Detection by Space-Borne and Ground-Based Lidar Observations of Air Pollution on the Example of the Hefei Area
Severe air pollution is a serious threat to public health in the Yangtze River Delta region, where high concentrations of particulate matter are often observed in winter. In the present study, a serious aerosol pollution incident in the western Yangtze River Delta, China, was investigated by using j...
Ausführliche Beschreibung
Autor*in: |
Yang, H. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, LLC, part of Springer Nature 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of applied spectroscopy - Dordrecht [u.a.] : Springer Science + Business Media B.V, 1965, 88(2022), 6 vom: Jan., Seite 1304-1314 |
---|---|
Übergeordnetes Werk: |
volume:88 ; year:2022 ; number:6 ; month:01 ; pages:1304-1314 |
Links: |
---|
DOI / URN: |
10.1007/s10812-022-01312-w |
---|
Katalog-ID: |
SPR045994358 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR045994358 | ||
003 | DE-627 | ||
005 | 20230507084802.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220120s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s10812-022-01312-w |2 doi | |
035 | |a (DE-627)SPR045994358 | ||
035 | |a (SPR)s10812-022-01312-w-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Yang, H. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Detection by Space-Borne and Ground-Based Lidar Observations of Air Pollution on the Example of the Hefei Area |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC, part of Springer Nature 2022 | ||
520 | |a Severe air pollution is a serious threat to public health in the Yangtze River Delta region, where high concentrations of particulate matter are often observed in winter. In the present study, a serious aerosol pollution incident in the western Yangtze River Delta, China, was investigated by using joint inversion of CALIPSO and ground-based lidar in Hefei during 17–22 January, 2019. The data of the past two years were used in this study, and four typical weather cases were selected for comparative verification—namely, fi ne weather (less cloud, good air); cloudy weather (good air, no haze); moderate pollution weather (moderate haze, no cloud); and severe pollution weather (heavy haze, cloud). The vertical profile of aerosol backscatter as the satellite passed through Hefei city was given by the data of the CALIPSO satellite-borne lidar, CALIOP, which was compared with the vertical distribution of the range-corrected signal of ground-based lidar. Combined with analysis of meteorological data, the results showed that satellite–ground lidar can be used to observe the effect of aerosol changes on weather effectively. Subsequent experiments observed and tracked severely polluted weather event, and the data on the aerosol boundary layer was obtained which was a severe trans-boundary air pollution. The serious pollution period occurred from 22:00 to 04:00 on January 19 to 20, 2019, when the aerosol boundary layer was at its lowest (less than 0.5 km) and the boundary layer height ranged from 0.5 km to 2.2 km in other periods. Then, based on analysis of near-surface data, the changes in the boundary layer during the pollution process and the possible causes of these changes were analyzed. It was concluded that, during the pollution process, the height of the aerosol boundary layer in the Hefei area showed an obvious negative correlation with the concentration of $ PM_{2.5} $. Finally, HYSPLIT results showed that the source of pollution weather was mainly aerosol particles blown from the north. The results of this study provide a basis for satellite- and ground-based lidar joint observation under different weather types, as well as help in the study of urban weather change and pollution prevention. | ||
650 | 4 | |a CALIPSO |7 (dpeaa)DE-He213 | |
650 | 4 | |a Raman–Mie lidar |7 (dpeaa)DE-He213 | |
650 | 4 | |a air pollution |7 (dpeaa)DE-He213 | |
650 | 4 | |a aerosol boundary layer |7 (dpeaa)DE-He213 | |
700 | 1 | |a Fang, Zh. |4 aut | |
700 | 1 | |a Deng, X. |4 aut | |
700 | 1 | |a Cao, Y. |4 aut | |
700 | 1 | |a Xie, Ch. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of applied spectroscopy |d Dordrecht [u.a.] : Springer Science + Business Media B.V, 1965 |g 88(2022), 6 vom: Jan., Seite 1304-1314 |w (DE-627)325609918 |w (DE-600)2037920-1 |x 1573-8647 |7 nnns |
773 | 1 | 8 | |g volume:88 |g year:2022 |g number:6 |g month:01 |g pages:1304-1314 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s10812-022-01312-w |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 88 |j 2022 |e 6 |c 01 |h 1304-1314 |
author_variant |
h y hy z f zf x d xd y c yc c x cx |
---|---|
matchkey_str |
