Completeness-Resolvable Graphs
Abstract Given a connected graph %$G=(V(G), E(G))%$, the length of a shortest path from a vertex u to a vertex v is denoted by d(u, v). For a proper subset W of V(G), let m(W) be the maximum value of d(u, v) as u ranging over W and v ranging over %$V(G)\setminus W%$. The proper subset %$W=\{w_1,\ldo...
Ausführliche Beschreibung
Autor*in: |
Feng, Min [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Japan KK, part of Springer Nature 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: Graphs and combinatorics - Tokyo : Springer-Verl. Tokyo, 1985, 38(2022), 2 vom: 01. Feb. |
---|---|
Übergeordnetes Werk: |
volume:38 ; year:2022 ; number:2 ; day:01 ; month:02 |
Links: |
---|
DOI / URN: |
10.1007/s00373-021-02447-x |
---|
Katalog-ID: |
SPR046119655 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR046119655 | ||
003 | DE-627 | ||
005 | 20230507140429.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220202s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s00373-021-02447-x |2 doi | |
035 | |a (DE-627)SPR046119655 | ||
035 | |a (SPR)s00373-021-02447-x-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Feng, Min |e verfasserin |0 (orcid)0000-0002-5246-0944 |4 aut | |
245 | 1 | 0 | |a Completeness-Resolvable Graphs |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Japan KK, part of Springer Nature 2021 | ||
520 | |a Abstract Given a connected graph %$G=(V(G), E(G))%$, the length of a shortest path from a vertex u to a vertex v is denoted by d(u, v). For a proper subset W of V(G), let m(W) be the maximum value of d(u, v) as u ranging over W and v ranging over %$V(G)\setminus W%$. The proper subset %$W=\{w_1,\ldots ,w_{|W|}\}%$ is a completeness-resolving set of G if ΨW:V(G)\W⟶[m(W)]|W|,u⟼(d(w1,u),…,d(w|W|,u))%$\begin{aligned} \Psi _W: V(G)\setminus W \longrightarrow [m(W)]^{|W|},\qquad u\longmapsto (d(w_1,u),\ldots ,d(w_{|W|},u)) \end{aligned}%$is a bijection, where [m(W)]|W|={(a(1),…,a(|W|))∣1≤a(i)≤m(W)for eachi=1,…,|W|}.%$\begin{aligned}{}[m(W)]^{|W|}=\{(a_{(1)},\ldots ,a_{(|W|)})\mid 1\le a_{(i)}\le m(W)\text { for each }i=1,\ldots ,|W|\}. \end{aligned}%$A graph is completeness-resolvable if it admits a completeness-resolving set. In this paper, we first construct the set of all completeness-resolvable graphs by using the edge coverings of some vertices in given bipartite graphs, and then establish posets on some subsets of this set by the spanning subgraph relationship. Based on each poset, we find the maximum graph and give the lower and upper bounds for the number of edges in a minimal graph. Furthermore, minimal graphs satisfying the lower or upper bound are characterized. | ||
650 | 4 | |a Completeness-resolvable |7 (dpeaa)DE-He213 | |
650 | 4 | |a Resolving sets |7 (dpeaa)DE-He213 | |
650 | 4 | |a Distance |7 (dpeaa)DE-He213 | |
650 | 4 | |a Edge coverings |7 (dpeaa)DE-He213 | |
650 | 4 | |a Bipartite graphs |7 (dpeaa)DE-He213 | |
700 | 1 | |a Ma, Xuanlong |4 aut | |
700 | 1 | |a Xu, Huiling |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Graphs and combinatorics |d Tokyo : Springer-Verl. Tokyo, 1985 |g 38(2022), 2 vom: 01. Feb. |w (DE-627)30018381X |w (DE-600)1481435-3 |x 1435-5914 |7 nnns |
773 | 1 | 8 | |g volume:38 |g year:2022 |g number:2 |g day:01 |g month:02 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s00373-021-02447-x |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 38 |j 2022 |e 2 |b 01 |c 02 |
author_variant |
m f mf x m xm h x hx |
---|---|
matchkey_str |
