On the complete convergence for uncertain random variables
Abstract In some complex systems, the randomness and uncertainty phenomena may arise simultaneously, which inspires us to develop the uncertain random variable in chance space. Based on the chance theory, we propose the concept of complete convergence and investigate the relations among the existing...
Ausführliche Beschreibung
Autor*in: |
Yu, Yuncai [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: Soft Computing - Springer-Verlag, 2003, 26(2022), 3 vom: 15. Jan., Seite 1025-1031 |
---|---|
Übergeordnetes Werk: |
volume:26 ; year:2022 ; number:3 ; day:15 ; month:01 ; pages:1025-1031 |
Links: |
---|
DOI / URN: |
10.1007/s00500-021-06504-8 |
---|
Katalog-ID: |
SPR046045775 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR046045775 | ||
003 | DE-627 | ||
005 | 20230507091310.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220125s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s00500-021-06504-8 |2 doi | |
035 | |a (DE-627)SPR046045775 | ||
035 | |a (SPR)s00500-021-06504-8-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Yu, Yuncai |e verfasserin |4 aut | |
245 | 1 | 0 | |a On the complete convergence for uncertain random variables |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 | ||
520 | |a Abstract In some complex systems, the randomness and uncertainty phenomena may arise simultaneously, which inspires us to develop the uncertain random variable in chance space. Based on the chance theory, we propose the concept of complete convergence and investigate the relations among the existing common types of convergence including convergence almost surely, convergence in measure, convergence in distribution and convergence in mean. All of the relations are illustrated via the corresponding examples or counterexamples. Additionally, we give an equivalent condition and a sufficient condition of convergence completely for uncertain random variables and provide an example to explain the conditions. | ||
650 | 4 | |a Complete convergence |7 (dpeaa)DE-He213 | |
650 | 4 | |a Chance theory |7 (dpeaa)DE-He213 | |
650 | 4 | |a Uncertain random variable |7 (dpeaa)DE-He213 | |
650 | 4 | |a Equivalent condition |7 (dpeaa)DE-He213 | |
650 | 4 | |a Sufficient condition |7 (dpeaa)DE-He213 | |
700 | 1 | |a Liu, Xinsheng |0 (orcid)0000-0002-3348-9493 |4 aut | |
700 | 1 | |a Zhang, Yu |4 aut | |
700 | 1 | |a Jia, Zhifu |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Soft Computing |d Springer-Verlag, 2003 |g 26(2022), 3 vom: 15. Jan., Seite 1025-1031 |w (DE-627)SPR006469531 |7 nnns |
773 | 1 | 8 | |g volume:26 |g year:2022 |g number:3 |g day:15 |g month:01 |g pages:1025-1031 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s00500-021-06504-8 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
951 | |a AR | ||
952 | |d 26 |j 2022 |e 3 |b 15 |c 01 |h 1025-1031 |
author_variant |
y y yy x l xl y z yz z j zj |
---|---|
matchkey_str |
yuyuncailiuxinshengzhangyujiazhifu:2022----:nhcmltcnegneoucran |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s00500-021-06504-8 doi (DE-627)SPR046045775 (SPR)s00500-021-06504-8-e DE-627 ger DE-627 rakwb eng Yu, Yuncai verfasserin aut On the complete convergence for uncertain random variables 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract In some complex systems, the randomness and uncertainty phenomena may arise simultaneously, which inspires us to develop the uncertain random variable in chance space. Based on the chance theory, we propose the concept of complete convergence and investigate the relations among the existing common types of convergence including convergence almost surely, convergence in measure, convergence in distribution and convergence in mean. All of the relations are illustrated via the corresponding examples or counterexamples. Additionally, we give an equivalent condition and a sufficient condition of convergence completely for uncertain random variables and provide an example to explain the conditions. Complete convergence (dpeaa)DE-He213 Chance theory (dpeaa)DE-He213 Uncertain random variable (dpeaa)DE-He213 Equivalent condition (dpeaa)DE-He213 Sufficient condition (dpeaa)DE-He213 Liu, Xinsheng (orcid)0000-0002-3348-9493 aut Zhang, Yu aut Jia, Zhifu aut Enthalten in Soft Computing Springer-Verlag, 2003 26(2022), 3 vom: 15. Jan., Seite 1025-1031 (DE-627)SPR006469531 nnns volume:26 year:2022 number:3 day:15 month:01 pages:1025-1031 https://dx.doi.org/10.1007/s00500-021-06504-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 26 2022 3 15 01 1025-1031 |
spelling |
10.1007/s00500-021-06504-8 doi (DE-627)SPR046045775 (SPR)s00500-021-06504-8-e DE-627 ger DE-627 rakwb eng Yu, Yuncai verfasserin aut On the complete convergence for uncertain random variables 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract In some complex systems, the randomness and uncertainty phenomena may arise simultaneously, which inspires us to develop the uncertain random variable in chance space. Based on the chance theory, we propose the concept of complete convergence and investigate the relations among the existing common types of convergence including convergence almost surely, convergence in measure, convergence in distribution and convergence in mean. All of the relations are illustrated via the corresponding examples or counterexamples. Additionally, we give an equivalent condition and a sufficient condition of convergence completely for uncertain random variables and provide an example to explain the conditions. Complete convergence (dpeaa)DE-He213 Chance theory (dpeaa)DE-He213 Uncertain random variable (dpeaa)DE-He213 Equivalent condition (dpeaa)DE-He213 Sufficient condition (dpeaa)DE-He213 Liu, Xinsheng (orcid)0000-0002-3348-9493 aut Zhang, Yu aut Jia, Zhifu aut Enthalten in Soft Computing Springer-Verlag, 2003 26(2022), 3 vom: 15. Jan., Seite 1025-1031 (DE-627)SPR006469531 nnns volume:26 year:2022 number:3 day:15 month:01 pages:1025-1031 https://dx.doi.org/10.1007/s00500-021-06504-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 26 2022 3 15 01 1025-1031 |