article:15738647:2022----::eetobsaeonadrudaeldrbevtosfipluinn |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s10812-022-01312-w doi (DE-627)SPR045994358 (SPR)s10812-022-01312-w-e DE-627 ger DE-627 rakwb eng Yang, H. verfasserin aut Detection by Space-Borne and Ground-Based Lidar Observations of Air Pollution on the Example of the Hefei Area 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2022 Severe air pollution is a serious threat to public health in the Yangtze River Delta region, where high concentrations of particulate matter are often observed in winter. In the present study, a serious aerosol pollution incident in the western Yangtze River Delta, China, was investigated by using joint inversion of CALIPSO and ground-based lidar in Hefei during 17–22 January, 2019. The data of the past two years were used in this study, and four typical weather cases were selected for comparative verification—namely, fi ne weather (less cloud, good air); cloudy weather (good air, no haze); moderate pollution weather (moderate haze, no cloud); and severe pollution weather (heavy haze, cloud). The vertical profile of aerosol backscatter as the satellite passed through Hefei city was given by the data of the CALIPSO satellite-borne lidar, CALIOP, which was compared with the vertical distribution of the range-corrected signal of ground-based lidar. Combined with analysis of meteorological data, the results showed that satellite–ground lidar can be used to observe the effect of aerosol changes on weather effectively. Subsequent experiments observed and tracked severely polluted weather event, and the data on the aerosol boundary layer was obtained which was a severe trans-boundary air pollution. The serious pollution period occurred from 22:00 to 04:00 on January 19 to 20, 2019, when the aerosol boundary layer was at its lowest (less than 0.5 km) and the boundary layer height ranged from 0.5 km to 2.2 km in other periods. Then, based on analysis of near-surface data, the changes in the boundary layer during the pollution process and the possible causes of these changes were analyzed. It was concluded that, during the pollution process, the height of the aerosol boundary layer in the Hefei area showed an obvious negative correlation with the concentration of $ PM_{2.5} $. Finally, HYSPLIT results showed that the source of pollution weather was mainly aerosol particles blown from the north. The results of this study provide a basis for satellite- and ground-based lidar joint observation under different weather types, as well as help in the study of urban weather change and pollution prevention. CALIPSO (dpeaa)DE-He213 Raman–Mie lidar (dpeaa)DE-He213 air pollution (dpeaa)DE-He213 aerosol boundary layer (dpeaa)DE-He213 Fang, Zh. aut Deng, X. aut Cao, Y. aut Xie, Ch. aut Enthalten in Journal of applied spectroscopy Dordrecht [u.a.] : Springer Science + Business Media B.V, 1965 88(2022), 6 vom: Jan., Seite 1304-1314 (DE-627)325609918 (DE-600)2037920-1 1573-8647 nnns volume:88 year:2022 number:6 month:01 pages:1304-1314 https://dx.doi.org/10.1007/s10812-022-01312-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 88 2022 6 01 1304-1314 |
spelling |
10.1007/s10812-022-01312-w doi (DE-627)SPR045994358 (SPR)s10812-022-01312-w-e DE-627 ger DE-627 rakwb eng Yang, H. verfasserin aut Detection by Space-Borne and Ground-Based Lidar Observations of Air Pollution on the Example of the Hefei Area 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2022 Severe air pollution is a serious threat to public health in the Yangtze River Delta region, where high concentrations of particulate matter are often observed in winter. In the present study, a serious aerosol pollution incident in the western Yangtze River Delta, China, was investigated by using joint inversion of CALIPSO and ground-based lidar in Hefei during 17–22 January, 2019. The data of the past two years were used in this study, and four typical weather cases were selected for comparative verification—namely, fi ne weather (less cloud, good air); cloudy weather (good air, no haze); moderate pollution weather (moderate haze, no cloud); and severe pollution weather (heavy haze, cloud). The vertical profile of aerosol backscatter as the satellite passed through Hefei city was given by the data of the CALIPSO satellite-borne lidar, CALIOP, which was compared with the vertical distribution of the range-corrected signal of ground-based lidar. Combined with analysis of meteorological data, the results showed that satellite–ground lidar can be used to observe the effect of aerosol changes on weather effectively. Subsequent experiments observed and tracked severely polluted weather event, and the data on the aerosol boundary layer was obtained which was a severe trans-boundary air pollution. The serious pollution period occurred from 22:00 to 04:00 on January 19 to 20, 2019, when the aerosol boundary layer was at its lowest (less than 0.5 km) and the boundary layer height ranged from 0.5 km to 2.2 km in other periods. Then, based on analysis of near-surface data, the