article:14355914:2022----::opeeeseovb |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s00373-021-02447-x doi (DE-627)SPR046119655 (SPR)s00373-021-02447-x-e DE-627 ger DE-627 rakwb eng Feng, Min verfasserin (orcid)0000-0002-5246-0944 aut Completeness-Resolvable Graphs 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Japan KK, part of Springer Nature 2021 Abstract Given a connected graph %$G=(V(G), E(G))%$, the length of a shortest path from a vertex u to a vertex v is denoted by d(u, v). For a proper subset W of V(G), let m(W) be the maximum value of d(u, v) as u ranging over W and v ranging over %$V(G)\setminus W%$. The proper subset %$W=\{w_1,\ldots ,w_{|W|}\}%$ is a completeness-resolving set of G if ΨW:V(G)\W⟶[m(W)]|W|,u⟼(d(w1,u),…,d(w|W|,u))%$\begin{aligned} \Psi _W: V(G)\setminus W \longrightarrow [m(W)]^{|W|},\qquad u\longmapsto (d(w_1,u),\ldots ,d(w_{|W|},u)) \end{aligned}%$is a bijection, where [m(W)]|W|={(a(1),…,a(|W|))∣1≤a(i)≤m(W)for eachi=1,…,|W|}.%$\begin{aligned}{}[m(W)]^{|W|}=\{(a_{(1)},\ldots ,a_{(|W|)})\mid 1\le a_{(i)}\le m(W)\text { for each }i=1,\ldots ,|W|\}. \end{aligned}%$A graph is completeness-resolvable if it admits a completeness-resolving set. In this paper, we first construct the set of all completeness-resolvable graphs by using the edge coverings of some vertices in given bipartite graphs, and then establish posets on some subsets of this set by the spanning subgraph relationship. Based on each poset, we find the maximum graph and give the lower and upper bounds for the number of edges in a minimal graph. Furthermore, minimal graphs satisfying the lower or upper bound are characterized. Completeness-resolvable (dpeaa)DE-He213 Resolving sets (dpeaa)DE-He213 Distance (dpeaa)DE-He213 Edge coverings (dpeaa)DE-He213 Bipartite graphs (dpeaa)DE-He213 Ma, Xuanlong aut Xu, Huiling aut Enthalten in Graphs and combinatorics Tokyo : Springer-Verl. Tokyo, 1985 38(2022), 2 vom: 01. Feb. (DE-627)30018381X (DE-600)1481435-3 1435-5914 nnns volume:38 year:2022 number:2 day:01 month:02 https://dx.doi.org/10.1007/s00373-021-02447-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 38 2022 2 01 02 |
spelling |
10.1007/s00373-021-02447-x doi (DE-627)SPR046119655 (SPR)s00373-021-02447-x-e DE-627 ger DE-627 rakwb eng Feng, Min verfasserin (orcid)0000-0002-5246-0944 aut Completeness-Resolvable Graphs 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Japan KK, part of Springer Nature 2021 Abstract Given a connected graph %$G=(V(G), E(G))%$, the length of a shortest path from a vertex u to a vertex v is denoted by d(u, v). For a proper subset W of V(G), let m(W) be the maximum value of d(u, v) as u ranging over W and v ranging over %$V(G)\setminus W%$. The proper subset %$W=\{w_1,\ldots ,w_{|W|}\}%$ is a completeness-resolving set of G if ΨW:V(G)\W⟶[m(W)]|W|,u⟼(d(w1,u),…,d(w|W|,u))%$\begin{aligned} \Psi _W: V(G)\setminus W \longrightarrow [m(W)]^{|W|},\qquad u\longmapsto (d(w_1,u),\ldots ,d(w_{|W|},u)) \end{aligned}%$is a bijection, where [m(W)]|W|={(a(1),…,a(|W|))∣1≤a(i)≤m(W)for eachi=1,…,|W|}.%$\begin{aligned}{}[m(W)]^{|W|}=\{(a_{(1)},\ldots ,a_{(|W|)})\mid 1\le a_{(i)}\le m(W)\text { for each }i=1,\ldots ,|W|\}. \end{aligned}%$A graph is completeness-resolvable if it admits a completeness-resolving set. In this paper, we first construct the set of all completeness-resolvable graphs by using the edge coverings of some vertices in given bipartite graphs, and then establish posets on some subsets of this set by the spanning subgraph relationship. Based on each poset, we find the maximum graph and give the lower and upper bounds for the number of edges in a minimal graph. Furthermore, minimal graphs satisfying the lower or upper bound are characterized. Completeness-resolvable (dpeaa)DE-He213 Resolving sets (dpeaa)DE-He213 Distance (dpeaa)DE-He213 Edge coverings (dpeaa)DE-He213 Bipartite graphs (dpeaa)DE-He213 Ma, Xuanlong aut Xu, Huiling aut Enthalten in Graphs and combinatorics Tokyo : Springer-Verl. Tokyo, 1985 38(2022), 2 vom: 01. Feb. (DE-627)30018381X (DE-600)1481435-3 1435-5914 nnns volume:38 year:2022 number:2 day:01 month:02 https://dx.doi.org/10.1007/s00373-021-02447-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 38 2022 2 01 02 |
allfields_unstemmed |