allfields_unstemmed |
10.1007/s00500-021-06504-8 doi (DE-627)SPR046045775 (SPR)s00500-021-06504-8-e DE-627 ger DE-627 rakwb eng Yu, Yuncai verfasserin aut On the complete convergence for uncertain random variables 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract In some complex systems, the randomness and uncertainty phenomena may arise simultaneously, which inspires us to develop the uncertain random variable in chance space. Based on the chance theory, we propose the concept of complete convergence and investigate the relations among the existing common types of convergence including convergence almost surely, convergence in measure, convergence in distribution and convergence in mean. All of the relations are illustrated via the corresponding examples or counterexamples. Additionally, we give an equivalent condition and a sufficient condition of convergence completely for uncertain random variables and provide an example to explain the conditions. Complete convergence (dpeaa)DE-He213 Chance theory (dpeaa)DE-He213 Uncertain random variable (dpeaa)DE-He213 Equivalent condition (dpeaa)DE-He213 Sufficient condition (dpeaa)DE-He213 Liu, Xinsheng (orcid)0000-0002-3348-9493 aut Zhang, Yu aut Jia, Zhifu aut Enthalten in Soft Computing Springer-Verlag, 2003 26(2022), 3 vom: 15. Jan., Seite 1025-1031 (DE-627)SPR006469531 nnns volume:26 year:2022 number:3 day:15 month:01 pages:1025-1031 https://dx.doi.org/10.1007/s00500-021-06504-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 26 2022 3 15 01 1025-1031 |
allfieldsGer |
10.1007/s00500-021-06504-8 doi (DE-627)SPR046045775 (SPR)s00500-021-06504-8-e DE-627 ger DE-627 rakwb eng Yu, Yuncai verfasserin aut On the complete convergence for uncertain random variables 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract In some complex systems, the randomness and uncertainty phenomena may arise simultaneously, which inspires us to develop the uncertain random variable in chance space. Based on the chance theory, we propose the concept of complete convergence and investigate the relations among the existing common types of convergence including convergence almost surely, convergence in measure, convergence in distribution and convergence in mean. All of the relations are illustrated via the corresponding examples or counterexamples. Additionally, we give an equivalent condition and a sufficient condition of convergence completely for uncertain random variables and provide an example to explain the conditions. Complete convergence (dpeaa)DE-He213 Chance theory (dpeaa)DE-He213 Uncertain random variable (dpeaa)DE-He213 Equivalent condition (dpeaa)DE-He213 Sufficient condition (dpeaa)DE-He213 Liu, Xinsheng (orcid)0000-0002-3348-9493 aut Zhang, Yu aut Jia, Zhifu aut Enthalten in Soft Computing Springer-Verlag, 2003 26(2022), 3 vom: 15. Jan., Seite 1025-1031 (DE-627)SPR006469531 nnns volume:26 year:2022 number:3 day:15 month:01 pages:1025-1031 https://dx.doi.org/10.1007/s00500-021-06504-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 26 2022 3 15 01 1025-1031 |
allfieldsSound |
10.1007/s00500-021-06504-8 doi (DE-627)SPR046045775 (SPR)s00500-021-06504-8-e DE-627 ger DE-627 rakwb eng Yu, Yuncai verfasserin aut On the complete convergence for uncertain random variables 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract In some complex systems, the randomness and uncertainty phenomena may arise simultaneously, which inspires us to develop the uncertain random variable in chance space. Based on the chance theory, we propose the concept of complete convergence and investigate the relations among the existing common types of convergence including convergence almost surely, convergence in measure, convergence in distribution and convergence in mean. All of the relations are illustrated via the corresponding examples or counterexamples. Additionally, we give an equivalent condition and a sufficient condition of convergence completely for uncertain random variables and provide an example to explain the conditions. Complete convergence (dpeaa)DE-He213 Chance theory (dpeaa)DE-He213 Uncertain random variable (dpeaa)DE-He213 Equivalent condition (dpeaa)DE-He213 Sufficient condition (dpeaa)DE-He213 Liu, Xinsheng (orcid)0000-0002-3348-9493 aut Zhang, Yu aut Jia, Zhifu aut Enthalten in Soft Computing Springer-Verlag, 2003 26(2022), 3 vom: 15. Jan., Seite 1025-1031 (DE-627)SPR006469531 nnns volume:26 year:2022 number:3 day:15 month:01 pages:1025-1031 https://dx.doi.org/10.1007/s00500-021-06504-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 26 2022 3 15 01 1025-1031 |
language |
English |
source |
