Towards the analysis of coral skeletal density-banding using deep learning
Abstract X-ray micro–computed tomography (µCT) is increasingly used to record the skeletal growth banding of corals. However, the wealth of data generated is time consuming to analyse for growth rates and colony age. Here we test an artificial intelligence (AI) approach to assist the expert identifi...
Ausführliche Beschreibung
Autor*in: |
Rutterford, Ainsley [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: SN applied sciences - [Cham] : Springer International Publishing, 2019, 4(2022), 2 vom: 04. Jan. |
---|---|
Übergeordnetes Werk: |
volume:4 ; year:2022 ; number:2 ; day:04 ; month:01 |
Links: |
---|
DOI / URN: |
10.1007/s42452-021-04912-x |
---|
Katalog-ID: |
SPR045884943 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR045884943 | ||
003 | DE-627 | ||
005 | 20230509100841.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220105s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s42452-021-04912-x |2 doi | |
035 | |a (DE-627)SPR045884943 | ||
035 | |a (SPR)s42452-021-04912-x-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Rutterford, Ainsley |e verfasserin |4 aut | |
245 | 1 | 0 | |a Towards the analysis of coral skeletal density-banding using deep learning |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2021 | ||
520 | |a Abstract X-ray micro–computed tomography (µCT) is increasingly used to record the skeletal growth banding of corals. However, the wealth of data generated is time consuming to analyse for growth rates and colony age. Here we test an artificial intelligence (AI) approach to assist the expert identification of annual density boundaries in small colonies of massive Porites spanning decades. A convolutional neural network (CNN) was trained with µCT images combined with manually labelled ground truths to learn banding-related features. The CNN successfully predicted the position of density boundaries in independent images not used in training. Linear extension rates derived from CNN-based outputs and the traditional method were consistent. In the future, well-resolved 2D density boundaries from AI can be used to reconstruct density surfaces and enable studies focused on variations in rugosity and growth gradients across colony 3D space. We recommend the development of a community platform to share annotated images for AI. | ||
520 | |a Article Highlights AI can help facilitate the expert identification of coral density boundaries in well-resolved regions following minimal training.AI can be used to automate and upscale non-destructive coral density-banding analysis across museum collections.Holistic analyses of coral density banding are central to understand coral growth responses to changing environments. | ||
650 | 4 | |a Coral density banding |7 (dpeaa)DE-He213 | |
650 | 4 | |a Extension rate |7 (dpeaa)DE-He213 | |
650 | 4 | |a Calcification rate |7 (dpeaa)DE-He213 | |
650 | 4 | |a Artificial intelligence |7 (dpeaa)DE-He213 | |
650 | 4 | |a X-ray micro-computed tomography |7 (dpeaa)DE-He213 | |
700 | 1 | |a Bertini, Leonardo |0 (orcid)0000-0003-3920-4476 |4 aut | |
700 | 1 | |a Hendy, Erica J. |0 (orcid)0000-0001-5949-4349 |4 aut | |
700 | 1 | |a Johnson, Kenneth G. |0 (orcid)0000-0002-4666-1213 |4 aut | |
700 | 1 | |a Summerfield, Rebecca |4 aut | |
700 | 1 | |a Burghardt, Tilo |4 aut | |
773 | 0 | 8 | |i Enthalten in |t SN applied sciences |d [Cham] : Springer International Publishing, 2019 |g 4(2022), 2 vom: 04. Jan. |w (DE-627)103761139X |w (DE-600)2947292-1 |x 2523-3971 |7 nnns |
773 | 1 | 8 | |g volume:4 |g year:2022 |g number:2 |g day:04 |g month:01 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s42452-021-04912-x |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 4 |j 2022 |e 2 |b 04 |c 01 |
author_variant |
a r ar l b lb e j h ej ejh k g j kg kgj r s rs t b tb |
---|---|
matchkey_str |
article:25233971:2022----::oadtenlssfoaseeadniyadnu |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s42452-021-04912-x doi (DE-627)SPR045884943 (SPR)s42452-021-04912-x-e DE-627 ger DE-627 rakwb eng Rutterford, Ainsley verfasserin aut Towards the analysis of coral skeletal density-banding using deep learning 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2021 Abstract X-ray micro–computed tomography (µCT) is increasingly used to record the skeletal growth banding of corals. However, the wealth of data generated is time consuming to analyse for growth rates and colony age. Here we test an artificial intelligence (AI) approach to assist the expert identification of annual density boundaries in small colonies of massive Porites spanning decades. A convolutional neural network (CNN) was trained with µCT images combined with manually labelled ground truths to learn banding-related features. The CNN successfully predicted the position of density boundaries in independent images not used in training. Linear extension rates derived from CNN-based outputs and the traditional method were consistent. In the future, well-resolved 2D density boundaries from AI can be used to reconstruct density surfaces and enable studies focused on variations in rugosity and growth gradients across colony 3D space. We recommend the development of a community platform to share annotated