Deep learning-assisted PET imaging achieves fast scan/low-dose examination
Purpose This study aimed to investigate the impact of a deep learning (DL)-based denoising method on the image quality and lesion detectability of 18F-FDG positron emission tomography (PET) images. Methods Fifty-two oncological patients undergoing an 18F-FDG PET/CT imaging with an acquisition of 180...
Ausführliche Beschreibung
Autor*in: |
Xing, Yan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
Positron emission tomography and computed tomography (PET/CT) |
---|
Anmerkung: |
© The Author(s) 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: EJNMMI Physics - Berlin : SpringerOpen, 2014, 9(2022), 1 vom: 04. Feb. |
---|---|
Übergeordnetes Werk: |
volume:9 ; year:2022 ; number:1 ; day:04 ; month:02 |
Links: |
---|
DOI / URN: |
10.1186/s40658-022-00431-9 |
---|
Katalog-ID: |
SPR046158901 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR046158901 | ||
003 | DE-627 | ||
005 | 20230507100850.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220205s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s40658-022-00431-9 |2 doi | |
035 | |a (DE-627)SPR046158901 | ||
035 | |a (SPR)s40658-022-00431-9-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Xing, Yan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Deep learning-assisted PET imaging achieves fast scan/low-dose examination |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2022 | ||
520 | |a Purpose This study aimed to investigate the impact of a deep learning (DL)-based denoising method on the image quality and lesion detectability of 18F-FDG positron emission tomography (PET) images. Methods Fifty-two oncological patients undergoing an 18F-FDG PET/CT imaging with an acquisition of 180 s per bed position were retrospectively included. The list-mode data were rebinned into four datasets: 100% (reference), 75%, 50%, and 33.3% of the total counts, and then reconstructed by OSEM algorithm and post-processed with the DL and Gaussian filter (GS). The image quality was assessed using a 5-point Likert scale, and FDG-avid lesions were counted to measure lesion detectability. Standardized uptake values (SUVs) in livers and lesions, liver signal-to-noise ratio (SNR) and target-to-background ratio (TBR) values were compared between the methods. Subgroup analyses compared TBRs after categorizing lesions based on parameters like lesion diameter, uptake or patient habitus. Results The DL method showed superior performance regarding image noise and inferior performance regarding lesion contrast in the qualitative assessment. More than 96.8% of the lesions were successfully identified in DL images. Excellent agreements on SUV in livers and lesions were found. The DL method significantly improved the liver SNR for count reduction down to 33.3% (p < 0.001). Lesion TBR was not significantly different between DL and reference images of the 75% dataset; furthermore, there was no significant difference either for lesions of > 10 mm or lesions in BMIs of > 25. For the 50% dataset, there was no significant difference between DL and reference images for TBR of lesion with > 15 mm or higher uptake than liver. Conclusions The developed DL method improved both liver SNR and lesion TBR indicating better image quality and lesion conspicuousness compared to GS method. Compared with the reference, it showed non-inferior image quality with reduced counts by 25–50% under various conditions. | ||
650 | 4 | |a Positron emission tomography and computed tomography (PET/CT) |7 (dpeaa)DE-He213 | |
650 | 4 | |a Deep learning |7 (dpeaa)DE-He213 | |
650 | 4 | |a Denoising technique |7 (dpeaa)DE-He213 | |
650 | 4 | |a Image quality |7 (dpeaa)DE-He213 | |
700 | 1 | |a Qiao, Wenli |4 aut | |
700 | 1 | |a Wang, Taisong |4 aut | |
700 | 1 | |a Wang, Ying |4 aut | |
700 | 1 | |a Li, Chenwei |4 aut | |
700 | 1 | |a Lv, Yang |4 aut | |
700 | 1 | |a Xi, Chen |4 aut | |
700 | 1 | |a Liao, Shu |4 aut | |
700 | 1 | |a Qian, Zheng |4 aut | |
700 | 1 | |a Zhao, Jinhua |0 (orcid)0000-0002-8867-7985 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t EJNMMI Physics |d Berlin : SpringerOpen, 2014 |g 9(2022), 1 vom: 04. Feb. |w (DE-627)785697993 |w (DE-600)2768912-8 |x 2197-7364 |7 nnns |
773 | 1 | 8 | |g volume:9 |g year:2022 |g number:1 |g day:04 |g month:02 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s40658-022-00431-9 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 9 |j 2022 |e 1 |b 04 |c 02 |
author_variant |
y x yx w q wq t w tw y w yw c l cl y l yl c x cx s l sl z q zq j z jz |
---|---|
matchkey_str |
