Accelerating ReliefF using information granulation

Abstract Feature selection is an essential preprocessing requirement when solving a classification problem. In this respect, the Relief algorithm and its derivatives have been demonstrated to be a class of successful feature selectors. However, the computational cost of these algorithms is very high...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Wei, Wei [verfasserIn]

Wang, Da

Liang, Jiye

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2021

Schlagwörter:

Feature selection

ReliefF

Information granulation

Information entropy

Anmerkung:

© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Übergeordnetes Werk:

Enthalten in: International journal of machine learning and cybernetics - Heidelberg : Springer, 2010, 13(2021), 1 vom: 28. Apr., Seite 29-38

Übergeordnetes Werk:

volume:13 ; year:2021 ; number:1 ; day:28 ; month:04 ; pages:29-38

Links:

Volltext

DOI / URN:

10.1007/s13042-021-01334-4

Katalog-ID:

SPR045912416

Nicht das Richtige dabei?

Schreiben Sie uns!