2020 in parameterizing the model. Preliminary results have shown that the proposed method is promising and produces efficient regression model for COVID-19 pandemic. Also, the method was extended to solve a motion control problem involving a two-joint planar robot. Finite difference (dpeaa)DE-He213 Three-term CG algorithms (dpeaa)DE-He213 Optimization models (dpeaa)DE-He213 Motion control (dpeaa)DE-He213 Line search procedure (dpeaa)DE-He213 Coronavirus (COVID-19) (dpeaa)DE-He213 Regression analysis (dpeaa)DE-He213 Malik, Maulana (orcid)0000-0003-3060-0624 aut Awwal, Aliyu Muhammed (orcid)0000-0002-1040-3626 aut Kumam, Poom (orcid)0000-0002-5463-4581 aut Mamat, Mustafa (orcid)0000-0002-4802-3733 aut Al-Ahmad, Shadi (orcid)0000-0001-7690-1444 aut Enthalten in Advances in difference equations [S.l.] : Springer International, 2004 2022(2022), 1 vom: 04. Jan. (DE-627)377755699 (DE-600)2132815-8 1687-1847 nnns volume:2022 year:2022 number:1 day:04 month:01 https://dx.doi.org/10.1186/s13662-021-03638-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_206 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4305 AR 2022 2022 1 04 01 |
spelling |
10.1186/s13662-021-03638-9 doi (DE-627)SPR045884218 (SPR)s13662-021-03638-9-e DE-627 ger DE-627 rakwb eng Sulaiman, Ibrahim Mohammed verfasserin (orcid)0000-0001-5246-6636 aut On three-term conjugate gradient method for optimization problems with applications on COVID-19 model and robotic motion control 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2021 Abstract The three-term conjugate gradient (CG) algorithms are among the efficient variants of CG algorithms for solving optimization models. This is due to their simplicity and low memory requirements. On the other hand, the regression model is one of the statistical relationship models whose solution is obtained using one of the least square methods including the CG-like method. In this paper, we present a modification of a three-term conjugate gradient method for unconstrained optimization models and further establish the global convergence under inexact line search. The proposed method was extended to formulate a regression model for the novel coronavirus (COVID-19). The study considers the globally infected cases from January to October 2020 in parameterizing the model. Preliminary results have shown that the proposed method is promising and produces efficient regression model for COVID-19 pandemic. Also, the method was extended to solve a motion control problem involving a two-joint planar robot. Finite difference (dpeaa)DE-He213 Three-term CG algorithms (dpeaa)DE-He213 Optimization models (dpeaa)DE-He213 Motion control (dpeaa)DE-He213 Line search procedure (dpeaa)DE-He213 Coronavirus (COVID-19) (dpeaa)DE-He213 Regression analysis (dpeaa)DE-He213 Malik, Maulana (orcid)0000-0003-3060-0624 aut Awwal, Aliyu Muhammed (orcid)0000-0002-1040-3626 aut Kumam, Poom (orcid)0000-0002-5463-4581 aut Mamat, Mustafa (orcid)0000-0002-4802-3733 aut Al-Ahmad, Shadi (orcid)0000-0001-7690-1444 aut Enthalten in Advances in difference equations [S.l.] : Springer International, 2004 2022(2022), 1 vom: 04. Jan. (DE-627)377755699 (DE-600)2132815-8 1687-1847 nnns volume:2022 year:2022 number:1 day:04 month:01 https://dx.doi.org/10.1186/s13662-021-03638-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_206 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4305 AR 2022 2022 1 04 01 |
allfields_unstemmed |
10.1186/s13662-021-03638-9 doi (DE-627)SPR045884218 (SPR)s13662-021-03638-9-e DE-627 ger DE-627 rakwb eng Sulaiman, Ibrahim Mohammed verfasserin (orcid)0000-0001-5246-6636 aut On three-term conjugate gradient method for optimization problems with applications on COVID-19 model and robotic motion control 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2021 Abstract The three-term conjugate gradient (CG) algorithms are among the efficient variants of CG algorithms for solving optimization models. This is due to their simplicity and low memory requirements. On the other hand, the regression model is one of the statistical relationship models whose solution is obtained using one of the least square methods including the CG-like method. In this paper, we present a modification of a three-term conjugate gradient method for unconstrained optimization models and further establish the global convergence under inexact line search. The proposed method was extended to formulate a regression model for the novel coronavirus (COVID-19). The study considers the globally infected cases from January to October 2020 in parameterizing the model. Preliminary results have shown that the proposed method is promising and produces efficient regression model for COVID-19 pandemic. Also, the method was extended to solve a motion control problem involving a two-joint planar robot. Finite difference (dpeaa)DE-He213 Three-term CG algorithms (dpeaa)DE-He213 Optimization models (dpeaa)DE-He213 Motion control (dpeaa)DE-He213 Line search procedure (dpeaa)DE-He213 Coronavirus (COVID-19) (dpeaa)DE-He213 Regression analysis (dpeaa)DE-He213 Malik, Maulana (orcid)0000-0003-3060-0624 aut Awwal, Aliyu Muhammed (orcid)0000-0002-1040-3626 aut Kumam, Poom (orcid)0000-0002-5463-4581 aut Mamat, Mustafa (orcid)0000-0002-4802-3733 aut Al-Ahmad, Shadi (orcid)0000-0001-7690-1444 aut Enthalten in Advances in difference equations [S.l.] : Springer International, 2004 2022(2022), 1 vom: 04. Jan. (DE-627)377755699 (DE-600)2132815-8 1687-1847 nnns volume:2022 year:2022 number:1 day:04 month:01 https://dx.doi.org/10.1186/s13662-021-03638-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_206 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4305 AR 2022 2022 1 04 01 |