article:21977364:2022----::eperigsitdeiaigcivsatcno |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1186/s40658-022-00431-9 doi (DE-627)SPR046158901 (SPR)s40658-022-00431-9-e DE-627 ger DE-627 rakwb eng Xing, Yan verfasserin aut Deep learning-assisted PET imaging achieves fast scan/low-dose examination 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Purpose This study aimed to investigate the impact of a deep learning (DL)-based denoising method on the image quality and lesion detectability of 18F-FDG positron emission tomography (PET) images. Methods Fifty-two oncological patients undergoing an 18F-FDG PET/CT imaging with an acquisition of 180 s per bed position were retrospectively included. The list-mode data were rebinned into four datasets: 100% (reference), 75%, 50%, and 33.3% of the total counts, and then reconstructed by OSEM algorithm and post-processed with the DL and Gaussian filter (GS). The image quality was assessed using a 5-point Likert scale, and FDG-avid lesions were counted to measure lesion detectability. Standardized uptake values (SUVs) in livers and lesions, liver signal-to-noise ratio (SNR) and target-to-background ratio (TBR) values were compared between the methods. Subgroup analyses compared TBRs after categorizing lesions based on parameters like lesion diameter, uptake or patient habitus. Results The DL method showed superior performance regarding image noise and inferior performance regarding lesion contrast in the qualitative assessment. More than 96.8% of the lesions were successfully identified in DL images. Excellent agreements on SUV in livers and lesions were found. The DL method significantly improved the liver SNR for count reduction down to 33.3% (p < 0.001). Lesion TBR was not significantly different between DL and reference images of the 75% dataset; furthermore, there was no significant difference either for lesions of > 10 mm or lesions in BMIs of > 25. For the 50% dataset, there was no significant difference between DL and reference images for TBR of lesion with > 15 mm or higher uptake than liver. Conclusions The developed DL method improved both liver SNR and lesion TBR indicating better image quality and lesion conspicuousness compared to GS method. Compared with the reference, it showed non-inferior image quality with reduced counts by 25–50% under various conditions. Positron emission tomography and computed tomography (PET/CT) (dpeaa)DE-He213 Deep learning (dpeaa)DE-He213 Denoising technique (dpeaa)DE-He213 Image quality (dpeaa)DE-He213 Qiao, Wenli aut Wang, Taisong aut Wang, Ying aut Li, Chenwei aut Lv, Yang aut Xi, Chen aut Liao, Shu aut Qian, Zheng aut Zhao, Jinhua (orcid)0000-0002-8867-7985 aut Enthalten in EJNMMI Physics Berlin : SpringerOpen, 2014 9(2022), 1 vom: 04. Feb. (DE-627)785697993 (DE-600)2768912-8 2197-7364 nnns volume:9 year:2022 number:1 day:04 month:02 https://dx.doi.org/10.1186/s40658-022-00431-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_2446 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 1 04 02 |
spelling |
10.1186/s40658-022-00431-9 doi (DE-627)SPR046158901 (SPR)s40658-022-00431-9-e DE-627 ger DE-627 rakwb eng Xing, Yan verfasserin aut Deep learning-assisted PET imaging achieves fast scan/low-dose examination 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Purpose This study aimed to investigate the impact of a deep learning (DL)-based denoising method on the image quality and lesion detectability of 18F-FDG positron emission tomography (PET) images. Methods Fifty-two oncological patients undergoing an 18F-FDG PET/CT imaging with an acquisition of 180 s per bed position were retrospectively included. The list-mode data were rebinned into four datasets: 100% (reference), 75%, 50%, and 33.3% of the total counts, and then reconstructed by OSEM algorithm and post-processed with the DL and Gaussian filter (GS). The image quality was assessed using a 5-point Likert scale, and FDG-avid lesions were counted to measure lesion detectability. Standardized uptake values (SUVs) in livers and lesions, liver signal-to-noise ratio (SNR) and target-to-background ratio (TBR) values were compared between the methods. Subgroup analyses compared TBRs after categorizing lesions based on parameters like lesion diameter, uptake or patient habitus. Results The DL method showed superior performance regarding image noise and inferior performance regarding lesion contrast in the qualitative assessment. More than 96.8% of the lesions were successfully identified in DL images. Excellent agreements on SUV in livers and lesions were found. The DL method significantly improved the liver SNR for count reduction down to 33.3% (p < 0.001). Lesion TBR was not significantly different between DL and reference images of the 75% dataset; furthermore, there was no significant difference either for lesions of > 10 mm or lesions