Enthalten in Soft Computing 26(2022), 3 vom: 15. Jan., Seite 1025-1031 volume:26 year:2022 number:3 day:15 month:01 pages:1025-1031 |
sourceStr |
Enthalten in Soft Computing 26(2022), 3 vom: 15. Jan., Seite 1025-1031 volume:26 year:2022 number:3 day:15 month:01 pages:1025-1031 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Complete convergence Chance theory Uncertain random variable Equivalent condition Sufficient condition |
isfreeaccess_bool |
false |
container_title |
Soft Computing |
authorswithroles_txt_mv |
Yu, Yuncai @@aut@@ Liu, Xinsheng @@aut@@ Zhang, Yu @@aut@@ Jia, Zhifu @@aut@@ |
publishDateDaySort_date |
2022-01-15T00:00:00Z |
hierarchy_top_id |
SPR006469531 |
id |
SPR046045775 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR046045775</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507091310.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220125s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00500-021-06504-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR046045775</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00500-021-06504-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yu, Yuncai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the complete convergence for uncertain random variables</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In some complex systems, the randomness and uncertainty phenomena may arise simultaneously, which inspires us to develop the uncertain random variable in chance space. Based on the chance theory, we propose the concept of complete convergence and investigate the relations among the existing common types of convergence including convergence almost surely, convergence in measure, convergence in distribution and convergence in mean. All of the relations are illustrated via the corresponding examples or counterexamples. Additionally, we give an equivalent condition and a sufficient condition of convergence completely for uncertain random variables and provide an example to explain the conditions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complete convergence</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chance theory</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Uncertain random variable</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Equivalent condition</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sufficient condition</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Xinsheng</subfield><subfield code="0">(orcid)0000-0002-3348-9493</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Yu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jia, Zhifu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Soft Computing</subfield><subfield code="d">Springer-Verlag, 2003</subfield><subfield code="g">26(2022), 3 vom: 15. Jan., Seite 1025-1031</subfield><subfield code="w">(DE-627)SPR006469531</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3</subfield><subfield code="g">day:15</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:1025-1031</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00500-021-06504-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">2022</subfield><subfield code="e">3</subfield><subfield code="b">15</subfield><subfield code="c">01</subfield><subfield code="h">1025-1031</subfield></datafield></record></collection>
|
author |
Yu, Yuncai |
spellingShingle |
Yu, Yuncai misc Complete convergence misc Chance theory misc Uncertain random variable misc Equivalent condition misc Sufficient condition On the complete convergence for uncertain random variables |
authorStr |
Yu, Yuncai |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)SPR006469531 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
On the complete convergence for uncertain random variables Complete convergence (dpeaa)DE-He213 Chance theory (dpeaa)DE-He213 Uncertain random variable (dpeaa)DE-He213 Equivalent condition (dpeaa)DE-He213 Sufficient condition (dpeaa)DE-He213 |
topic |
misc Complete convergence misc Chance theory misc Uncertain random variable misc Equivalent condition misc Sufficient condition |
topic_unstemmed |
misc Complete convergence misc Chance theory misc Uncertain random variable misc Equivalent condition misc Sufficient condition |
topic_browse |
misc Complete convergence misc Chance theory misc Uncertain random variable misc Equivalent condition misc Sufficient condition |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Soft Computing |
hierarchy_parent_id |
SPR006469531 |
hierarchy_top_title |
Soft Computing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)SPR006469531 |
title |
On the complete convergence for uncertain random variables |
ctrlnum |
(DE-627)SPR046045775 (SPR)s00500-021-06504-8-e |
title_full |
On the complete convergence for uncertain random variables |
author_sort |
Yu, Yuncai |
journal |
Soft Computing |
journalStr |
Soft Computing |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
1025 |
author_browse |
Yu, Yuncai Liu, Xinsheng Zhang, Yu Jia, Zhifu |
container_volume |
26 |
format_se |
Elektronische Aufsätze |
author-letter |
Yu, Yuncai |
doi_str_mv |
10.1007/s00500-021-06504-8 |
normlink |
(ORCID)0000-0002-3348-9493 |
normlink_prefix_str_mv |
(orcid)0000-0002-3348-9493 |
title_sort |
on the complete convergence for uncertain random variables |
title_auth |
On the complete convergence for uncertain random variables |
abstract |