allfieldsGer |
10.1186/s13662-021-03638-9 doi (DE-627)SPR045884218 (SPR)s13662-021-03638-9-e DE-627 ger DE-627 rakwb eng Sulaiman, Ibrahim Mohammed verfasserin (orcid)0000-0001-5246-6636 aut On three-term conjugate gradient method for optimization problems with applications on COVID-19 model and robotic motion control 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2021 Abstract The three-term conjugate gradient (CG) algorithms are among the efficient variants of CG algorithms for solving optimization models. This is due to their simplicity and low memory requirements. On the other hand, the regression model is one of the statistical relationship models whose solution is obtained using one of the least square methods including the CG-like method. In this paper, we present a modification of a three-term conjugate gradient method for unconstrained optimization models and further establish the global convergence under inexact line search. The proposed method was extended to formulate a regression model for the novel coronavirus (COVID-19). The study considers the globally infected cases from January to October 2020 in parameterizing the model. Preliminary results have shown that the proposed method is promising and produces efficient regression model for COVID-19 pandemic. Also, the method was extended to solve a motion control problem involving a two-joint planar robot. Finite difference (dpeaa)DE-He213 Three-term CG algorithms (dpeaa)DE-He213 Optimization models (dpeaa)DE-He213 Motion control (dpeaa)DE-He213 Line search procedure (dpeaa)DE-He213 Coronavirus (COVID-19) (dpeaa)DE-He213 Regression analysis (dpeaa)DE-He213 Malik, Maulana (orcid)0000-0003-3060-0624 aut Awwal, Aliyu Muhammed (orcid)0000-0002-1040-3626 aut Kumam, Poom (orcid)0000-0002-5463-4581 aut Mamat, Mustafa (orcid)0000-0002-4802-3733 aut Al-Ahmad, Shadi (orcid)0000-0001-7690-1444 aut Enthalten in Advances in difference equations [S.l.] : Springer International, 2004 2022(2022), 1 vom: 04. Jan. (DE-627)377755699 (DE-600)2132815-8 1687-1847 nnns volume:2022 year:2022 number:1 day:04 month:01 https://dx.doi.org/10.1186/s13662-021-03638-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_206 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4305 AR 2022 2022 1 04 01 |
allfieldsSound |
10.1186/s13662-021-03638-9 doi (DE-627)SPR045884218 (SPR)s13662-021-03638-9-e DE-627 ger DE-627 rakwb eng Sulaiman, Ibrahim Mohammed verfasserin (orcid)0000-0001-5246-6636 aut On three-term conjugate gradient method for optimization problems with applications on COVID-19 model and robotic motion control 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2021 Abstract The three-term conjugate gradient (CG) algorithms are among the efficient variants of CG algorithms for solving optimization models. This is due to their simplicity and low memory requirements. On the other hand, the regression model is one of the statistical relationship models whose solution is obtained using one of the least square methods including the CG-like method. In this paper, we present a modification of a three-term conjugate gradient method for unconstrained optimization models and further establish the global convergence under inexact line search. The proposed method was extended to formulate a regression model for the novel coronavirus (COVID-19). The study considers the globally infected cases from January to October 2020 in parameterizing the model. Preliminary results have shown that the proposed method is promising and produces efficient regression model for COVID-19 pandemic. Also, the method was extended to solve a motion control problem involving a two-joint planar robot. Finite difference (dpeaa)DE-He213 Three-term CG algorithms (dpeaa)DE-He213 Optimization models (dpeaa)DE-He213 Motion control (dpeaa)DE-He213 Line search procedure (dpeaa)DE-He213 Coronavirus (COVID-19) (dpeaa)DE-He213 Regression analysis (dpeaa)DE-He213 Malik, Maulana (orcid)0000-0003-3060-0624 aut Awwal, Aliyu Muhammed (orcid)0000-0002-1040-3626 aut Kumam, Poom (orcid)0000-0002-5463-4581 aut Mamat, Mustafa (orcid)0000-0002-4802-3733 aut Al-Ahmad, Shadi (orcid)0000-0001-7690-1444 aut Enthalten in Advances in difference equations [S.l.] : Springer International, 2004 2022(2022), 1 vom: 04. Jan. (DE-627)377755699 (DE-600)2132815-8 1687-1847 nnns volume:2022 year:2022 number:1 day:04 month:01 https://dx.doi.org/10.1186/s13662-021-03638-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_206 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4305 AR 2022 2022 1 04 01 |