in BMIs of > 25. For the 50% dataset, there was no significant difference between DL and reference images for TBR of lesion with > 15 mm or higher uptake than liver. Conclusions The developed DL method improved both liver SNR and lesion TBR indicating better image quality and lesion conspicuousness compared to GS method. Compared with the reference, it showed non-inferior image quality with reduced counts by 25–50% under various conditions. Positron emission tomography and computed tomography (PET/CT) (dpeaa)DE-He213 Deep learning (dpeaa)DE-He213 Denoising technique (dpeaa)DE-He213 Image quality (dpeaa)DE-He213 Qiao, Wenli aut Wang, Taisong aut Wang, Ying aut Li, Chenwei aut Lv, Yang aut Xi, Chen aut Liao, Shu aut Qian, Zheng aut Zhao, Jinhua (orcid)0000-0002-8867-7985 aut Enthalten in EJNMMI Physics Berlin : SpringerOpen, 2014 9(2022), 1 vom: 04. Feb. (DE-627)785697993 (DE-600)2768912-8 2197-7364 nnns volume:9 year:2022 number:1 day:04 month:02 https://dx.doi.org/10.1186/s40658-022-00431-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_2446 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 1 04 02 |
allfields_unstemmed |
10.1186/s40658-022-00431-9 doi (DE-627)SPR046158901 (SPR)s40658-022-00431-9-e DE-627 ger DE-627 rakwb eng Xing, Yan verfasserin aut Deep learning-assisted PET imaging achieves fast scan/low-dose examination 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Purpose This study aimed to investigate the impact of a deep learning (DL)-based denoising method on the image quality and lesion detectability of 18F-FDG positron emission tomography (PET) images. Methods Fifty-two oncological patients undergoing an 18F-FDG PET/CT imaging with an acquisition of 180 s per bed position were retrospectively included. The list-mode data were rebinned into four datasets: 100% (reference), 75%, 50%, and 33.3% of the total counts, and then reconstructed by OSEM algorithm and post-processed with the DL and Gaussian filter (GS). The image quality was assessed using a 5-point Likert scale, and FDG-avid lesions were counted to measure lesion detectability. Standardized uptake values (SUVs) in livers and lesions, liver signal-to-noise ratio (SNR) and target-to-background ratio (TBR) values were compared between the methods. Subgroup analyses compared TBRs after categorizing lesions based on parameters like lesion diameter, uptake or patient habitus. Results The DL method showed superior performance regarding image noise and inferior performance regarding lesion contrast in the qualitative assessment. More than 96.8% of the lesions were successfully identified in DL images. Excellent agreements on SUV in livers and lesions were found. The DL method significantly improved the liver SNR for count reduction down to 33.3% (p < 0.001). Lesion TBR was not significantly different between DL and reference images of the 75% dataset; furthermore, there was no significant difference either for lesions of > 10 mm or lesions in BMIs of > 25. For the 50% dataset, there was no significant difference between DL and reference images for TBR of lesion with > 15 mm or higher uptake than liver. Conclusions The developed DL method improved both liver SNR and lesion TBR indicating better image quality and lesion conspicuousness compared to GS method. Compared with the reference, it showed non-inferior image quality with reduced counts by 25–50% under various conditions. Positron emission tomography and computed tomography (PET/CT) (dpeaa)DE-He213 Deep learning (dpeaa)DE-He213 Denoising technique (dpeaa)DE-He213 Image quality (dpeaa)DE-He213 Qiao, Wenli aut Wang, Taisong aut Wang, Ying aut Li, Chenwei aut Lv, Yang aut Xi, Chen aut Liao, Shu aut Qian, Zheng aut Zhao, Jinhua (orcid)0000-0002-8867-7985 aut Enthalten in EJNMMI Physics Berlin : SpringerOpen, 2014 9(2022), 1 vom: 04. Feb. (DE-627)785697993 (DE-600)2768912-8 2197-7364 nnns volume:9 year:2022 number:1 day:04 month:02 https://dx.doi.org/10.1186/s40658-022-00431-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_2446 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 1 04 02 |
allfieldsGer |
