Cheminformatics modeling of the correlation between Bupleurum Root-formula medicines and Excess and Deficiency pattern in the diagnostic criteria of Sho in Kampo (traditional Japanese medicine) by non-targeted direct infusion mass spectrometry with machine learning
Kampo is a form of traditional Japanese medicine, and its therapeutic strategy has been validated empirically over millennia, mainly in Asia. Kampo therapy aims to holistically prevent and treat disease based on the specific diagnosis Sho (in Japanese), in contrast with modern medical treatment whic...
Ausführliche Beschreibung
Autor*in: |
Okada, Taketo [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Japanese Society of Pharmacognosy 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of natural medicines - Tokyo : Springer, 2006, 76(2021), 1 vom: 18. Okt., Seite 306-313 |
---|---|
Übergeordnetes Werk: |
volume:76 ; year:2021 ; number:1 ; day:18 ; month:10 ; pages:306-313 |
Links: |
---|
DOI / URN: |
10.1007/s11418-021-01577-z |
---|
Katalog-ID: |
SPR045895589 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR045895589 | ||
003 | DE-627 | ||
005 | 20230519220157.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220106s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11418-021-01577-z |2 doi | |
035 | |a (DE-627)SPR045895589 | ||
035 | |a (SPR)s11418-021-01577-z-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Okada, Taketo |e verfasserin |0 (orcid)0000-0001-5988-4267 |4 aut | |
245 | 1 | 0 | |a Cheminformatics modeling of the correlation between Bupleurum Root-formula medicines and Excess and Deficiency pattern in the diagnostic criteria of Sho in Kampo (traditional Japanese medicine) by non-targeted direct infusion mass spectrometry with machine learning |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Japanese Society of Pharmacognosy 2021 | ||
520 | |a Kampo is a form of traditional Japanese medicine, and its therapeutic strategy has been validated empirically over millennia, mainly in Asia. Kampo therapy aims to holistically prevent and treat disease based on the specific diagnosis Sho (in Japanese), in contrast with modern medical treatment which focuses on a patient’s affected parts and local conditions. The medicines formulated using crude drugs derived from natural sources (Kampo formulas) are prescribed for patients according to their specific Sho, and thus the Kampo medication system is very complex. However, our previous study strongly suggested that Kampo medication theory could be explained by chemometrics and informatic approaches [Okada et al. in J Nat Med 70:107–114, 2016]. Here, we studied a group of seven formulas with Bupleurum Root and Scutellaria Root as the principal crude drugs. First, decoctions of the formulas were prepared and their supernatants were analyzed by non-targeted direct infusion mass spectrometry (MS) and principal component analysis, which is a type of unsupervised machine learning. Next, supervised machine learning was used to perform partial least squares modeling of the MS data matrix trained on the patients’ constitution of Excess, Deficiency, or Medium between these two states (EDM) in Sho. The results showed that the correlation between the chemical fingerprints obtained by MS analysis and EDM could be modeled well using this approach. This cheminformatics modeling approach successfully interpreted part of the complex Kampo medication system studied using the fingerprints of formulas obtained by MS analysis and was consistent with the predicted Sho. Graphic abstract | ||
650 | 4 | |a Kampo medicine |7 (dpeaa)DE-He213 | |
650 | 4 | |a Kampo formula |7 (dpeaa)DE-He213 | |
650 | 4 | |a Crude drug |7 (dpeaa)DE-He213 | |
650 | 4 | |a Direct infusion mass spectrometry |7 (dpeaa)DE-He213 | |
650 | 4 | |a Machine learning |7 (dpeaa)DE-He213 | |
700 | 1 | |a Namiki, Takao |4 aut | |
700 | 1 | |a Tohge, Takayuki |4 aut | |
700 | 1 | |a Kanaya, Shigehiko |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of natural medicines |d Tokyo : Springer, 2006 |g 76(2021), 1 vom: 18. Okt., Seite 306-313 |w (DE-627)506714691 |w (DE-600)2218478-8 |x 1861-0293 |7 nnns |
773 | 1 | 8 | |g volume:76 |g year:2021 |g number:1 |g day:18 |g month:10 |g pages:306-313 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11418-021-01577-z |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 76 |j 2021 |e 1 |b 18 |c 10 |h 306-313 |
author_variant |
t o to t n tn t t tt s k sk |
---|---|
matchkey_str |