language |
English |
source |
Enthalten in Advances in difference equations 2022(2022), 1 vom: 04. Jan. volume:2022 year:2022 number:1 day:04 month:01 |
sourceStr |
Enthalten in Advances in difference equations 2022(2022), 1 vom: 04. Jan. volume:2022 year:2022 number:1 day:04 month:01 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Finite difference Three-term CG algorithms Optimization models Motion control Line search procedure Coronavirus (COVID-19) Regression analysis |
isfreeaccess_bool |
true |
container_title |
Advances in difference equations |
authorswithroles_txt_mv |
Sulaiman, Ibrahim Mohammed @@aut@@ Malik, Maulana @@aut@@ Awwal, Aliyu Muhammed @@aut@@ Kumam, Poom @@aut@@ Mamat, Mustafa @@aut@@ Al-Ahmad, Shadi @@aut@@ |
publishDateDaySort_date |
2022-01-04T00:00:00Z |
hierarchy_top_id |
377755699 |
id |
SPR045884218 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR045884218</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519220138.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220105s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13662-021-03638-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR045884218</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13662-021-03638-9-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sulaiman, Ibrahim Mohammed</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-5246-6636</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On three-term conjugate gradient method for optimization problems with applications on COVID-19 model and robotic motion control</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The three-term conjugate gradient (CG) algorithms are among the efficient variants of CG algorithms for solving optimization models. This is due to their simplicity and low memory requirements. On the other hand, the regression model is one of the statistical relationship models whose solution is obtained using one of the least square methods including the CG-like method. In this paper, we present a modification of a three-term conjugate gradient method for unconstrained optimization models and further establish the global convergence under inexact line search. The proposed method was extended to formulate a regression model for the novel coronavirus (COVID-19). The study considers the globally infected cases from January to October 2020 in parameterizing the model. Preliminary results have shown that the proposed method is promising and produces efficient regression model for COVID-19 pandemic. Also, the method was extended to solve a motion control problem involving a two-joint planar robot.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite difference</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Three-term CG algorithms</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization models</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Motion control</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Line search procedure</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coronavirus (COVID-19)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Regression analysis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Malik, Maulana</subfield><subfield code="0">(orcid)0000-0003-3060-0624</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Awwal, Aliyu Muhammed</subfield><subfield code="0">(orcid)0000-0002-1040-3626</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kumam, Poom</subfield><subfield code="0">(orcid)0000-0002-5463-4581</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mamat, Mustafa</subfield><subfield code="0">(orcid)0000-0002-4802-3733</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Al-Ahmad, Shadi</subfield><subfield code="0">(orcid)0000-0001-7690-1444</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Advances in difference equations</subfield><subfield code="d">[S.l.] : Springer International, 2004</subfield><subfield code="g">2022(2022), 1 vom: 04. Jan.</subfield><subfield code="w">(DE-627)377755699</subfield><subfield code="w">(DE-600)2132815-8</subfield><subfield code="x">1687-1847</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2022</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:04</subfield><subfield code="g">month:01</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13662-021-03638-9</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2022</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">04</subfield><subfield code="c">01</subfield></datafield></record></collection>
|
author |
Sulaiman, Ibrahim Mohammed |
spellingShingle |
Sulaiman, Ibrahim Mohammed misc Finite difference misc Three-term CG algorithms misc Optimization models misc Motion control misc Line search procedure misc Coronavirus (COVID-19) misc Regression analysis On three-term conjugate gradient method for optimization problems with applications on COVID-19 model and robotic motion control |
authorStr |
Sulaiman, Ibrahim Mohammed |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)377755699 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1687-1847 |
topic_title |