10.1186/s40658-022-00431-9 doi (DE-627)SPR046158901 (SPR)s40658-022-00431-9-e DE-627 ger DE-627 rakwb eng Xing, Yan verfasserin aut Deep learning-assisted PET imaging achieves fast scan/low-dose examination 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Purpose This study aimed to investigate the impact of a deep learning (DL)-based denoising method on the image quality and lesion detectability of 18F-FDG positron emission tomography (PET) images. Methods Fifty-two oncological patients undergoing an 18F-FDG PET/CT imaging with an acquisition of 180 s per bed position were retrospectively included. The list-mode data were rebinned into four datasets: 100% (reference), 75%, 50%, and 33.3% of the total counts, and then reconstructed by OSEM algorithm and post-processed with the DL and Gaussian filter (GS). The image quality was assessed using a 5-point Likert scale, and FDG-avid lesions were counted to measure lesion detectability. Standardized uptake values (SUVs) in livers and lesions, liver signal-to-noise ratio (SNR) and target-to-background ratio (TBR) values were compared between the methods. Subgroup analyses compared TBRs after categorizing lesions based on parameters like lesion diameter, uptake or patient habitus. Results The DL method showed superior performance regarding image noise and inferior performance regarding lesion contrast in the qualitative assessment. More than 96.8% of the lesions were successfully identified in DL images. Excellent agreements on SUV in livers and lesions were found. The DL method significantly improved the liver SNR for count reduction down to 33.3% (p < 0.001). Lesion TBR was not significantly different between DL and reference images of the 75% dataset; furthermore, there was no significant difference either for lesions of > 10 mm or lesions in BMIs of > 25. For the 50% dataset, there was no significant difference between DL and reference images for TBR of lesion with > 15 mm or higher uptake than liver. Conclusions The developed DL method improved both liver SNR and lesion TBR indicating better image quality and lesion conspicuousness compared to GS method. Compared with the reference, it showed non-inferior image quality with reduced counts by 25–50% under various conditions. Positron emission tomography and computed tomography (PET/CT) (dpeaa)DE-He213 Deep learning (dpeaa)DE-He213 Denoising technique (dpeaa)DE-He213 Image quality (dpeaa)DE-He213 Qiao, Wenli aut Wang, Taisong aut Wang, Ying aut Li, Chenwei aut Lv, Yang aut Xi, Chen aut Liao, Shu aut Qian, Zheng aut Zhao, Jinhua (orcid)0000-0002-8867-7985 aut Enthalten in EJNMMI Physics Berlin : SpringerOpen, 2014 9(2022), 1 vom: 04. Feb. (DE-627)785697993 (DE-600)2768912-8 2197-7364 nnns volume:9 year:2022 number:1 day:04 month:02 https://dx.doi.org/10.1186/s40658-022-00431-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_2446 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 1 04 02 |
allfieldsSound |
10.1186/s40658-022-00431-9 doi (DE-627)SPR046158901 (SPR)s40658-022-00431-9-e DE-627 ger DE-627 rakwb eng Xing, Yan verfasserin aut Deep learning-assisted PET imaging achieves fast scan/low-dose examination 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Purpose This study aimed to investigate the impact of a deep learning (DL)-based denoising method on the image quality and lesion detectability of 18F-FDG positron emission tomography (PET) images. Methods Fifty-two oncological patients undergoing an 18F-FDG PET/CT imaging with an acquisition of 180 s per bed position were retrospectively included. The list-mode data were rebinned into four datasets: 100% (reference), 75%, 50%, and 33.3% of the total counts, and then reconstructed by OSEM algorithm and post-processed with the DL and Gaussian filter (GS). The image quality was assessed using a 5-point Likert scale, and FDG-avid lesions were counted to measure lesion detectability. Standardized uptake values (SUVs) in livers and lesions, liver signal-to-noise ratio (SNR) and target-to-background ratio (TBR) values were compared between the methods. Subgroup analyses compared TBRs after categorizing lesions based on parameters like lesion diameter, uptake or patient habitus. Results The DL method showed superior performance regarding image noise and inferior performance regarding lesion contrast in the qualitative assessment. More than 96.8% of the lesions were successfully identified in DL images. Excellent agreements on SUV in livers and lesions were found. The DL method significantly improved the liver SNR for count reduction down to 33.3% (p < 0.001). Lesion TBR was not significantly different between DL and reference images of the 75% dataset; furthermore, there was no significant difference either for lesions of > 10 mm or lesions in BMIs of > 25. For the 50% dataset, there was no significant difference between DL and reference images for TBR of lesion with > 15 mm or higher uptake than liver. Conclusions The developed DL method improved both liver SNR and lesion TBR indicating better image quality and lesion conspicuousness compared to GS method. Compared with the reference, it showed non-inferior image quality with reduced counts by 25–50% under various conditions. Positron emission tomography and computed tomography (PET/CT) (dpeaa)DE-He213 Deep learning (dpeaa)DE-He213 Denoising technique (dpeaa)DE-He213 Image quality (dpeaa)DE-He213 Qiao, Wenli aut Wang, Taisong aut Wang, Ying aut Li, Chenwei aut Lv, Yang aut Xi, Chen aut Liao, Shu aut Qian, Zheng aut Zhao, Jinhua (orcid)0000-0002-8867-7985 aut Enthalten in EJNMMI Physics Berlin : SpringerOpen, 2014 9(2022), 1 vom: 04. Feb. (DE-627)785697993 (DE-600)2768912-8 2197-7364 nnns volume:9 year:2022 number:1 day:04 month:02 https://dx.doi.org/10.1186/s40658-022-00431-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_2446 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 1 04 02 |