article:18610293:2021----::hmnomtcmdlnoteorltobtenuluurofruaeiieadxesndfcecptennhdansicieiosonaptaiinlaaeeeiieyo |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1007/s11418-021-01577-z doi (DE-627)SPR045895589 (SPR)s11418-021-01577-z-e DE-627 ger DE-627 rakwb eng Okada, Taketo verfasserin (orcid)0000-0001-5988-4267 aut Cheminformatics modeling of the correlation between Bupleurum Root-formula medicines and Excess and Deficiency pattern in the diagnostic criteria of Sho in Kampo (traditional Japanese medicine) by non-targeted direct infusion mass spectrometry with machine learning 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Japanese Society of Pharmacognosy 2021 Kampo is a form of traditional Japanese medicine, and its therapeutic strategy has been validated empirically over millennia, mainly in Asia. Kampo therapy aims to holistically prevent and treat disease based on the specific diagnosis Sho (in Japanese), in contrast with modern medical treatment which focuses on a patient’s affected parts and local conditions. The medicines formulated using crude drugs derived from natural sources (Kampo formulas) are prescribed for patients according to their specific Sho, and thus the Kampo medication system is very complex. However, our previous study strongly suggested that Kampo medication theory could be explained by chemometrics and informatic approaches [Okada et al. in J Nat Med 70:107–114, 2016]. Here, we studied a group of seven formulas with Bupleurum Root and Scutellaria Root as the principal crude drugs. First, decoctions of the formulas were prepared and their supernatants were analyzed by non-targeted direct infusion mass spectrometry (MS) and principal component analysis, which is a type of unsupervised machine learning. Next, supervised machine learning was used to perform partial least squares modeling of the MS data matrix trained on the patients’ constitution of Excess, Deficiency, or Medium between these two states (EDM) in Sho. The results showed that the correlation between the chemical fingerprints obtained by MS analysis and EDM could be modeled well using this approach. This cheminformatics modeling approach successfully interpreted part of the complex Kampo medication system studied using the fingerprints of formulas obtained by MS analysis and was consistent with the predicted Sho. Graphic abstract Kampo medicine (dpeaa)DE-He213 Kampo formula (dpeaa)DE-He213 Crude drug (dpeaa)DE-He213 Direct infusion mass spectrometry (dpeaa)DE-He213 Machine learning (dpeaa)DE-He213 Namiki, Takao aut Tohge, Takayuki aut Kanaya, Shigehiko aut Enthalten in Journal of natural medicines Tokyo : Springer, 2006 76(2021), 1 vom: 18. Okt., Seite 306-313 (DE-627)506714691 (DE-600)2218478-8 1861-0293 nnns volume:76 year:2021 number:1 day:18 month:10 pages:306-313 https://dx.doi.org/10.1007/s11418-021-01577-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 76 2021 1 18 10 306-313 |
spelling |
10.1007/s11418-021-01577-z doi (DE-627)SPR045895589 (SPR)s11418-021-01577-z-e DE-627 ger DE-627 rakwb eng Okada, Taketo verfasserin (orcid)0000-0001-5988-4267 aut Cheminformatics modeling of the correlation between Bupleurum Root-formula medicines and Excess and Deficiency pattern in the diagnostic criteria of Sho in Kampo (traditional Japanese medicine) by non-targeted direct infusion mass spectrometry with machine learning 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Japanese Society of Pharmacognosy 2021 Kampo is a form of traditional Japanese medicine, and its therapeutic strategy has been validated empirically over millennia, mainly in Asia. Kampo therapy aims to holistically prevent and treat disease based on the specific diagnosis Sho (in Japanese), in contrast with modern medical treatment which focuses on a patient’s affected parts and local conditions. The medicines formulated using crude drugs derived from natural sources (Kampo formulas) are prescribed for patients according to their specific Sho, and thus the Kampo medication system is very complex. However, our previous study strongly suggested that Kampo medication theory could be explained by chemometrics and informatic approaches [Okada et al. in J Nat Med 70:107–114, 2016]. Here, we studied a group of seven formulas with Bupleurum Root and Scutellaria Root as the principal crude drugs. First, decoctions of the formulas were prepared and their supernatants were analyzed by non-targeted direct infusion mass spectrometry (MS) and principal component analysis, which is a type of unsupervised machine learning. Next, supervised machine learning was used to perform partial least squares modeling of the MS data matrix trained