10.1007/s00373-021-02447-x doi (DE-627)SPR046119655 (SPR)s00373-021-02447-x-e DE-627 ger DE-627 rakwb eng Feng, Min verfasserin (orcid)0000-0002-5246-0944 aut Completeness-Resolvable Graphs 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Japan KK, part of Springer Nature 2021 Abstract Given a connected graph %$G=(V(G), E(G))%$, the length of a shortest path from a vertex u to a vertex v is denoted by d(u, v). For a proper subset W of V(G), let m(W) be the maximum value of d(u, v) as u ranging over W and v ranging over %$V(G)\setminus W%$. The proper subset %$W=\{w_1,\ldots ,w_{|W|}\}%$ is a completeness-resolving set of G if ΨW:V(G)\W⟶[m(W)]|W|,u⟼(d(w1,u),…,d(w|W|,u))%$\begin{aligned} \Psi _W: V(G)\setminus W \longrightarrow [m(W)]^{|W|},\qquad u\longmapsto (d(w_1,u),\ldots ,d(w_{|W|},u)) \end{aligned}%$is a bijection, where [m(W)]|W|={(a(1),…,a(|W|))∣1≤a(i)≤m(W)for eachi=1,…,|W|}.%$\begin{aligned}{}[m(W)]^{|W|}=\{(a_{(1)},\ldots ,a_{(|W|)})\mid 1\le a_{(i)}\le m(W)\text { for each }i=1,\ldots ,|W|\}. \end{aligned}%$A graph is completeness-resolvable if it admits a completeness-resolving set. In this paper, we first construct the set of all completeness-resolvable graphs by using the edge coverings of some vertices in given bipartite graphs, and then establish posets on some subsets of this set by the spanning subgraph relationship. Based on each poset, we find the maximum graph and give the lower and upper bounds for the number of edges in a minimal graph. Furthermore, minimal graphs satisfying the lower or upper bound are characterized. Completeness-resolvable (dpeaa)DE-He213 Resolving sets (dpeaa)DE-He213 Distance (dpeaa)DE-He213 Edge coverings (dpeaa)DE-He213 Bipartite graphs (dpeaa)DE-He213 Ma, Xuanlong aut Xu, Huiling aut Enthalten in Graphs and combinatorics Tokyo : Springer-Verl. Tokyo, 1985 38(2022), 2 vom: 01. Feb. (DE-627)30018381X (DE-600)1481435-3 1435-5914 nnns volume:38 year:2022 number:2 day:01 month:02 https://dx.doi.org/10.1007/s00373-021-02447-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 38 2022 2 01 02 |
allfieldsGer |
10.1007/s00373-021-02447-x doi (DE-627)SPR046119655 (SPR)s00373-021-02447-x-e DE-627 ger DE-627 rakwb eng Feng, Min verfasserin (orcid)0000-0002-5246-0944 aut Completeness-Resolvable Graphs 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Japan KK, part of Springer Nature 2021 Abstract Given a connected graph %$G=(V(G), E(G))%$, the length of a shortest path from a vertex u to a vertex v is denoted by d(u, v). For a proper subset W of V(G), let m(W) be the maximum value of d(u, v) as u ranging over W and v ranging over %$V(G)\setminus W%$. The proper subset %$W=\{w_1,\ldots ,w_{|W|}\}%$ is a completeness-resolving set of G if ΨW:V(G)\W⟶[m(W)]|W|,u⟼(d(w1,u),…,d(w|W|,u))%$\begin{aligned} \Psi _W: V(G)\setminus W \longrightarrow [m(W)]^{|W|},\qquad u\longmapsto (d(w_1,u),\ldots ,d(w_{|W|},u)) \end{aligned}%$is a bijection, where [m(W)]|W|={(a(1),…,a(|W|))∣1≤a(i)≤m(W)for eachi=1,…,|W|}.%$\begin{aligned}{}[m(W)]^{|W|}=\{(a_{(1)},\ldots ,a_{(|W|)})\mid 1\le a_{(i)}\le m(W)\text { for each }i=1,\ldots ,|W|\}. \end{aligned}%$A graph is completeness-resolvable if it admits a completeness-resolving set. In this paper, we first construct the set of all completeness-resolvable graphs by using the edge coverings of some vertices in given bipartite graphs, and then establish posets on some subsets of this set by the spanning subgraph relationship. Based on each poset, we find the maximum graph and give the lower and upper bounds for the number of edges in a minimal graph. Furthermore, minimal graphs satisfying the lower or upper bound are characterized. Completeness-resolvable (dpeaa)DE-He213 Resolving sets (dpeaa)DE-He213 Distance (dpeaa)DE-He213 Edge coverings (dpeaa)DE-He213 Bipartite graphs (dpeaa)DE-He213 Ma, Xuanlong aut Xu, Huiling aut Enthalten in Graphs and combinatorics Tokyo : Springer-Verl. Tokyo, 1985 38(2022), 2 vom: 01. Feb. (DE-627)30018381X (DE-600)1481435-3 1435-5914 nnns volume:38 year:2022 number:2 day:01 month:02 https://dx.doi.org/10.1007/s00373-021-02447-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 38 2022 2 01 02 |