changes in the boundary layer during the pollution process and the possible causes of these changes were analyzed. It was concluded that, during the pollution process, the height of the aerosol boundary layer in the Hefei area showed an obvious negative correlation with the concentration of $ PM_{2.5} $. Finally, HYSPLIT results showed that the source of pollution weather was mainly aerosol particles blown from the north. The results of this study provide a basis for satellite- and ground-based lidar joint observation under different weather types, as well as help in the study of urban weather change and pollution prevention. CALIPSO (dpeaa)DE-He213 Raman–Mie lidar (dpeaa)DE-He213 air pollution (dpeaa)DE-He213 aerosol boundary layer (dpeaa)DE-He213 Fang, Zh. aut Deng, X. aut Cao, Y. aut Xie, Ch. aut Enthalten in Journal of applied spectroscopy Dordrecht [u.a.] : Springer Science + Business Media B.V, 1965 88(2022), 6 vom: Jan., Seite 1304-1314 (DE-627)325609918 (DE-600)2037920-1 1573-8647 nnns volume:88 year:2022 number:6 month:01 pages:1304-1314 https://dx.doi.org/10.1007/s10812-022-01312-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 88 2022 6 01 1304-1314 |
allfields_unstemmed |
10.1007/s10812-022-01312-w doi (DE-627)SPR045994358 (SPR)s10812-022-01312-w-e DE-627 ger DE-627 rakwb eng Yang, H. verfasserin aut Detection by Space-Borne and Ground-Based Lidar Observations of Air Pollution on the Example of the Hefei Area 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2022 Severe air pollution is a serious threat to public health in the Yangtze River Delta region, where high concentrations of particulate matter are often observed in winter. In the present study, a serious aerosol pollution incident in the western Yangtze River Delta, China, was investigated by using joint inversion of CALIPSO and ground-based lidar in Hefei during 17–22 January, 2019. The data of the past two years were used in this study, and four typical weather cases were selected for comparative verification—namely, fi ne weather (less cloud, good air); cloudy weather (good air, no haze); moderate pollution weather (moderate haze, no cloud); and severe pollution weather (heavy haze, cloud). The vertical profile of aerosol backscatter as the satellite passed through Hefei city was given by the data of the CALIPSO satellite-borne lidar, CALIOP, which was compared with the vertical distribution of the range-corrected signal of ground-based lidar. Combined with analysis of meteorological data, the results showed that satellite–ground lidar can be used to observe the effect of aerosol changes on weather effectively. Subsequent experiments observed and tracked severely polluted weather event, and the data on the aerosol boundary layer was obtained which was a severe trans-boundary air pollution. The serious pollution period occurred from 22:00 to 04:00 on January 19 to 20, 2019, when the aerosol boundary layer was at its lowest (less than 0.5 km) and the boundary layer height ranged from 0.5 km to 2.2 km in other periods. Then, based on analysis of near-surface data, the changes in the boundary layer during the pollution process and the possible causes of these changes were analyzed. It was concluded that, during the pollution process, the height of the aerosol boundary layer in the Hefei area showed an obvious negative correlation with the concentration of $ PM_{2.5} $. Finally, HYSPLIT results showed that the source of pollution weather was mainly aerosol particles blown from the north. The results of this study provide a basis for satellite- and ground-based lidar joint observation under different weather types, as well as help in the study of urban weather change and pollution prevention. CALIPSO (dpeaa)DE-He213 Raman–Mie lidar (dpeaa)DE-He213 air pollution (dpeaa)DE-He213 aerosol boundary layer (dpeaa)DE-He213 Fang, Zh. aut Deng, X. aut Cao, Y. aut Xie, Ch. aut Enthalten in Journal of applied spectroscopy Dordrecht [u.a.] : Springer Science + Business Media B.V, 1965 88(2022), 6 vom: Jan., Seite 1304-1314 (DE-627)325609918 (DE-600)2037920-1 1573-8647 nnns volume:88 year:2022 number:6 month:01 pages:1304-1314 https://dx.doi.org/10.1007/s10812-022-01312-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 88 2022 6 01 1304-1314 |
allfieldsGer |