Abstract In some complex systems, the randomness and uncertainty phenomena may arise simultaneously, which inspires us to develop the uncertain random variable in chance space. Based on the chance theory, we propose the concept of complete convergence and investigate the relations among the existing common types of convergence including convergence almost surely, convergence in measure, convergence in distribution and convergence in mean. All of the relations are illustrated via the corresponding examples or counterexamples. Additionally, we give an equivalent condition and a sufficient condition of convergence completely for uncertain random variables and provide an example to explain the conditions. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 |
abstractGer |
Abstract In some complex systems, the randomness and uncertainty phenomena may arise simultaneously, which inspires us to develop the uncertain random variable in chance space. Based on the chance theory, we propose the concept of complete convergence and investigate the relations among the existing common types of convergence including convergence almost surely, convergence in measure, convergence in distribution and convergence in mean. All of the relations are illustrated via the corresponding examples or counterexamples. Additionally, we give an equivalent condition and a sufficient condition of convergence completely for uncertain random variables and provide an example to explain the conditions. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 |
abstract_unstemmed |
Abstract In some complex systems, the randomness and uncertainty phenomena may arise simultaneously, which inspires us to develop the uncertain random variable in chance space. Based on the chance theory, we propose the concept of complete convergence and investigate the relations among the existing common types of convergence including convergence almost surely, convergence in measure, convergence in distribution and convergence in mean. All of the relations are illustrated via the corresponding examples or counterexamples. Additionally, we give an equivalent condition and a sufficient condition of convergence completely for uncertain random variables and provide an example to explain the conditions. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER |
container_issue |
3 |
title_short |
On the complete convergence for uncertain random variables |
url |
https://dx.doi.org/10.1007/s00500-021-06504-8 |
remote_bool |
true |
author2 |
Liu, Xinsheng Zhang, Yu Jia, Zhifu |
author2Str |
Liu, Xinsheng Zhang, Yu Jia, Zhifu |
ppnlink |
SPR006469531 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00500-021-06504-8 |
up_date |
2024-07-03T19:59:01.703Z |
_version_ |
1803589246469013504 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR046045775</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507091310.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220125s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00500-021-06504-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR046045775</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00500-021-06504-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yu, Yuncai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the complete convergence for uncertain random variables</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In some complex systems, the randomness and uncertainty phenomena may arise simultaneously, which inspires us to develop the uncertain random variable in chance space. Based on the chance theory, we propose the concept of complete convergence and investigate the relations among the existing common types of convergence including convergence almost surely, convergence in measure, convergence in distribution and convergence in mean. All of the relations are illustrated via the corresponding examples or counterexamples. Additionally, we give an equivalent condition and a sufficient condition of convergence completely for uncertain random variables and provide an example to explain the conditions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complete convergence</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chance theory</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Uncertain random variable</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Equivalent condition</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sufficient condition</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Xinsheng</subfield><subfield code="0">(orcid)0000-0002-3348-9493</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Yu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jia, Zhifu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Soft Computing</subfield><subfield code="d">Springer-Verlag, 2003</subfield><subfield code="g">26(2022), 3 vom: 15. Jan., Seite 1025-1031</subfield><subfield code="w">(DE-627)SPR006469531</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3</subfield><subfield code="g">day:15</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:1025-1031</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00500-021-06504-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">2022</subfield><subfield code="e">3</subfield><subfield code="b">15</subfield><subfield code="c">01</subfield><subfield code="h">1025-1031</subfield></datafield></record></collection>
|
score |
7.40125 |