allfieldsSound |
10.1007/s00373-021-02447-x doi (DE-627)SPR046119655 (SPR)s00373-021-02447-x-e DE-627 ger DE-627 rakwb eng Feng, Min verfasserin (orcid)0000-0002-5246-0944 aut Completeness-Resolvable Graphs 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Japan KK, part of Springer Nature 2021 Abstract Given a connected graph %$G=(V(G), E(G))%$, the length of a shortest path from a vertex u to a vertex v is denoted by d(u, v). For a proper subset W of V(G), let m(W) be the maximum value of d(u, v) as u ranging over W and v ranging over %$V(G)\setminus W%$. The proper subset %$W=\{w_1,\ldots ,w_{|W|}\}%$ is a completeness-resolving set of G if ΨW:V(G)\W⟶[m(W)]|W|,u⟼(d(w1,u),…,d(w|W|,u))%$\begin{aligned} \Psi _W: V(G)\setminus W \longrightarrow [m(W)]^{|W|},\qquad u\longmapsto (d(w_1,u),\ldots ,d(w_{|W|},u)) \end{aligned}%$is a bijection, where [m(W)]|W|={(a(1),…,a(|W|))∣1≤a(i)≤m(W)for eachi=1,…,|W|}.%$\begin{aligned}{}[m(W)]^{|W|}=\{(a_{(1)},\ldots ,a_{(|W|)})\mid 1\le a_{(i)}\le m(W)\text { for each }i=1,\ldots ,|W|\}. \end{aligned}%$A graph is completeness-resolvable if it admits a completeness-resolving set. In this paper, we first construct the set of all completeness-resolvable graphs by using the edge coverings of some vertices in given bipartite graphs, and then establish posets on some subsets of this set by the spanning subgraph relationship. Based on each poset, we find the maximum graph and give the lower and upper bounds for the number of edges in a minimal graph. Furthermore, minimal graphs satisfying the lower or upper bound are characterized. Completeness-resolvable (dpeaa)DE-He213 Resolving sets (dpeaa)DE-He213 Distance (dpeaa)DE-He213 Edge coverings (dpeaa)DE-He213 Bipartite graphs (dpeaa)DE-He213 Ma, Xuanlong aut Xu, Huiling aut Enthalten in Graphs and combinatorics Tokyo : Springer-Verl. Tokyo, 1985 38(2022), 2 vom: 01. Feb. (DE-627)30018381X (DE-600)1481435-3 1435-5914 nnns volume:38 year:2022 number:2 day:01 month:02 https://dx.doi.org/10.1007/s00373-021-02447-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 38 2022 2 01 02 |
language |
English |
source |
Enthalten in Graphs and combinatorics 38(2022), 2 vom: 01. Feb. volume:38 year:2022 number:2 day:01 month:02 |
sourceStr |
Enthalten in Graphs and combinatorics 38(2022), 2 vom: 01. Feb. volume:38 year:2022 number:2 day:01 month:02 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Completeness-resolvable Resolving sets Distance Edge coverings Bipartite graphs |
isfreeaccess_bool |
false |
container_title |
Graphs and combinatorics |
authorswithroles_txt_mv |
Feng, Min @@aut@@ Ma, Xuanlong @@aut@@ Xu, Huiling @@aut@@ |
publishDateDaySort_date |
2022-02-01T00:00:00Z |
hierarchy_top_id |
30018381X |
id |
SPR046119655 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR046119655</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507140429.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220202s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00373-021-02447-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR046119655</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00373-021-02447-x-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Feng, Min</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-5246-0944</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Completeness-Resolvable Graphs</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Japan KK, part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Given a connected graph %$G=(V(G), E(G))%$, the length of a shortest path from a vertex u to a vertex v is denoted by d(u, v). For a proper subset W of V(G), let m(W) be the maximum value of d(u, v) as u ranging over W and v ranging over %$V(G)\setminus W%$. The proper subset %$W=\{w_1,\ldots ,w_{|W|}\}%$ is a completeness-resolving set of G if ΨW:V(G)\W⟶[m(W)]|W|,u⟼(d(w1,u),…,d(w|W|,u))%$\begin{aligned} \Psi _W: V(G)\setminus W \longrightarrow [m(W)]^{|W|},\qquad u\longmapsto (d(w_1,u),\ldots ,d(w_{|W|},u)) \end{aligned}%$is a bijection, where [m(W)]|W|={(a(1),…,a(|W|))∣1≤a(i)≤m(W)for eachi=1,…,|W|}.