10.1007/s10812-022-01312-w doi (DE-627)SPR045994358 (SPR)s10812-022-01312-w-e DE-627 ger DE-627 rakwb eng Yang, H. verfasserin aut Detection by Space-Borne and Ground-Based Lidar Observations of Air Pollution on the Example of the Hefei Area 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2022 Severe air pollution is a serious threat to public health in the Yangtze River Delta region, where high concentrations of particulate matter are often observed in winter. In the present study, a serious aerosol pollution incident in the western Yangtze River Delta, China, was investigated by using joint inversion of CALIPSO and ground-based lidar in Hefei during 17–22 January, 2019. The data of the past two years were used in this study, and four typical weather cases were selected for comparative verification—namely, fi ne weather (less cloud, good air); cloudy weather (good air, no haze); moderate pollution weather (moderate haze, no cloud); and severe pollution weather (heavy haze, cloud). The vertical profile of aerosol backscatter as the satellite passed through Hefei city was given by the data of the CALIPSO satellite-borne lidar, CALIOP, which was compared with the vertical distribution of the range-corrected signal of ground-based lidar. Combined with analysis of meteorological data, the results showed that satellite–ground lidar can be used to observe the effect of aerosol changes on weather effectively. Subsequent experiments observed and tracked severely polluted weather event, and the data on the aerosol boundary layer was obtained which was a severe trans-boundary air pollution. The serious pollution period occurred from 22:00 to 04:00 on January 19 to 20, 2019, when the aerosol boundary layer was at its lowest (less than 0.5 km) and the boundary layer height ranged from 0.5 km to 2.2 km in other periods. Then, based on analysis of near-surface data, the changes in the boundary layer during the pollution process and the possible causes of these changes were analyzed. It was concluded that, during the pollution process, the height of the aerosol boundary layer in the Hefei area showed an obvious negative correlation with the concentration of $ PM_{2.5} $. Finally, HYSPLIT results showed that the source of pollution weather was mainly aerosol particles blown from the north. The results of this study provide a basis for satellite- and ground-based lidar joint observation under different weather types, as well as help in the study of urban weather change and pollution prevention. CALIPSO (dpeaa)DE-He213 Raman–Mie lidar (dpeaa)DE-He213 air pollution (dpeaa)DE-He213 aerosol boundary layer (dpeaa)DE-He213 Fang, Zh. aut Deng, X. aut Cao, Y. aut Xie, Ch. aut Enthalten in Journal of applied spectroscopy Dordrecht [u.a.] : Springer Science + Business Media B.V, 1965 88(2022), 6 vom: Jan., Seite 1304-1314 (DE-627)325609918 (DE-600)2037920-1 1573-8647 nnns volume:88 year:2022 number:6 month:01 pages:1304-1314 https://dx.doi.org/10.1007/s10812-022-01312-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 88 2022 6 01 1304-1314 |
allfieldsSound |
10.1007/s10812-022-01312-w doi (DE-627)SPR045994358 (SPR)s10812-022-01312-w-e DE-627 ger DE-627 rakwb eng Yang, H. verfasserin aut Detection by Space-Borne and Ground-Based Lidar Observations of Air Pollution on the Example of the Hefei Area 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2022 Severe air pollution is a serious threat to public health in the Yangtze River Delta region, where high concentrations of particulate matter are often observed in winter. In the present study, a serious aerosol pollution incident in the western Yangtze River Delta, China, was investigated by using joint inversion of CALIPSO and ground-based lidar in Hefei during 17–22 January, 2019. The data of the past two years were used in this study, and four typical weather cases were selected for comparative verification—namely, fi ne weather (less cloud, good air); cloudy weather (good air, no haze); moderate pollution weather (moderate haze, no cloud); and severe pollution weather (heavy haze, cloud). The vertical profile of aerosol backscatter as the satellite passed through Hefei city was given by the data of the CALIPSO satellite-borne lidar, CALIOP, which was compared with the vertical distribution of the range-corrected signal of ground-based lidar. Combined with analysis of meteorological data, the results showed that satellite–ground lidar can be used to observe the effect of aerosol changes on weather effectively. Subsequent experiments observed and tracked severely polluted weather event, and the data on the aerosol boundary layer was obtained which was a severe trans-boundary air pollution. The serious pollution period occurred from 22:00 to 04:00 on January 19 to 20, 2019, when the aerosol boundary layer was at its lowest (less than 0.5 km) and the boundary layer height ranged from 0.5 km to 2.2 km in other periods. Then, based on analysis of near-surface data, the changes in the boundary layer during the pollution process and the possible causes of these changes were analyzed. It was concluded that, during the pollution process, the height of the aerosol boundary layer in the Hefei area showed an obvious negative correlation with the concentration of $ PM_{2.5} $. Finally, HYSPLIT results showed that the source of pollution weather was mainly aerosol particles blown from the north. The results of this study provide a basis for satellite- and ground-based lidar joint observation under different weather types, as well as help in the study of urban weather change and pollution prevention. CALIPSO (dpeaa)DE-He213 Raman–Mie lidar (dpeaa)DE-He213 air pollution (dpeaa)DE-He213 aerosol boundary layer (dpeaa)DE-He213 Fang, Zh. aut Deng, X. aut Cao, Y. aut Xie, Ch. aut Enthalten in Journal of applied spectroscopy Dordrecht [u.a.] : Springer Science + Business Media B.V, 1965 88(2022), 6 vom: Jan., Seite 1304-1314 (DE-627)325609918 (DE-600)2037920-1 1573-8647 nnns volume:88 year:2022 number:6 month:01 pages:1304-1314 https://dx.doi.org/10.1007/s10812-022-01312-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 88 2022 6 01 1304-1314 |