images for AI. Article Highlights AI can help facilitate the expert identification of coral density boundaries in well-resolved regions following minimal training.AI can be used to automate and upscale non-destructive coral density-banding analysis across museum collections.Holistic analyses of coral density banding are central to understand coral growth responses to changing environments. Coral density banding (dpeaa)DE-He213 Extension rate (dpeaa)DE-He213 Calcification rate (dpeaa)DE-He213 Artificial intelligence (dpeaa)DE-He213 X-ray micro-computed tomography (dpeaa)DE-He213 Bertini, Leonardo (orcid)0000-0003-3920-4476 aut Hendy, Erica J. (orcid)0000-0001-5949-4349 aut Johnson, Kenneth G. (orcid)0000-0002-4666-1213 aut Summerfield, Rebecca aut Burghardt, Tilo aut Enthalten in SN applied sciences [Cham] : Springer International Publishing, 2019 4(2022), 2 vom: 04. Jan. (DE-627)103761139X (DE-600)2947292-1 2523-3971 nnns volume:4 year:2022 number:2 day:04 month:01 https://dx.doi.org/10.1007/s42452-021-04912-x kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2022 2 04 01 |
spelling |
10.1007/s42452-021-04912-x doi (DE-627)SPR045884943 (SPR)s42452-021-04912-x-e DE-627 ger DE-627 rakwb eng Rutterford, Ainsley verfasserin aut Towards the analysis of coral skeletal density-banding using deep learning 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2021 Abstract X-ray micro–computed tomography (µCT) is increasingly used to record the skeletal growth banding of corals. However, the wealth of data generated is time consuming to analyse for growth rates and colony age. Here we test an artificial intelligence (AI) approach to assist the expert identification of annual density boundaries in small colonies of massive Porites spanning decades. A convolutional neural network (CNN) was trained with µCT images combined with manually labelled ground truths to learn banding-related features. The CNN successfully predicted the position of density boundaries in independent images not used in training. Linear extension rates derived from CNN-based outputs and the traditional method were consistent. In the future, well-resolved 2D density boundaries from AI can be used to reconstruct density surfaces and enable studies focused on variations in rugosity and growth gradients across colony 3D space. We recommend the development of a community platform to share annotated images for AI. Article Highlights AI can help facilitate the expert identification of coral density boundaries in well-resolved regions following minimal training.AI can be used to automate and upscale non-destructive coral density-banding analysis across museum collections.Holistic analyses of coral density banding are central to understand coral growth responses to changing environments. Coral density banding (dpeaa)DE-He213 Extension rate (dpeaa)DE-He213 Calcification rate (dpeaa)DE-He213 Artificial intelligence (dpeaa)DE-He213 X-ray micro-computed tomography (dpeaa)DE-He213 Bertini, Leonardo (orcid)0000-0003-3920-4476 aut Hendy, Erica J. (orcid)0000-0001-5949-4349 aut Johnson, Kenneth G. (orcid)0000-0002-4666-1213 aut Summerfield, Rebecca aut Burghardt, Tilo aut Enthalten in SN applied sciences [Cham] : Springer International Publishing, 2019 4(2022), 2 vom: 04. Jan. (DE-627)103761139X (DE-600)2947292-1 2523-3971 nnns volume:4 year:2022 number:2 day:04 month:01 https://dx.doi.org/10.1007/s42452-021-04912-x kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2022 2 04 01 |
allfields_unstemmed |
10.1007/s42452-021-04912-x doi (DE-627)SPR045884943 (SPR)s42452-021-04912-x-e DE-627 ger DE-627 rakwb eng Rutterford, Ainsley verfasserin aut Towards the analysis of coral skeletal density-banding using deep learning 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2021 Abstract X-ray micro–computed tomography (µCT) is increasingly used to record the skeletal growth banding of corals. However, the wealth of data generated is time consuming to analyse for growth rates and colony age. Here we test an artificial intelligence (AI) approach to assist the expert identification of annual density boundaries in small colonies of massive Porites spanning decades. A convolutional neural network (CNN) was trained with µCT images combined with manually labelled ground truths to learn banding-related features. The CNN successfully predicted the position of density boundaries in independent images not used in training. Linear extension rates derived from CNN-based outputs and the traditional method were consistent. In the future, well-resolved 2D density boundaries from AI can be used to reconstruct density surfaces and enable studies focused on variations in rugosity and growth gradients across colony 3D space. We recommend the development of a community platform to share annotated images for AI. Article Highlights AI can help facilitate the expert identification of coral density boundaries in well-resolved regions following minimal training.AI can be used to automate and upscale non-destructive coral density-banding analysis across museum collections.Holistic analyses of coral density banding are central to understand coral growth responses to changing environments. Coral density banding (dpeaa)DE-He213 Extension rate (dpeaa)DE-He213 Calcification rate (dpeaa)DE-He213 Artificial intelligence (dpeaa)DE-He213 X-ray micro-computed tomography (dpeaa)DE-He213 Bertini, Leonardo (orcid)0000-0003-3920-4476 aut Hendy, Erica J. (orcid)0000-0001-5949-4349 aut Johnson, Kenneth G. (orcid)0000-0002-4666-1213 aut Summerfield, Rebecca aut Burghardt, Tilo aut Enthalten in SN applied sciences [Cham] : Springer International Publishing, 2019 4(2022), 2 vom: 04. Jan. (DE-627)103761139X (DE-600)2947292-1 2523-3971 nnns volume:4 year:2022 number:2 day:04 month:01 https://dx.doi.org/10.1007/s42452-021-04912-x kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2022 2 04 01 |