%$\begin{aligned}{}[m(W)]^{|W|}=\{(a_{(1)},\ldots ,a_{(|W|)})\mid 1\le a_{(i)}\le m(W)\text { for each }i=1,\ldots ,|W|\}. \end{aligned}%$A graph is completeness-resolvable if it admits a completeness-resolving set. In this paper, we first construct the set of all completeness-resolvable graphs by using the edge coverings of some vertices in given bipartite graphs, and then establish posets on some subsets of this set by the spanning subgraph relationship. Based on each poset, we find the maximum graph and give the lower and upper bounds for the number of edges in a minimal graph. Furthermore, minimal graphs satisfying the lower or upper bound are characterized.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Completeness-resolvable</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Resolving sets</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distance</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Edge coverings</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bipartite graphs</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Xuanlong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Huiling</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Graphs and combinatorics</subfield><subfield code="d">Tokyo : Springer-Verl. Tokyo, 1985</subfield><subfield code="g">38(2022), 2 vom: 01. Feb.</subfield><subfield code="w">(DE-627)30018381X</subfield><subfield code="w">(DE-600)1481435-3</subfield><subfield code="x">1435-5914</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:38</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:2</subfield><subfield code="g">day:01</subfield><subfield code="g">month:02</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00373-021-02447-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">38</subfield><subfield code="j">2022</subfield><subfield code="e">2</subfield><subfield code="b">01</subfield><subfield code="c">02</subfield></datafield></record></collection>
|
author |
Feng, Min |
spellingShingle |
Feng, Min misc Completeness-resolvable misc Resolving sets misc Distance misc Edge coverings misc Bipartite graphs Completeness-Resolvable Graphs |
authorStr |
Feng, Min |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)30018381X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1435-5914 |
topic_title |
Completeness-Resolvable Graphs Completeness-resolvable (dpeaa)DE-He213 Resolving sets (dpeaa)DE-He213 Distance (dpeaa)DE-He213 Edge coverings (dpeaa)DE-He213 Bipartite graphs (dpeaa)DE-He213 |
topic |
misc Completeness-resolvable misc Resolving sets misc Distance misc Edge coverings misc Bipartite graphs |
topic_unstemmed |
misc Completeness-resolvable misc Resolving sets misc Distance misc Edge coverings misc Bipartite graphs |
topic_browse |
misc Completeness-resolvable misc Resolving sets misc Distance misc Edge coverings misc Bipartite graphs |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Graphs and combinatorics |
hierarchy_parent_id |
30018381X |
hierarchy_top_title |
Graphs and combinatorics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)30018381X (DE-600)1481435-3 |
title |
Completeness-Resolvable Graphs |
ctrlnum |
(DE-627)SPR046119655 (SPR)s00373-021-02447-x-e |
title_full |
Completeness-Resolvable Graphs |
author_sort |
Feng, Min |
journal |
Graphs and combinatorics |
journalStr |
Graphs and combinatorics |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Feng, Min Ma, Xuanlong Xu, Huiling |
container_volume |
38 |
format_se |
Elektronische Aufsätze |
author-letter |
Feng, Min |
doi_str_mv |
10.1007/s00373-021-02447-x |
normlink |
(ORCID)0000-0002-5246-0944 |
normlink_prefix_str_mv |
(orcid)0000-0002-5246-0944 |
title_sort |
completeness-resolvable graphs |
title_auth |
Completeness-Resolvable Graphs |
abstract |