On three-term conjugate gradient method for optimization problems with applications on COVID-19 model and robotic motion control Finite difference (dpeaa)DE-He213 Three-term CG algorithms (dpeaa)DE-He213 Optimization models (dpeaa)DE-He213 Motion control (dpeaa)DE-He213 Line search procedure (dpeaa)DE-He213 Coronavirus (COVID-19) (dpeaa)DE-He213 Regression analysis (dpeaa)DE-He213 |
topic |
misc Finite difference misc Three-term CG algorithms misc Optimization models misc Motion control misc Line search procedure misc Coronavirus (COVID-19) misc Regression analysis |
topic_unstemmed |
misc Finite difference misc Three-term CG algorithms misc Optimization models misc Motion control misc Line search procedure misc Coronavirus (COVID-19) misc Regression analysis |
topic_browse |
misc Finite difference misc Three-term CG algorithms misc Optimization models misc Motion control misc Line search procedure misc Coronavirus (COVID-19) misc Regression analysis |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Advances in difference equations |
hierarchy_parent_id |
377755699 |
hierarchy_top_title |
Advances in difference equations |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)377755699 (DE-600)2132815-8 |
title |
On three-term conjugate gradient method for optimization problems with applications on COVID-19 model and robotic motion control |
ctrlnum |
(DE-627)SPR045884218 (SPR)s13662-021-03638-9-e |
title_full |
On three-term conjugate gradient method for optimization problems with applications on COVID-19 model and robotic motion control |
author_sort |
Sulaiman, Ibrahim Mohammed |
journal |
Advances in difference equations |
journalStr |
Advances in difference equations |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Sulaiman, Ibrahim Mohammed Malik, Maulana Awwal, Aliyu Muhammed Kumam, Poom Mamat, Mustafa Al-Ahmad, Shadi |
container_volume |
2022 |
format_se |
Elektronische Aufsätze |
author-letter |
Sulaiman, Ibrahim Mohammed |
doi_str_mv |
10.1186/s13662-021-03638-9 |
normlink |
(ORCID)0000-0001-5246-6636 (ORCID)0000-0003-3060-0624 (ORCID)0000-0002-1040-3626 (ORCID)0000-0002-5463-4581 (ORCID)0000-0002-4802-3733 (ORCID)0000-0001-7690-1444 |
normlink_prefix_str_mv |
(orcid)0000-0001-5246-6636 (orcid)0000-0003-3060-0624 (orcid)0000-0002-1040-3626 (orcid)0000-0002-5463-4581 (orcid)0000-0002-4802-3733 (orcid)0000-0001-7690-1444 |
title_sort |
on three-term conjugate gradient method for optimization problems with applications on covid-19 model and robotic motion control |
title_auth |
On three-term conjugate gradient method for optimization problems with applications on COVID-19 model and robotic motion control |
abstract |
Abstract The three-term conjugate gradient (CG) algorithms are among the efficient variants of CG algorithms for solving optimization models. This is due to their simplicity and low memory requirements. On the other hand, the regression model is one of the statistical relationship models whose solution is obtained using one of the least square methods including the CG-like method. In this paper, we present a modification of a three-term conjugate gradient method for unconstrained optimization models and further establish the global convergence under inexact line search. The proposed method was extended to formulate a regression model for the novel coronavirus (COVID-19). The study considers the globally infected cases from January to October 2020 in parameterizing the model. Preliminary results have shown that the proposed method is promising and produces efficient regression model for COVID-19 pandemic. Also, the method was extended to solve a motion control problem involving a two-joint planar robot. © The Author(s) 2021 |
abstractGer |
Abstract The three-term conjugate gradient (CG) algorithms are among the efficient variants of CG algorithms for solving optimization models. This is due to their simplicity and low memory requirements. On the other hand, the regression model is one of the statistical relationship models whose solution is obtained using one of the least square methods including the CG-like method. In this paper, we present a modification of a three-term conjugate gradient method for unconstrained optimization models and further establish the global convergence under inexact line search. The proposed method was extended to formulate a regression model for the novel coronavirus (COVID-19). The study considers the globally infected cases from January to October 2020 in parameterizing the model. Preliminary results have shown that the proposed method is promising and produces efficient regression model for COVID-19 pandemic. Also, the method was extended to solve a motion control problem involving a two-joint planar robot. © The Author(s) 2021 |
abstract_unstemmed |