allfieldsGer |
10.1007/s42452-021-04912-x doi (DE-627)SPR045884943 (SPR)s42452-021-04912-x-e DE-627 ger DE-627 rakwb eng Rutterford, Ainsley verfasserin aut Towards the analysis of coral skeletal density-banding using deep learning 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2021 Abstract X-ray micro–computed tomography (µCT) is increasingly used to record the skeletal growth banding of corals. However, the wealth of data generated is time consuming to analyse for growth rates and colony age. Here we test an artificial intelligence (AI) approach to assist the expert identification of annual density boundaries in small colonies of massive Porites spanning decades. A convolutional neural network (CNN) was trained with µCT images combined with manually labelled ground truths to learn banding-related features. The CNN successfully predicted the position of density boundaries in independent images not used in training. Linear extension rates derived from CNN-based outputs and the traditional method were consistent. In the future, well-resolved 2D density boundaries from AI can be used to reconstruct density surfaces and enable studies focused on variations in rugosity and growth gradients across colony 3D space. We recommend the development of a community platform to share annotated images for AI. Article Highlights AI can help facilitate the expert identification of coral density boundaries in well-resolved regions following minimal training.AI can be used to automate and upscale non-destructive coral density-banding analysis across museum collections.Holistic analyses of coral density banding are central to understand coral growth responses to changing environments. Coral density banding (dpeaa)DE-He213 Extension rate (dpeaa)DE-He213 Calcification rate (dpeaa)DE-He213 Artificial intelligence (dpeaa)DE-He213 X-ray micro-computed tomography (dpeaa)DE-He213 Bertini, Leonardo (orcid)0000-0003-3920-4476 aut Hendy, Erica J. (orcid)0000-0001-5949-4349 aut Johnson, Kenneth G. (orcid)0000-0002-4666-1213 aut Summerfield, Rebecca aut Burghardt, Tilo aut Enthalten in SN applied sciences [Cham] : Springer International Publishing, 2019 4(2022), 2 vom: 04. Jan. (DE-627)103761139X (DE-600)2947292-1 2523-3971 nnns volume:4 year:2022 number:2 day:04 month:01 https://dx.doi.org/10.1007/s42452-021-04912-x kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2022 2 04 01 |
allfieldsSound |
10.1007/s42452-021-04912-x doi (DE-627)SPR045884943 (SPR)s42452-021-04912-x-e DE-627 ger DE-627 rakwb eng Rutterford, Ainsley verfasserin aut Towards the analysis of coral skeletal density-banding using deep learning 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2021 Abstract X-ray micro–computed tomography (µCT) is increasingly used to record the skeletal growth banding of corals. However, the wealth of data generated is time consuming to analyse for growth rates and colony age. Here we test an artificial intelligence (AI) approach to assist the expert identification of annual density boundaries in small colonies of massive Porites spanning decades. A convolutional neural network (CNN) was trained with µCT images combined with manually labelled ground truths to learn banding-related features. The CNN successfully predicted the position of density boundaries in independent images not used in training. Linear extension rates derived from CNN-based outputs and the traditional method were consistent. In the future, well-resolved 2D density boundaries from AI can be used to reconstruct density surfaces and enable studies focused on variations in rugosity and growth gradients across colony 3D space. We recommend the development of a community platform to share annotated images for AI. Article Highlights AI can help facilitate the expert identification of coral density boundaries in well-resolved regions following minimal training.AI can be used to automate and upscale non-destructive coral density-banding analysis across museum collections.Holistic analyses of coral density banding are central to understand coral growth responses to changing environments. Coral density banding (dpeaa)DE-He213 Extension rate (dpeaa)DE-He213 Calcification rate (dpeaa)DE-He213 Artificial intelligence (dpeaa)DE-He213 X-ray micro-computed tomography (dpeaa)DE-He213 Bertini, Leonardo (orcid)0000-0003-3920-4476 aut Hendy, Erica J. (orcid)0000-0001-5949-4349 aut Johnson, Kenneth G. (orcid)0000-0002-4666-1213 aut Summerfield, Rebecca aut Burghardt, Tilo aut Enthalten in SN applied sciences [Cham] : Springer International Publishing, 2019 4(2022), 2 vom: 04. Jan. (DE-627)103761139X (DE-600)2947292-1 2523-3971 nnns volume:4 year:2022 number:2 day:04 month:01 https://dx.doi.org/10.1007/s42452-021-04912-x kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2022 2 04 01 |