language |
English |
source |
Enthalten in Journal of applied spectroscopy 88(2022), 6 vom: Jan., Seite 1304-1314 volume:88 year:2022 number:6 month:01 pages:1304-1314 |
sourceStr |
Enthalten in Journal of applied spectroscopy 88(2022), 6 vom: Jan., Seite 1304-1314 volume:88 year:2022 number:6 month:01 pages:1304-1314 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
CALIPSO Raman–Mie lidar air pollution aerosol boundary layer |
isfreeaccess_bool |
false |
container_title |
Journal of applied spectroscopy |
authorswithroles_txt_mv |
Yang, H. @@aut@@ Fang, Zh. @@aut@@ Deng, X. @@aut@@ Cao, Y. @@aut@@ Xie, Ch. @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
325609918 |
id |
SPR045994358 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR045994358</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507084802.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220120s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10812-022-01312-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR045994358</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10812-022-01312-w-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yang, H.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Detection by Space-Borne and Ground-Based Lidar Observations of Air Pollution on the Example of the Hefei Area</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Severe air pollution is a serious threat to public health in the Yangtze River Delta region, where high concentrations of particulate matter are often observed in winter. In the present study, a serious aerosol pollution incident in the western Yangtze River Delta, China, was investigated by using joint inversion of CALIPSO and ground-based lidar in Hefei during 17–22 January, 2019. The data of the past two years were used in this study, and four typical weather cases were selected for comparative verification—namely, fi ne weather (less cloud, good air); cloudy weather (good air, no haze); moderate pollution weather (moderate haze, no cloud); and severe pollution weather (heavy haze, cloud). The vertical profile of aerosol backscatter as the satellite passed through Hefei city was given by the data of the CALIPSO satellite-borne lidar, CALIOP, which was compared with the vertical distribution of the range-corrected signal of ground-based lidar. Combined with analysis of meteorological data, the results showed that satellite–ground lidar can be used to observe the effect of aerosol changes on weather effectively. Subsequent experiments observed and tracked severely polluted weather event, and the data on the aerosol boundary layer was obtained which was a severe trans-boundary air pollution. The serious pollution period occurred from 22:00 to 04:00 on January 19 to 20, 2019, when the aerosol boundary layer was at its lowest (less than 0.5 km) and the boundary layer height ranged from 0.5 km to 2.2 km in other periods. Then, based on analysis of near-surface data, the changes in the boundary layer during the pollution process and the possible causes of these changes were analyzed. It was concluded that, during the pollution process, the height of the aerosol boundary layer in the Hefei area showed an obvious negative correlation with the concentration of $ PM_{2.5} $. Finally, HYSPLIT results showed that the source of pollution weather was mainly aerosol particles blown from the north. The results of this study provide a basis for satellite- and ground-based lidar joint observation under different weather types, as well as help in the study of urban weather change and pollution prevention.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CALIPSO</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Raman–Mie lidar</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">air pollution</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aerosol boundary layer</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fang, Zh.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Deng, X.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cao, Y.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xie, Ch.