language |
English |
source |
Enthalten in EJNMMI Physics 9(2022), 1 vom: 04. Feb. volume:9 year:2022 number:1 day:04 month:02 |
sourceStr |
Enthalten in EJNMMI Physics 9(2022), 1 vom: 04. Feb. volume:9 year:2022 number:1 day:04 month:02 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Positron emission tomography and computed tomography (PET/CT) Deep learning Denoising technique Image quality |
isfreeaccess_bool |
true |
container_title |
EJNMMI Physics |
authorswithroles_txt_mv |
Xing, Yan @@aut@@ Qiao, Wenli @@aut@@ Wang, Taisong @@aut@@ Wang, Ying @@aut@@ Li, Chenwei @@aut@@ Lv, Yang @@aut@@ Xi, Chen @@aut@@ Liao, Shu @@aut@@ Qian, Zheng @@aut@@ Zhao, Jinhua @@aut@@ |
publishDateDaySort_date |
2022-02-04T00:00:00Z |
hierarchy_top_id |
785697993 |
id |
SPR046158901 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR046158901</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507100850.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220205s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40658-022-00431-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR046158901</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40658-022-00431-9-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xing, Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Deep learning-assisted PET imaging achieves fast scan/low-dose examination</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Purpose This study aimed to investigate the impact of a deep learning (DL)-based denoising method on the image quality and lesion detectability of 18F-FDG positron emission tomography (PET) images. Methods Fifty-two oncological patients undergoing an 18F-FDG PET/CT imaging with an acquisition of 180 s per bed position were retrospectively included. The list-mode data were rebinned into four datasets: 100% (reference), 75%, 50%, and 33.3% of the total counts, and then reconstructed by OSEM algorithm and post-processed with the DL and Gaussian filter (GS). The image quality was assessed using a 5-point Likert scale, and FDG-avid lesions were counted to measure lesion detectability. Standardized uptake values (SUVs) in livers and lesions, liver signal-to-noise ratio (SNR) and target-to-background ratio (TBR) values were compared between the methods. Subgroup analyses compared TBRs after categorizing lesions based on parameters like lesion diameter, uptake or patient habitus. Results The DL method showed superior performance regarding image noise and inferior performance regarding lesion contrast in the qualitative assessment. More than 96.8% of the lesions were successfully identified in DL images. Excellent agreements on SUV in livers and lesions were found. The DL method significantly improved the liver SNR for count reduction down to 33.3% (p < 0.001). Lesion TBR was not significantly different between DL and reference images of the 75% dataset; furthermore, there was no significant difference either for lesions of > 10 mm or lesions in BMIs of > 25. For the 50% dataset, there was no significant difference between DL and reference images for TBR of lesion with > 15 mm or higher uptake than liver. Conclusions The developed DL method improved both liver SNR and lesion TBR indicating better image quality and lesion conspicuousness compared to GS method. Compared with the reference, it showed non-inferior image quality with reduced counts by 25–50% under various conditions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Positron emission tomography and computed tomography (PET/CT)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deep learning</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Denoising technique</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Image quality</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qiao, Wenli</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Taisong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Ying</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Chenwei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lv, Yang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xi, Chen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liao, Shu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qian, Zheng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Jinhua</subfield><subfield code="0">(orcid)0000-0002-8867-7985</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">EJNMMI Physics</subfield><subfield code="d">Berlin : SpringerOpen, 2014</subfield><subfield code="g">9(2022), 1 vom: 04. Feb.