language |
English |
source |
Enthalten in SN applied sciences 4(2022), 2 vom: 04. Jan. volume:4 year:2022 number:2 day:04 month:01 |
sourceStr |
Enthalten in SN applied sciences 4(2022), 2 vom: 04. Jan. volume:4 year:2022 number:2 day:04 month:01 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Coral density banding Extension rate Calcification rate Artificial intelligence X-ray micro-computed tomography |
isfreeaccess_bool |
true |
container_title |
SN applied sciences |
authorswithroles_txt_mv |
Rutterford, Ainsley @@aut@@ Bertini, Leonardo @@aut@@ Hendy, Erica J. @@aut@@ Johnson, Kenneth G. @@aut@@ Summerfield, Rebecca @@aut@@ Burghardt, Tilo @@aut@@ |
publishDateDaySort_date |
2022-01-04T00:00:00Z |
hierarchy_top_id |
103761139X |
id |
SPR045884943 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR045884943</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509100841.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220105s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s42452-021-04912-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR045884943</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s42452-021-04912-x-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rutterford, Ainsley</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Towards the analysis of coral skeletal density-banding using deep learning</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract X-ray micro–computed tomography (µCT) is increasingly used to record the skeletal growth banding of corals. However, the wealth of data generated is time consuming to analyse for growth rates and colony age. Here we test an artificial intelligence (AI) approach to assist the expert identification of annual density boundaries in small colonies of massive Porites spanning decades. A convolutional neural network (CNN) was trained with µCT images combined with manually labelled ground truths to learn banding-related features. The CNN successfully predicted the position of density boundaries in independent images not used in training. Linear extension rates derived from CNN-based outputs and the traditional method were consistent. In the future, well-resolved 2D density boundaries from AI can be used to reconstruct density surfaces and enable studies focused on variations in rugosity and growth gradients across colony 3D space. We recommend the development of a community platform to share annotated images for AI.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Article Highlights AI can help facilitate the expert identification of coral density boundaries in well-resolved regions following minimal training.AI can be used to automate and upscale non-destructive coral density-banding analysis across museum collections.Holistic analyses of coral density banding are central to understand coral growth responses to changing environments.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coral density banding</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Extension rate</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calcification rate</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">X-ray micro-computed tomography</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bertini, Leonardo</subfield><subfield code="0">(orcid)0000-0003-3920-4476</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hendy, Erica J.</subfield><subfield code="0">(orcid)0000-0001-5949-4349</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Johnson, Kenneth G.</subfield><subfield code="0">(orcid)0000-0002-4666-1213</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Summerfield, Rebecca</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Burghardt, Tilo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">SN applied sciences</subfield><subfield code="d">[Cham] : Springer International Publishing, 2019</subfield><subfield code="g">4(2022), 2 vom: 04. Jan.</subfield><subfield code="w">(DE-627)103761139X</subfield><subfield code="w">(DE-600)2947292-1</subfield><subfield code="x">2523-3971</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:4</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:2</subfield><subfield code="g">day:04</subfield><subfield code="g">month:01</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s42452-021-04912-x</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">4</subfield><subfield code="j">2022</subfield><subfield code="e">2</subfield><subfield code="b">04</subfield><subfield code="c">01</subfield></datafield></record></collection>
|
author |
Rutterford, Ainsley |
spellingShingle |
Rutterford, Ainsley misc Coral density banding misc Extension rate misc Calcification rate misc Artificial intelligence misc X-ray micro-computed tomography Towards the analysis of coral skeletal density-banding using deep learning |
authorStr |
Rutterford, Ainsley |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)103761139X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2523-3971 |
topic_title |
Towards the analysis of coral skeletal density-banding using deep learning Coral density banding (dpeaa)DE-He213 Extension rate (dpeaa)DE-He213 Calcification rate (dpeaa)DE-He213 Artificial intelligence (dpeaa)DE-He213 X-ray micro-computed tomography (dpeaa)DE-He213 |