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of applied spectroscopy</subfield><subfield code="d">Dordrecht [u.a.] : Springer Science + Business Media B.V, 1965</subfield><subfield code="g">88(2022), 6 vom: Jan., Seite 1304-1314</subfield><subfield code="w">(DE-627)325609918</subfield><subfield code="w">(DE-600)2037920-1</subfield><subfield code="x">1573-8647</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:88</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:6</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:1304-1314</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10812-022-01312-w</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">88</subfield><subfield code="j">2022</subfield><subfield code="e">6</subfield><subfield code="c">01</subfield><subfield code="h">1304-1314</subfield></datafield></record></collection>
|
author |
Yang, H. |
spellingShingle |
Yang, H. misc CALIPSO misc Raman–Mie lidar misc air pollution misc aerosol boundary layer Detection by Space-Borne and Ground-Based Lidar Observations of Air Pollution on the Example of the Hefei Area |
authorStr |
Yang, H. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)325609918 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1573-8647 |
topic_title |
Detection by Space-Borne and Ground-Based Lidar Observations of Air Pollution on the Example of the Hefei Area CALIPSO (dpeaa)DE-He213 Raman–Mie lidar (dpeaa)DE-He213 air pollution (dpeaa)DE-He213 aerosol boundary layer (dpeaa)DE-He213 |
topic |
misc CALIPSO misc Raman–Mie lidar misc air pollution misc aerosol boundary layer |
topic_unstemmed |
misc CALIPSO misc Raman–Mie lidar misc air pollution misc aerosol boundary layer |
topic_browse |
misc CALIPSO misc Raman–Mie lidar misc air pollution misc aerosol boundary layer |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of applied spectroscopy |
hierarchy_parent_id |
325609918 |
hierarchy_top_title |
Journal of applied spectroscopy |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)325609918 (DE-600)2037920-1 |
title |
Detection by Space-Borne and Ground-Based Lidar Observations of Air Pollution on the Example of the Hefei Area |
ctrlnum |
(DE-627)SPR045994358 (SPR)s10812-022-01312-w-e |
title_full |
Detection by Space-Borne and Ground-Based Lidar Observations of Air Pollution on the Example of the Hefei Area |
author_sort |
Yang, H. |
journal |
Journal of applied spectroscopy |
journalStr |
Journal of applied spectroscopy |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
1304 |
author_browse |
Yang, H. Fang, Zh. Deng, X. Cao, Y. Xie, Ch. |
container_volume |
88 |
format_se |
Elektronische Aufsätze |
author-letter |
Yang, H. |
doi_str_mv |
10.1007/s10812-022-01312-w |
title_sort |
detection by space-borne and ground-based lidar observations of air pollution on the example of the hefei area |
title_auth |
Detection by Space-Borne and Ground-Based Lidar Observations of Air Pollution on the Example of the Hefei Area |
abstract |
Severe air pollution is a serious threat to public health in the Yangtze River Delta region, where high concentrations of particulate matter are often observed in winter. In the present study, a serious aerosol pollution incident in the western Yangtze River Delta, China, was investigated by using joint inversion of CALIPSO and ground-based lidar in Hefei during 17–22 January, 2019. The data of the past two years were used in this study, and four typical weather cases were selected for comparative verification—namely, fi ne weather (less cloud, good air); cloudy weather (good air, no haze); moderate pollution weather (moderate haze, no cloud); and severe pollution weather (heavy haze, cloud). The vertical profile of aerosol backscatter as the satellite passed through Hefei city was given by the data of the CALIPSO satellite-borne lidar, CALIOP, which was compared with the vertical distribution of the range-corrected signal of ground-based lidar. Combined with analysis of meteorological data, the results showed that satellite–ground lidar can be used to observe the effect of aerosol changes on weather effectively. Subsequent experiments observed and tracked severely polluted weather event, and the data on the aerosol boundary layer was obtained which was a severe trans-boundary air pollution. The serious pollution period occurred from 22:00 to 04:00 on January 19 to 20, 2019, when the aerosol boundary layer was at its lowest (less than 0.5 km) and the boundary layer height ranged from 0.5 km to 2.2 km in other periods. Then, based on analysis of near-surface data, the changes in the boundary layer during the pollution process and the possible causes of these changes were analyzed. It was concluded that, during the pollution process, the height of the aerosol boundary layer in the Hefei area showed an obvious negative correlation with the concentration of $ PM_{2.5} $. Finally, HYSPLIT results showed that the source of pollution weather was mainly aerosol particles blown from the north. The results of this study provide a basis for satellite- and ground-based lidar joint observation under different weather types, as well as help in the study of urban weather change and pollution prevention. © Springer Science+Business Media, LLC, part of Springer Nature 2022 |