on the patients’ constitution of Excess, Deficiency, or Medium between these two states (EDM) in Sho. The results showed that the correlation between the chemical fingerprints obtained by MS analysis and EDM could be modeled well using this approach. This cheminformatics modeling approach successfully interpreted part of the complex Kampo medication system studied using the fingerprints of formulas obtained by MS analysis and was consistent with the predicted Sho. Graphic abstract Kampo medicine (dpeaa)DE-He213 Kampo formula (dpeaa)DE-He213 Crude drug (dpeaa)DE-He213 Direct infusion mass spectrometry (dpeaa)DE-He213 Machine learning (dpeaa)DE-He213 Namiki, Takao aut Tohge, Takayuki aut Kanaya, Shigehiko aut Enthalten in Journal of natural medicines Tokyo : Springer, 2006 76(2021), 1 vom: 18. Okt., Seite 306-313 (DE-627)506714691 (DE-600)2218478-8 1861-0293 nnns volume:76 year:2021 number:1 day:18 month:10 pages:306-313 https://dx.doi.org/10.1007/s11418-021-01577-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 76 2021 1 18 10 306-313 |
allfields_unstemmed |
10.1007/s11418-021-01577-z doi (DE-627)SPR045895589 (SPR)s11418-021-01577-z-e DE-627 ger DE-627 rakwb eng Okada, Taketo verfasserin (orcid)0000-0001-5988-4267 aut Cheminformatics modeling of the correlation between Bupleurum Root-formula medicines and Excess and Deficiency pattern in the diagnostic criteria of Sho in Kampo (traditional Japanese medicine) by non-targeted direct infusion mass spectrometry with machine learning 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Japanese Society of Pharmacognosy 2021 Kampo is a form of traditional Japanese medicine, and its therapeutic strategy has been validated empirically over millennia, mainly in Asia. Kampo therapy aims to holistically prevent and treat disease based on the specific diagnosis Sho (in Japanese), in contrast with modern medical treatment which focuses on a patient’s affected parts and local conditions. The medicines formulated using crude drugs derived from natural sources (Kampo formulas) are prescribed for patients according to their specific Sho, and thus the Kampo medication system is very complex. However, our previous study strongly suggested that Kampo medication theory could be explained by chemometrics and informatic approaches [Okada et al. in J Nat Med 70:107–114, 2016]. Here, we studied a group of seven formulas with Bupleurum Root and Scutellaria Root as the principal crude drugs. First, decoctions of the formulas were prepared and their supernatants were analyzed by non-targeted direct infusion mass spectrometry (MS) and principal component analysis, which is a type of unsupervised machine learning. Next, supervised machine learning was used to perform partial least squares modeling of the MS data matrix trained on the patients’ constitution of Excess, Deficiency, or Medium between these two states (EDM) in Sho. The results showed that the correlation between the chemical fingerprints obtained by MS analysis and EDM could be modeled well using this approach. This cheminformatics modeling approach successfully interpreted part of the complex Kampo medication system studied using the fingerprints of formulas obtained by MS analysis and was consistent with the predicted Sho. Graphic abstract Kampo medicine (dpeaa)DE-He213 Kampo formula (dpeaa)DE-He213 Crude drug (dpeaa)DE-He213 Direct infusion mass spectrometry (dpeaa)DE-He213 Machine learning (dpeaa)DE-He213 Namiki, Takao aut Tohge, Takayuki aut Kanaya, Shigehiko aut Enthalten in Journal of natural medicines Tokyo : Springer, 2006 76(2021), 1 vom: 18. Okt., Seite 306-313 (DE-627)506714691 (DE-600)2218478-8 1861-0293 nnns volume:76 year:2021 number:1 day:18 month:10 pages:306-313 https://dx.doi.org/10.1007/s11418-021-01577-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 76 2021 1 18 10 306-313 |
allfieldsGer |
10.1007/s11418-021-01577-z doi (DE-627)SPR045895589 (SPR)s11418-021-01577-z-e DE-627 ger DE-627 rakwb eng Okada, Taketo verfasserin (orcid)0000-0001-5988-4267 aut Cheminformatics modeling of the correlation between Bupleurum Root-formula medicines and Excess and Deficiency pattern in the diagnostic criteria of Sho in Kampo (traditional Japanese medicine) by non-targeted direct infusion mass spectrometry with machine learning 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Japanese Society of Pharmacognosy 2021 Kampo is a form of traditional Japanese medicine, and its therapeutic strategy has been validated empirically over millennia, mainly in Asia. Kampo therapy aims to holistically prevent and