Abstract Given a connected graph %$G=(V(G), E(G))%$, the length of a shortest path from a vertex u to a vertex v is denoted by d(u, v). For a proper subset W of V(G), let m(W) be the maximum value of d(u, v) as u ranging over W and v ranging over %$V(G)\setminus W%$. The proper subset %$W=\{w_1,\ldots ,w_{|W|}\}%$ is a completeness-resolving set of G if ΨW:V(G)\W⟶[m(W)]|W|,u⟼(d(w1,u),…,d(w|W|,u))%$\begin{aligned} \Psi _W: V(G)\setminus W \longrightarrow [m(W)]^{|W|},\qquad u\longmapsto (d(w_1,u),\ldots ,d(w_{|W|},u)) \end{aligned}%$is a bijection, where [m(W)]|W|={(a(1),…,a(|W|))∣1≤a(i)≤m(W)for eachi=1,…,|W|}.%$\begin{aligned}{}[m(W)]^{|W|}=\{(a_{(1)},\ldots ,a_{(|W|)})\mid 1\le a_{(i)}\le m(W)\text { for each }i=1,\ldots ,|W|\}. \end{aligned}%$A graph is completeness-resolvable if it admits a completeness-resolving set. In this paper, we first construct the set of all completeness-resolvable graphs by using the edge coverings of some vertices in given bipartite graphs, and then establish posets on some subsets of this set by the spanning subgraph relationship. Based on each poset, we find the maximum graph and give the lower and upper bounds for the number of edges in a minimal graph. Furthermore, minimal graphs satisfying the lower or upper bound are characterized. © The Author(s), under exclusive licence to Springer Japan KK, part of Springer Nature 2021 |
abstractGer |
Abstract Given a connected graph %$G=(V(G), E(G))%$, the length of a shortest path from a vertex u to a vertex v is denoted by d(u, v). For a proper subset W of V(G), let m(W) be the maximum value of d(u, v) as u ranging over W and v ranging over %$V(G)\setminus W%$. The proper subset %$W=\{w_1,\ldots ,w_{|W|}\}%$ is a completeness-resolving set of G if ΨW:V(G)\W⟶[m(W)]|W|,u⟼(d(w1,u),…,d(w|W|,u))%$\begin{aligned} \Psi _W: V(G)\setminus W \longrightarrow [m(W)]^{|W|},\qquad u\longmapsto (d(w_1,u),\ldots ,d(w_{|W|},u)) \end{aligned}%$is a bijection, where [m(W)]|W|={(a(1),…,a(|W|))∣1≤a(i)≤m(W)for eachi=1,…,|W|}.%$\begin{aligned}{}[m(W)]^{|W|}=\{(a_{(1)},\ldots ,a_{(|W|)})\mid 1\le a_{(i)}\le m(W)\text { for each }i=1,\ldots ,|W|\}. \end{aligned}%$A graph is completeness-resolvable if it admits a completeness-resolving set. In this paper, we first construct the set of all completeness-resolvable graphs by using the edge coverings of some vertices in given bipartite graphs, and then establish posets on some subsets of this set by the spanning subgraph relationship. Based on each poset, we find the maximum graph and give the lower and upper bounds for the number of edges in a minimal graph. Furthermore, minimal graphs satisfying the lower or upper bound are characterized. © The Author(s), under exclusive licence to Springer Japan KK, part of Springer Nature 2021 |
abstract_unstemmed |
Abstract Given a connected graph %$G=(V(G), E(G))%$, the length of a shortest path from a vertex u to a vertex v is denoted by d(u, v). For a proper subset W of V(G), let m(W) be the maximum value of d(u, v) as u ranging over W and v ranging over %$V(G)\setminus W%$. The proper subset %$W=\{w_1,\ldots ,w_{|W|}\}%$ is a completeness-resolving set of G if ΨW:V(G)\W⟶[m(W)]|W|,u⟼(d(w1,u),…,d(w|W|,u))%$\begin{aligned} \Psi _W: V(G)\setminus W \longrightarrow [m(W)]^{|W|},\qquad u\longmapsto (d(w_1,u),\ldots ,d(w_{|W|},u)) \end{aligned}%$is a bijection, where [m(W)]|W|={(a(1),…,a(|W|))∣1≤a(i)≤m(W)for eachi=1,…,|W|}.%$\begin{aligned}{}[m(W)]^{|W|}=\{(a_{(1)},\ldots ,a_{(|W|)})\mid 1\le a_{(i)}\le m(W)\text { for each }i=1,\ldots ,|W|\}. \end{aligned}%$A graph is completeness-resolvable if it admits a completeness-resolving set. In this paper, we first construct the set of all completeness-resolvable graphs by using the edge coverings of some vertices in given bipartite graphs, and then establish posets on some subsets of this set by the spanning subgraph relationship. Based on each poset, we find the maximum graph and give the lower and upper bounds for the number of edges in a minimal graph. Furthermore, minimal graphs satisfying the lower or upper bound are characterized. © The Author(s), under exclusive licence to Springer Japan KK, part of Springer Nature 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