topic |
misc Coral density banding misc Extension rate misc Calcification rate misc Artificial intelligence misc X-ray micro-computed tomography |
topic_unstemmed |
misc Coral density banding misc Extension rate misc Calcification rate misc Artificial intelligence misc X-ray micro-computed tomography |
topic_browse |
misc Coral density banding misc Extension rate misc Calcification rate misc Artificial intelligence misc X-ray micro-computed tomography |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
SN applied sciences |
hierarchy_parent_id |
103761139X |
hierarchy_top_title |
SN applied sciences |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)103761139X (DE-600)2947292-1 |
title |
Towards the analysis of coral skeletal density-banding using deep learning |
ctrlnum |
(DE-627)SPR045884943 (SPR)s42452-021-04912-x-e |
title_full |
Towards the analysis of coral skeletal density-banding using deep learning |
author_sort |
Rutterford, Ainsley |
journal |
SN applied sciences |
journalStr |
SN applied sciences |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Rutterford, Ainsley Bertini, Leonardo Hendy, Erica J. Johnson, Kenneth G. Summerfield, Rebecca Burghardt, Tilo |
container_volume |
4 |
format_se |
Elektronische Aufsätze |
author-letter |
Rutterford, Ainsley |
doi_str_mv |
10.1007/s42452-021-04912-x |
normlink |
(ORCID)0000-0003-3920-4476 (ORCID)0000-0001-5949-4349 (ORCID)0000-0002-4666-1213 |
normlink_prefix_str_mv |
(orcid)0000-0003-3920-4476 (orcid)0000-0001-5949-4349 (orcid)0000-0002-4666-1213 |
title_sort |
towards the analysis of coral skeletal density-banding using deep learning |
title_auth |
Towards the analysis of coral skeletal density-banding using deep learning |
abstract |
Abstract X-ray micro–computed tomography (µCT) is increasingly used to record the skeletal growth banding of corals. However, the wealth of data generated is time consuming to analyse for growth rates and colony age. Here we test an artificial intelligence (AI) approach to assist the expert identification of annual density boundaries in small colonies of massive Porites spanning decades. A convolutional neural network (CNN) was trained with µCT images combined with manually labelled ground truths to learn banding-related features. The CNN successfully predicted the position of density boundaries in independent images not used in training. Linear extension rates derived from CNN-based outputs and the traditional method were consistent. In the future, well-resolved 2D density boundaries from AI can be used to reconstruct density surfaces and enable studies focused on variations in rugosity and growth gradients across colony 3D space. We recommend the development of a community platform to share annotated images for AI. Article Highlights AI can help facilitate the expert identification of coral density boundaries in well-resolved regions following minimal training.AI can be used to automate and upscale non-destructive coral density-banding analysis across museum collections.Holistic analyses of coral density banding are central to understand coral growth responses to changing environments. © The Author(s) 2021 |
abstractGer |
Abstract X-ray micro–computed tomography (µCT) is increasingly used to record the skeletal growth banding of corals. However, the wealth of data generated is time consuming to analyse for growth rates and colony age. Here we test an artificial intelligence (AI) approach to assist the expert identification of annual density boundaries in small colonies of massive Porites spanning decades. A convolutional neural network (CNN) was trained with µCT images combined with manually labelled ground truths to learn banding-related features. The CNN successfully predicted the position of density boundaries in independent images not used in training. Linear extension rates derived from CNN-based outputs and the traditional method were consistent. In the future, well-resolved 2D density boundaries from AI can be used to reconstruct density surfaces and enable studies focused on variations in rugosity and growth gradients across colony 3D space. We recommend the development of a community platform to share annotated images for AI. Article Highlights AI can help facilitate the expert identification of coral density boundaries in well-resolved regions following minimal training.AI can be used to automate and upscale non-destructive coral density-banding analysis across museum collections.Holistic analyses of coral density banding are central to understand coral growth responses to changing environments. © The Author(s) 2021 |
abstract_unstemmed |