treat disease based on the specific diagnosis Sho (in Japanese), in contrast with modern medical treatment which focuses on a patient’s affected parts and local conditions. The medicines formulated using crude drugs derived from natural sources (Kampo formulas) are prescribed for patients according to their specific Sho, and thus the Kampo medication system is very complex. However, our previous study strongly suggested that Kampo medication theory could be explained by chemometrics and informatic approaches [Okada et al. in J Nat Med 70:107–114, 2016]. Here, we studied a group of seven formulas with Bupleurum Root and Scutellaria Root as the principal crude drugs. First, decoctions of the formulas were prepared and their supernatants were analyzed by non-targeted direct infusion mass spectrometry (MS) and principal component analysis, which is a type of unsupervised machine learning. Next, supervised machine learning was used to perform partial least squares modeling of the MS data matrix trained on the patients’ constitution of Excess, Deficiency, or Medium between these two states (EDM) in Sho. The results showed that the correlation between the chemical fingerprints obtained by MS analysis and EDM could be modeled well using this approach. This cheminformatics modeling approach successfully interpreted part of the complex Kampo medication system studied using the fingerprints of formulas obtained by MS analysis and was consistent with the predicted Sho. Graphic abstract Kampo medicine (dpeaa)DE-He213 Kampo formula (dpeaa)DE-He213 Crude drug (dpeaa)DE-He213 Direct infusion mass spectrometry (dpeaa)DE-He213 Machine learning (dpeaa)DE-He213 Namiki, Takao aut Tohge, Takayuki aut Kanaya, Shigehiko aut Enthalten in Journal of natural medicines Tokyo : Springer, 2006 76(2021), 1 vom: 18. Okt., Seite 306-313 (DE-627)506714691 (DE-600)2218478-8 1861-0293 nnns volume:76 year:2021 number:1 day:18 month:10 pages:306-313 https://dx.doi.org/10.1007/s11418-021-01577-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 76 2021 1 18 10 306-313 |
allfieldsSound |
10.1007/s11418-021-01577-z doi (DE-627)SPR045895589 (SPR)s11418-021-01577-z-e DE-627 ger DE-627 rakwb eng Okada, Taketo verfasserin (orcid)0000-0001-5988-4267 aut Cheminformatics modeling of the correlation between Bupleurum Root-formula medicines and Excess and Deficiency pattern in the diagnostic criteria of Sho in Kampo (traditional Japanese medicine) by non-targeted direct infusion mass spectrometry with machine learning 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Japanese Society of Pharmacognosy 2021 Kampo is a form of traditional Japanese medicine, and its therapeutic strategy has been validated empirically over millennia, mainly in Asia. Kampo therapy aims to holistically prevent and treat disease based on the specific diagnosis Sho (in Japanese), in contrast with modern medical treatment which focuses on a patient’s affected parts and local conditions. The medicines formulated using crude drugs derived from natural sources (Kampo formulas) are prescribed for patients according to their specific Sho, and thus the Kampo medication system is very complex. However, our previous study strongly suggested that Kampo medication theory could be explained by chemometrics and informatic approaches [Okada et al. in J Nat Med 70:107–114, 2016]. Here, we studied a group of seven formulas with Bupleurum Root and Scutellaria Root as the principal crude drugs. First, decoctions of the formulas were prepared and their supernatants were analyzed by non-targeted direct infusion mass spectrometry (MS) and principal component analysis, which is a type of unsupervised machine learning. Next, supervised machine learning was used to perform partial least squares modeling of the MS data matrix trained on the patients’ constitution of Excess, Deficiency, or Medium between these two states (EDM) in Sho. The results showed that the correlation between the chemical fingerprints obtained by MS analysis and EDM could be modeled well using this approach. This cheminformatics modeling approach successfully interpreted part of the complex Kampo medication system studied using the fingerprints of formulas obtained by MS analysis and was consistent with the predicted Sho. Graphic abstract Kampo medicine (dpeaa)DE-He213 Kampo formula (dpeaa)DE-He213 Crude drug (dpeaa)DE-He213 Direct infusion mass spectrometry (dpeaa)DE-He213 Machine learning (dpeaa)DE-He213 Namiki, Takao aut Tohge, Takayuki aut Kanaya, Shigehiko aut Enthalten in Journal of natural medicines Tokyo : Springer, 2006 76(2021), 1 vom: 18. Okt., Seite 306-313 (DE-627)506714691 (DE-600)2218478-8 1861-0293 nnns volume:76 year:2021 number:1 day:18 month:10 pages:306-313 https://dx.doi.org/10.1007/s11418-021-01577-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 76 2021 1 18 10 306-313 |