abstractGer |
Severe air pollution is a serious threat to public health in the Yangtze River Delta region, where high concentrations of particulate matter are often observed in winter. In the present study, a serious aerosol pollution incident in the western Yangtze River Delta, China, was investigated by using joint inversion of CALIPSO and ground-based lidar in Hefei during 17–22 January, 2019. The data of the past two years were used in this study, and four typical weather cases were selected for comparative verification—namely, fi ne weather (less cloud, good air); cloudy weather (good air, no haze); moderate pollution weather (moderate haze, no cloud); and severe pollution weather (heavy haze, cloud). The vertical profile of aerosol backscatter as the satellite passed through Hefei city was given by the data of the CALIPSO satellite-borne lidar, CALIOP, which was compared with the vertical distribution of the range-corrected signal of ground-based lidar. Combined with analysis of meteorological data, the results showed that satellite–ground lidar can be used to observe the effect of aerosol changes on weather effectively. Subsequent experiments observed and tracked severely polluted weather event, and the data on the aerosol boundary layer was obtained which was a severe trans-boundary air pollution. The serious pollution period occurred from 22:00 to 04:00 on January 19 to 20, 2019, when the aerosol boundary layer was at its lowest (less than 0.5 km) and the boundary layer height ranged from 0.5 km to 2.2 km in other periods. Then, based on analysis of near-surface data, the changes in the boundary layer during the pollution process and the possible causes of these changes were analyzed. It was concluded that, during the pollution process, the height of the aerosol boundary layer in the Hefei area showed an obvious negative correlation with the concentration of $ PM_{2.5} $. Finally, HYSPLIT results showed that the source of pollution weather was mainly aerosol particles blown from the north. The results of this study provide a basis for satellite- and ground-based lidar joint observation under different weather types, as well as help in the study of urban weather change and pollution prevention. © Springer Science+Business Media, LLC, part of Springer Nature 2022 |
abstract_unstemmed |
Severe air pollution is a serious threat to public health in the Yangtze River Delta region, where high concentrations of particulate matter are often observed in winter. In the present study, a serious aerosol pollution incident in the western Yangtze River Delta, China, was investigated by using joint inversion of CALIPSO and ground-based lidar in Hefei during 17–22 January, 2019. The data of the past two years were used in this study, and four typical weather cases were selected for comparative verification—namely, fi ne weather (less cloud, good air); cloudy weather (good air, no haze); moderate pollution weather (moderate haze, no cloud); and severe pollution weather (heavy haze, cloud). The vertical profile of aerosol backscatter as the satellite passed through Hefei city was given by the data of the CALIPSO satellite-borne lidar, CALIOP, which was compared with the vertical distribution of the range-corrected signal of ground-based lidar. Combined with analysis of meteorological data, the results showed that satellite–ground lidar can be used to observe the effect of aerosol changes on weather effectively. Subsequent experiments observed and tracked severely polluted weather event, and the data on the aerosol boundary layer was obtained which was a severe trans-boundary air pollution. The serious pollution period occurred from 22:00 to 04:00 on January 19 to 20, 2019, when the aerosol boundary layer was at its lowest (less than 0.5 km) and the boundary layer height ranged from 0.5 km to 2.2 km in other periods. Then, based on analysis of near-surface data, the changes in the boundary layer during the pollution process and the possible causes of these changes were analyzed. It was concluded that, during the pollution process, the height of the aerosol boundary layer in the Hefei area showed an obvious negative correlation with the concentration of $ PM_{2.5} $. Finally, HYSPLIT results showed that the source of pollution weather was mainly aerosol particles blown from the north. The results of this study provide a basis for satellite- and ground-based lidar joint observation under different weather types, as well as help in the study of urban weather change and pollution prevention. © Springer Science+Business Media, LLC, part of Springer Nature 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