Abstract X-ray micro–computed tomography (µCT) is increasingly used to record the skeletal growth banding of corals. However, the wealth of data generated is time consuming to analyse for growth rates and colony age. Here we test an artificial intelligence (AI) approach to assist the expert identification of annual density boundaries in small colonies of massive Porites spanning decades. A convolutional neural network (CNN) was trained with µCT images combined with manually labelled ground truths to learn banding-related features. The CNN successfully predicted the position of density boundaries in independent images not used in training. Linear extension rates derived from CNN-based outputs and the traditional method were consistent. In the future, well-resolved 2D density boundaries from AI can be used to reconstruct density surfaces and enable studies focused on variations in rugosity and growth gradients across colony 3D space. We recommend the development of a community platform to share annotated images for AI. Article Highlights AI can help facilitate the expert identification of coral density boundaries in well-resolved regions following minimal training.AI can be used to automate and upscale non-destructive coral density-banding analysis across museum collections.Holistic analyses of coral density banding are central to understand coral growth responses to changing environments. © The Author(s) 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2 |
title_short |
Towards the analysis of coral skeletal density-banding using deep learning |
url |
https://dx.doi.org/10.1007/s42452-021-04912-x |
remote_bool |
true |
author2 |
Bertini, Leonardo Hendy, Erica J. Johnson, Kenneth G. Summerfield, Rebecca Burghardt, Tilo |
author2Str |
Bertini, Leonardo Hendy, Erica J. Johnson, Kenneth G. Summerfield, Rebecca Burghardt, Tilo |
ppnlink |
103761139X |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s42452-021-04912-x |
up_date |
2024-07-03T18:55:49.489Z |
_version_ |
1803585270046523393 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR045884943</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509100841.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220105s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s42452-021-04912-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR045884943</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s42452-021-04912-x-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rutterford, Ainsley</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Towards the analysis of coral skeletal density-banding using deep learning</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract X-ray micro–computed tomography (µCT) is increasingly used to record the skeletal growth banding of corals. However, the wealth of data generated is time consuming to analyse for growth rates and colony age. Here we test an artificial intelligence (AI) approach to assist the expert identification of annual density boundaries in small colonies of massive Porites spanning decades. A convolutional neural network (CNN) was trained with µCT images combined with manually labelled ground truths to learn banding-related features. The CNN successfully predicted the position of density boundaries in independent images not used in training. Linear extension rates derived from CNN-based outputs and the traditional method were consistent. In the future, well-resolved 2D density boundaries from AI can be used to reconstruct density surfaces and enable studies focused on variations in rugosity and growth gradients across colony 3D space. We recommend the development of a community platform to share annotated images for AI.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Article Highlights AI can help facilitate the expert identification of coral density boundaries in well-resolved regions following minimal training.AI can be used to automate and upscale non-destructive coral density-banding analysis across museum collections.Holistic analyses of coral density banding are central to understand coral growth responses to changing environments.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coral density banding</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Extension rate</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calcification rate</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">X-ray micro-computed tomography</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bertini, Leonardo</subfield><subfield code="0">(orcid)0000-0003-3920-4476</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hendy, Erica J.</subfield><subfield code="0">(orcid)0000-0001-5949-4349</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Johnson, Kenneth G.</subfield><subfield code="0">(orcid)0000-0002-4666-1213</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Summerfield, Rebecca</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Burghardt, Tilo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">SN applied sciences</subfield><subfield code="d">[Cham] : Springer International Publishing, 2019</subfield><subfield code="g">4(2022), 2 vom: 04. Jan.</subfield><subfield code="w">(DE-627)103761139X</subfield><subfield code="w">(DE-600)2947292-1</subfield><subfield code="x">2523-3971</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:4</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:2</subfield><subfield code="g">day:04</subfield><subfield code="g">month:01</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s42452-021-04912-x</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">4</subfield><subfield code="j">2022</subfield><subfield code="e">2</subfield><subfield code="b">04</subfield><subfield code="c">01</subfield></datafield></record></collection>
|
score |
7.401143 |