language |
English |
source |
Enthalten in Journal of natural medicines 76(2021), 1 vom: 18. Okt., Seite 306-313 volume:76 year:2021 number:1 day:18 month:10 pages:306-313 |
sourceStr |
Enthalten in Journal of natural medicines 76(2021), 1 vom: 18. Okt., Seite 306-313 volume:76 year:2021 number:1 day:18 month:10 pages:306-313 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Kampo medicine Kampo formula Crude drug Direct infusion mass spectrometry Machine learning |
isfreeaccess_bool |
false |
container_title |
Journal of natural medicines |
authorswithroles_txt_mv |
Okada, Taketo @@aut@@ Namiki, Takao @@aut@@ Tohge, Takayuki @@aut@@ Kanaya, Shigehiko @@aut@@ |
publishDateDaySort_date |
2021-10-18T00:00:00Z |
hierarchy_top_id |
506714691 |
id |
SPR045895589 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR045895589</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519220157.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220106s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11418-021-01577-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR045895589</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11418-021-01577-z-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Okada, Taketo</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-5988-4267</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cheminformatics modeling of the correlation between Bupleurum Root-formula medicines and Excess and Deficiency pattern in the diagnostic criteria of Sho in Kampo (traditional Japanese medicine) by non-targeted direct infusion mass spectrometry with machine learning</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Japanese Society of Pharmacognosy 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Kampo is a form of traditional Japanese medicine, and its therapeutic strategy has been validated empirically over millennia, mainly in Asia. Kampo therapy aims to holistically prevent and treat disease based on the specific diagnosis Sho (in Japanese), in contrast with modern medical treatment which focuses on a patient’s affected parts and local conditions. The medicines formulated using crude drugs derived from natural sources (Kampo formulas) are prescribed for patients according to their specific Sho, and thus the Kampo medication system is very complex. However, our previous study strongly suggested that Kampo medication theory could be explained by chemometrics and informatic approaches [Okada et al. in J Nat Med 70:107–114, 2016]. Here, we studied a group of seven formulas with Bupleurum Root and Scutellaria Root as the principal crude drugs. First, decoctions of the formulas were prepared and their supernatants were analyzed by non-targeted direct infusion mass spectrometry (MS) and principal component analysis, which is a type of unsupervised machine learning. Next, supervised machine learning was used to perform partial least squares modeling of the MS data matrix trained on the patients’ constitution of Excess, Deficiency, or Medium between these two states (EDM) in Sho. The results showed that the correlation between the chemical fingerprints obtained by MS analysis and EDM could be modeled well using this approach. This cheminformatics modeling approach successfully interpreted part of the complex Kampo medication system studied using the fingerprints of formulas obtained by MS analysis and was consistent with the predicted Sho. Graphic abstract</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kampo medicine</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kampo formula</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crude drug</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Direct infusion mass spectrometry</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Namiki, Takao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tohge, Takayuki</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kanaya, Shigehiko</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of natural medicines</subfield><subfield code="d">Tokyo : Springer, 2006</subfield><subfield code="g">76(2021), 1 vom: 18. Okt., Seite 306-313</subfield><subfield code="w">(DE-627)506714691</subfield><subfield code="w">(DE-600)2218478-8</subfield><subfield code="x">1861-0293</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:76</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">day:18</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:306-313</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11418-021-01577-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">76</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="b">18</subfield><subfield code="c">10</subfield><subfield code="h">306-313</subfield></datafield></record></collection>