6 |
title_short |
Detection by Space-Borne and Ground-Based Lidar Observations of Air Pollution on the Example of the Hefei Area |
url |
https://dx.doi.org/10.1007/s10812-022-01312-w |
remote_bool |
true |
author2 |
Fang, Zh Deng, X. Cao, Y. Xie, Ch |
author2Str |
Fang, Zh Deng, X. Cao, Y. Xie, Ch |
ppnlink |
325609918 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10812-022-01312-w |
up_date |
2024-07-03T19:38:37.771Z |
_version_ |
1803587963100069888 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR045994358</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507084802.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220120s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10812-022-01312-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR045994358</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10812-022-01312-w-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yang, H.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Detection by Space-Borne and Ground-Based Lidar Observations of Air Pollution on the Example of the Hefei Area</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Severe air pollution is a serious threat to public health in the Yangtze River Delta region, where high concentrations of particulate matter are often observed in winter. In the present study, a serious aerosol pollution incident in the western Yangtze River Delta, China, was investigated by using joint inversion of CALIPSO and ground-based lidar in Hefei during 17–22 January, 2019. The data of the past two years were used in this study, and four typical weather cases were selected for comparative verification—namely, fi ne weather (less cloud, good air); cloudy weather (good air, no haze); moderate pollution weather (moderate haze, no cloud); and severe pollution weather (heavy haze, cloud). The vertical profile of aerosol backscatter as the satellite passed through Hefei city was given by the data of the CALIPSO satellite-borne lidar, CALIOP, which was compared with the vertical distribution of the range-corrected signal of ground-based lidar. Combined with analysis of meteorological data, the results showed that satellite–ground lidar can be used to observe the effect of aerosol changes on weather effectively. Subsequent experiments observed and tracked severely polluted weather event, and the data on the aerosol boundary layer was obtained which was a severe trans-boundary air pollution. The serious pollution period occurred from 22:00 to 04:00 on January 19 to 20, 2019, when the aerosol boundary layer was at its lowest (less than 0.5 km) and the boundary layer height ranged from 0.5 km to 2.2 km in other periods. Then, based on analysis of near-surface data, the changes in the boundary layer during the pollution process and the possible causes of these changes were analyzed. It was concluded that, during the pollution process, the height of the aerosol boundary layer in the Hefei area showed an obvious negative correlation with the concentration of $ PM_{2.5} $. Finally, HYSPLIT results showed that the source of pollution weather was mainly aerosol particles blown from the north. The results of this study provide a basis for satellite- and ground-based lidar joint observation under different weather types, as well as help in the study of urban weather change and pollution prevention.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CALIPSO</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Raman–Mie lidar</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">air pollution</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aerosol boundary layer</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fang, Zh.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Deng, X.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cao, Y.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xie, Ch.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of applied spectroscopy</subfield><subfield code="d">Dordrecht [u.a.] : Springer Science + Business Media B.V, 1965</subfield><subfield code="g">88(2022), 6 vom: Jan., Seite 1304-1314</subfield><subfield code="w">(DE-627)325609918</subfield><subfield code="w">(DE-600)2037920-1</subfield><subfield code="x">1573-8647</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:88</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:6</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:1304-1314</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10812-022-01312-w</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">88</subfield><subfield code="j">2022</subfield><subfield code="e">6</subfield><subfield code="c">01</subfield><subfield code="h">1304-1314</subfield></datafield></record></collection>
|
score |
7.4027348 |