2 |
title_short |
Completeness-Resolvable Graphs |
url |
https://dx.doi.org/10.1007/s00373-021-02447-x |
remote_bool |
true |
author2 |
Ma, Xuanlong Xu, Huiling |
author2Str |
Ma, Xuanlong Xu, Huiling |
ppnlink |
30018381X |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00373-021-02447-x |
up_date |
2024-07-03T20:29:28.138Z |
_version_ |
1803591161627017216 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR046119655</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507140429.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220202s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00373-021-02447-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR046119655</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00373-021-02447-x-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Feng, Min</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-5246-0944</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Completeness-Resolvable Graphs</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Japan KK, part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Given a connected graph %$G=(V(G), E(G))%$, the length of a shortest path from a vertex u to a vertex v is denoted by d(u, v). For a proper subset W of V(G), let m(W) be the maximum value of d(u, v) as u ranging over W and v ranging over %$V(G)\setminus W%$. The proper subset %$W=\{w_1,\ldots ,w_{|W|}\}%$ is a completeness-resolving set of G if ΨW:V(G)\W⟶[m(W)]|W|,u⟼(d(w1,u),…,d(w|W|,u))%$\begin{aligned} \Psi _W: V(G)\setminus W \longrightarrow [m(W)]^{|W|},\qquad u\longmapsto (d(w_1,u),\ldots ,d(w_{|W|},u)) \end{aligned}%$is a bijection, where [m(W)]|W|={(a(1),…,a(|W|))∣1≤a(i)≤m(W)for eachi=1,…,|W|}.%$\begin{aligned}{}[m(W)]^{|W|}=\{(a_{(1)},\ldots ,a_{(|W|)})\mid 1\le a_{(i)}\le m(W)\text { for each }i=1,\ldots ,|W|\}. \end{aligned}%$A graph is completeness-resolvable if it admits a completeness-resolving set. In this paper, we first construct the set of all completeness-resolvable graphs by using the edge coverings of some vertices in given bipartite graphs, and then establish posets on some subsets of this set by the spanning subgraph relationship. Based on each poset, we find the maximum graph and give the lower and upper bounds for the number of edges in a minimal graph. Furthermore, minimal graphs satisfying the lower or upper bound are characterized.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Completeness-resolvable</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Resolving sets</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distance</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Edge coverings</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bipartite graphs</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Xuanlong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Huiling</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Graphs and combinatorics</subfield><subfield code="d">Tokyo : Springer-Verl. Tokyo, 1985</subfield><subfield code="g">38(2022), 2 vom: 01. Feb.</subfield><subfield code="w">(DE-627)30018381X</subfield><subfield code="w">(DE-600)1481435-3</subfield><subfield code="x">1435-5914</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:38</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:2</subfield><subfield code="g">day:01</subfield><subfield code="g">month:02</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00373-021-02447-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">38</subfield><subfield code="j">2022</subfield><subfield code="e">2</subfield><subfield code="b">01</subfield><subfield code="c">02</subfield></datafield></record></collection>
|
score |
7.4003897 |