|
author |
Okada, Taketo |
spellingShingle |
Okada, Taketo misc Kampo medicine misc Kampo formula misc Crude drug misc Direct infusion mass spectrometry misc Machine learning Cheminformatics modeling of the correlation between Bupleurum Root-formula medicines and Excess and Deficiency pattern in the diagnostic criteria of Sho in Kampo (traditional Japanese medicine) by non-targeted direct infusion mass spectrometry with machine learning |
authorStr |
Okada, Taketo |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)506714691 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1861-0293 |
topic_title |
Cheminformatics modeling of the correlation between Bupleurum Root-formula medicines and Excess and Deficiency pattern in the diagnostic criteria of Sho in Kampo (traditional Japanese medicine) by non-targeted direct infusion mass spectrometry with machine learning Kampo medicine (dpeaa)DE-He213 Kampo formula (dpeaa)DE-He213 Crude drug (dpeaa)DE-He213 Direct infusion mass spectrometry (dpeaa)DE-He213 Machine learning (dpeaa)DE-He213 |
topic |
misc Kampo medicine misc Kampo formula misc Crude drug misc Direct infusion mass spectrometry misc Machine learning |
topic_unstemmed |
misc Kampo medicine misc Kampo formula misc Crude drug misc Direct infusion mass spectrometry misc Machine learning |
topic_browse |
misc Kampo medicine misc Kampo formula misc Crude drug misc Direct infusion mass spectrometry misc Machine learning |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of natural medicines |
hierarchy_parent_id |
506714691 |
hierarchy_top_title |
Journal of natural medicines |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)506714691 (DE-600)2218478-8 |
title |
Cheminformatics modeling of the correlation between Bupleurum Root-formula medicines and Excess and Deficiency pattern in the diagnostic criteria of Sho in Kampo (traditional Japanese medicine) by non-targeted direct infusion mass spectrometry with machine learning |
ctrlnum |
(DE-627)SPR045895589 (SPR)s11418-021-01577-z-e |
title_full |
Cheminformatics modeling of the correlation between Bupleurum Root-formula medicines and Excess and Deficiency pattern in the diagnostic criteria of Sho in Kampo (traditional Japanese medicine) by non-targeted direct infusion mass spectrometry with machine learning |
author_sort |
Okada, Taketo |
journal |
Journal of natural medicines |
journalStr |
Journal of natural medicines |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
306 |
author_browse |
Okada, Taketo Namiki, Takao Tohge, Takayuki Kanaya, Shigehiko |
container_volume |
76 |
format_se |
Elektronische Aufsätze |
author-letter |
Okada, Taketo |
doi_str_mv |
10.1007/s11418-021-01577-z |
normlink |
(ORCID)0000-0001-5988-4267 |
normlink_prefix_str_mv |
(orcid)0000-0001-5988-4267 |
title_sort |
cheminformatics modeling of the correlation between bupleurum root-formula medicines and excess and deficiency pattern in the diagnostic criteria of sho in kampo (traditional japanese medicine) by non-targeted direct infusion mass spectrometry with machine learning |
title_auth |
Cheminformatics modeling of the correlation between Bupleurum Root-formula medicines and Excess and Deficiency pattern in the diagnostic criteria of Sho in Kampo (traditional Japanese medicine) by non-targeted direct infusion mass spectrometry with machine learning |
abstract |
Kampo is a form of traditional Japanese medicine, and its therapeutic strategy has been validated empirically over millennia, mainly in Asia. Kampo therapy aims to holistically prevent and treat disease based on the specific diagnosis Sho (in Japanese), in contrast with modern medical treatment which focuses on a patient’s affected parts and local conditions. The medicines formulated using crude drugs derived from natural sources (Kampo formulas) are prescribed for patients according to their specific Sho, and thus the Kampo medication system is very complex. However, our previous study strongly suggested that Kampo medication theory could be explained by chemometrics and informatic approaches [Okada et al. in J Nat Med 70:107–114, 2016]. Here, we