Abstract The three-term conjugate gradient (CG) algorithms are among the efficient variants of CG algorithms for solving optimization models. This is due to their simplicity and low memory requirements. On the other hand, the regression model is one of the statistical relationship models whose solution is obtained using one of the least square methods including the CG-like method. In this paper, we present a modification of a three-term conjugate gradient method for unconstrained optimization models and further establish the global convergence under inexact line search. The proposed method was extended to formulate a regression model for the novel coronavirus (COVID-19). The study considers the globally infected cases from January to October 2020 in parameterizing the model. Preliminary results have shown that the proposed method is promising and produces efficient regression model for COVID-19 pandemic. Also, the method was extended to solve a motion control problem involving a two-joint planar robot. © The Author(s) 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_206 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4305 |
container_issue |
1 |
title_short |
On three-term conjugate gradient method for optimization problems with applications on COVID-19 model and robotic motion control |
url |
https://dx.doi.org/10.1186/s13662-021-03638-9 |
remote_bool |
true |
author2 |
Malik, Maulana Awwal, Aliyu Muhammed Kumam, Poom Mamat, Mustafa Al-Ahmad, Shadi |
author2Str |
Malik, Maulana Awwal, Aliyu Muhammed Kumam, Poom Mamat, Mustafa Al-Ahmad, Shadi |
ppnlink |
377755699 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s13662-021-03638-9 |
up_date |
2024-07-03T18:55:33.787Z |
_version_ |
1803585253589123072 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR045884218</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519220138.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220105s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13662-021-03638-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR045884218</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13662-021-03638-9-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sulaiman, Ibrahim Mohammed</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-5246-6636</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On three-term conjugate gradient method for optimization problems with applications on COVID-19 model and robotic motion control</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The three-term conjugate gradient (CG) algorithms are among the efficient variants of CG algorithms for solving optimization models. This is due to their simplicity and low memory requirements. On the other hand, the regression model is one of the statistical relationship models whose solution is obtained using one of the least square methods including the CG-like method. In this paper, we present a modification of a three-term conjugate gradient method for unconstrained optimization models and further establish the global convergence under inexact line search. The proposed method was extended to formulate a regression model for the novel coronavirus (COVID-19). The study considers the globally infected cases from January to October 2020 in parameterizing the model. Preliminary results have shown that the proposed method is promising and produces efficient regression model for COVID-19 pandemic. Also, the method was extended to solve a motion control problem involving a two-joint planar robot.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite difference</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Three-term CG algorithms</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization models</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Motion control</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Line search procedure</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coronavirus (COVID-19)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Regression analysis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Malik, Maulana</subfield><subfield code="0">(orcid)0000-0003-3060-0624</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Awwal, Aliyu Muhammed</subfield><subfield code="0">(orcid)0000-0002-1040-3626</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kumam, Poom</subfield><subfield code="0">(orcid)0000-0002-5463-4581</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mamat, Mustafa</subfield><subfield code="0">(orcid)0000-0002-4802-3733</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Al-Ahmad, Shadi</subfield><subfield code="0">(orcid)0000-0001-7690-1444</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Advances in difference equations</subfield><subfield code="d">[S.l.] : Springer International, 2004</subfield><subfield code="g">2022(2022), 1 vom: 04. Jan.</subfield><subfield code="w">(DE-627)377755699</subfield><subfield code="w">(DE-600)2132815-8</subfield><subfield code="x">1687-1847</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2022</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:04</subfield><subfield code="g">month:01</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13662-021-03638-9</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2022</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">04</subfield><subfield code="c">01</subfield></datafield></record></collection>
|
score |
7.401043 |