studied a group of seven formulas with Bupleurum Root and Scutellaria Root as the principal crude drugs. First, decoctions of the formulas were prepared and their supernatants were analyzed by non-targeted direct infusion mass spectrometry (MS) and principal component analysis, which is a type of unsupervised machine learning. Next, supervised machine learning was used to perform partial least squares modeling of the MS data matrix trained on the patients’ constitution of Excess, Deficiency, or Medium between these two states (EDM) in Sho. The results showed that the correlation between the chemical fingerprints obtained by MS analysis and EDM could be modeled well using this approach. This cheminformatics modeling approach successfully interpreted part of the complex Kampo medication system studied using the fingerprints of formulas obtained by MS analysis and was consistent with the predicted Sho. Graphic abstract © The Japanese Society of Pharmacognosy 2021 |
abstractGer |
Kampo is a form of traditional Japanese medicine, and its therapeutic strategy has been validated empirically over millennia, mainly in Asia. Kampo therapy aims to holistically prevent and treat disease based on the specific diagnosis Sho (in Japanese), in contrast with modern medical treatment which focuses on a patient’s affected parts and local conditions. The medicines formulated using crude drugs derived from natural sources (Kampo formulas) are prescribed for patients according to their specific Sho, and thus the Kampo medication system is very complex. However, our previous study strongly suggested that Kampo medication theory could be explained by chemometrics and informatic approaches [Okada et al. in J Nat Med 70:107–114, 2016]. Here, we studied a group of seven formulas with Bupleurum Root and Scutellaria Root as the principal crude drugs. First, decoctions of the formulas were prepared and their supernatants were analyzed by non-targeted direct infusion mass spectrometry (MS) and principal component analysis, which is a type of unsupervised machine learning. Next, supervised machine learning was used to perform partial least squares modeling of the MS data matrix trained on the patients’ constitution of Excess, Deficiency, or Medium between these two states (EDM) in Sho. The results showed that the correlation between the chemical fingerprints obtained by MS analysis and EDM could be modeled well using this approach. This cheminformatics modeling approach successfully interpreted part of the complex Kampo medication system studied using the fingerprints of formulas obtained by MS analysis and was consistent with the predicted Sho. Graphic abstract © The Japanese Society of Pharmacognosy 2021 |
abstract_unstemmed |
Kampo is a form of traditional Japanese medicine, and its therapeutic strategy has been validated empirically over millennia, mainly in Asia. Kampo therapy aims to holistically prevent and treat disease based on the specific diagnosis Sho (in Japanese), in contrast with modern medical treatment which focuses on a patient’s affected parts and local conditions. The medicines formulated using crude drugs derived from natural sources (Kampo formulas) are prescribed for patients according to their specific Sho, and thus the Kampo medication system is very complex. However, our previous study strongly suggested that Kampo medication theory could be explained by chemometrics and informatic approaches [Okada et al. in J Nat Med 70:107–114, 2016]. Here, we studied a group of seven formulas with Bupleurum Root and Scutellaria Root as the principal crude drugs. First, decoctions of the formulas were prepared and their supernatants were analyzed by non-targeted direct infusion mass spectrometry (MS) and principal component analysis, which is a type of unsupervised machine learning. Next, supervised machine learning was used to perform partial least squares modeling of the MS data matrix trained on the patients’ constitution of Excess, Deficiency, or Medium between these two states (EDM) in Sho. The results showed that the correlation between the chemical fingerprints obtained by MS analysis and EDM could be modeled well using this approach. This cheminformatics modeling approach successfully interpreted part of the complex Kampo medication system studied using the fingerprints of formulas obtained by MS analysis and was consistent with the predicted Sho. Graphic abstract © The Japanese Society of Pharmacognosy 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Cheminformatics modeling of the correlation between Bupleurum Root-formula medicines and Excess and Deficiency pattern in the diagnostic criteria of Sho in Kampo (traditional Japanese medicine) by non-targeted direct infusion mass spectrometry with machine learning |
url |
https://dx.doi.org/10.1007/s11418-021-01577-z |
remote_bool |
true |
author2 |
Namiki, Takao Tohge, Takayuki Kanaya, Shigehiko |
author2Str |
Namiki, Takao Tohge, Takayuki Kanaya, Shigehiko |
ppnlink |
506714691 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11418-021-01577-z |
up_date |
2024-07-03T19:00:32.717Z |
_version_ |
1803585567036801025 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR045895589</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519220157.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220106s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11418-021-01577-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR045895589</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11418-021-01577-z-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Okada, Taketo</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-5988-4267</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cheminformatics modeling of the correlation between Bupleurum Root-formula medicines and Excess and Deficiency pattern in the diagnostic criteria of Sho in Kampo (traditional Japanese medicine) by non-targeted direct infusion mass spectrometry with machine learning</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Japanese Society of Pharmacognosy 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Kampo is a form of traditional Japanese medicine, and its therapeutic strategy has been validated empirically over millennia, mainly in Asia. Kampo therapy aims to holistically prevent and treat disease based on the specific diagnosis Sho (in Japanese), in contrast with modern medical treatment which focuses on a patient’s affected parts and local conditions. The medicines formulated using crude drugs derived from natural sources (Kampo formulas) are prescribed for patients according to their specific Sho, and thus the Kampo medication system is very complex. However, our previous study strongly suggested that Kampo medication theory could be explained by chemometrics and informatic approaches [Okada et al. in J Nat Med 70:107–114, 2016]. Here, we studied a group of seven formulas with Bupleurum Root and Scutellaria Root as the principal crude drugs. First, decoctions of the formulas were prepared and their supernatants were analyzed by non-targeted direct infusion mass spectrometry (MS) and principal component analysis, which is a type of unsupervised machine learning. Next, supervised machine learning was used to perform partial least squares modeling of the MS data matrix trained on the patients’ constitution of Excess, Deficiency, or Medium between these two states (EDM) in Sho. The results showed that the correlation between the chemical fingerprints obtained by MS analysis and EDM could be modeled well using this approach. This cheminformatics modeling approach successfully interpreted part of the complex Kampo medication system studied using the fingerprints of formulas obtained by MS analysis and was consistent with the predicted Sho. Graphic abstract</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kampo medicine</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kampo formula</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crude drug</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Direct infusion mass spectrometry</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Namiki, Takao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tohge, Takayuki</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kanaya, Shigehiko</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of natural medicines</subfield><subfield code="d">Tokyo : Springer, 2006</subfield><subfield code="g">76(2021), 1 vom: 18. Okt., Seite 306-313</subfield><subfield code="w">(DE-627)506714691</subfield><subfield code="w">(DE-600)2218478-8</subfield><subfield code="x">1861-0293</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:76</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">day:18</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:306-313</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11418-021-01577-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">76</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="b">18</subfield><subfield code="c">10</subfield><subfield code="h">306-313</subfield></datafield></record></collection>
|
score |
7.3995914 |