</subfield><subfield code="w">(DE-627)785697993</subfield><subfield code="w">(DE-600)2768912-8</subfield><subfield code="x">2197-7364</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:04</subfield><subfield code="g">month:02</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s40658-022-00431-9</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">04</subfield><subfield code="c">02</subfield></datafield></record></collection>
|
author |
Xing, Yan |
spellingShingle |
Xing, Yan misc Positron emission tomography and computed tomography (PET/CT) misc Deep learning misc Denoising technique misc Image quality Deep learning-assisted PET imaging achieves fast scan/low-dose examination |
authorStr |
Xing, Yan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)785697993 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2197-7364 |
topic_title |
Deep learning-assisted PET imaging achieves fast scan/low-dose examination Positron emission tomography and computed tomography (PET/CT) (dpeaa)DE-He213 Deep learning (dpeaa)DE-He213 Denoising technique (dpeaa)DE-He213 Image quality (dpeaa)DE-He213 |
topic |
misc Positron emission tomography and computed tomography (PET/CT) misc Deep learning misc Denoising technique misc Image quality |
topic_unstemmed |
misc Positron emission tomography and computed tomography (PET/CT) misc Deep learning misc Denoising technique misc Image quality |
topic_browse |
misc Positron emission tomography and computed tomography (PET/CT) misc Deep learning misc Denoising technique misc Image quality |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
EJNMMI Physics |
hierarchy_parent_id |
785697993 |
hierarchy_top_title |
EJNMMI Physics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)785697993 (DE-600)2768912-8 |
title |
Deep learning-assisted PET imaging achieves fast scan/low-dose examination |
ctrlnum |
(DE-627)SPR046158901 (SPR)s40658-022-00431-9-e |
title_full |
Deep learning-assisted PET imaging achieves fast scan/low-dose examination |
author_sort |
Xing, Yan |
journal |
EJNMMI Physics |
journalStr |
EJNMMI Physics |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Xing, Yan Qiao, Wenli Wang, Taisong Wang, Ying Li, Chenwei Lv, Yang Xi, Chen Liao, Shu Qian, Zheng Zhao, Jinhua |
container_volume |
9 |
format_se |
Elektronische Aufsätze |
author-letter |
Xing, Yan |
doi_str_mv |
10.1186/s40658-022-00431-9 |
normlink |
(ORCID)0000-0002-8867-7985 |
normlink_prefix_str_mv |
(orcid)0000-0002-8867-7985 |
title_sort |
deep learning-assisted pet imaging achieves fast scan/low-dose examination |
title_auth |
Deep learning-assisted PET imaging achieves fast scan/low-dose examination |
abstract |
Purpose This study aimed to investigate the impact of a deep learning (DL)-based denoising method on the image quality and lesion detectability of 18F-FDG positron emission tomography (PET) images. Methods Fifty-two oncological patients undergoing an 18F-FDG PET/CT imaging with an acquisition of 180 s per bed position were retrospectively included. The list-mode data were rebinned into four datasets: 100% (reference), 75%, 50%, and 33.3% of the total counts, and then reconstructed by OSEM algorithm and post-processed with the DL and Gaussian filter (GS). The image quality was assessed using a 5-point Likert scale, and FDG-avid lesions were counted to measure lesion detectability. Standardized uptake values (SUVs) in livers and lesions, liver signal-to-noise ratio (SNR) and target-to-background ratio (TBR) values were compared between the methods. Subgroup analyses compared TBRs after categorizing lesions based on parameters like lesion diameter, uptake or patient habitus. Results The DL method showed superior performance regarding image noise and inferior performance regarding lesion contrast in the qualitative assessment. More than 96.8% of the lesions were successfully identified in DL images. Excellent agreements on SUV in livers and lesions were found. The DL method significantly improved the liver SNR for count reduction down to 33.3% (p < 0.001). Lesion TBR was not significantly different between DL and reference images of the 75% dataset; furthermore, there was no significant difference either for lesions of > 10 mm or lesions in BMIs of > 25. For the 50% dataset, there was no significant difference between DL and reference images for TBR of lesion with > 15 mm or higher uptake than liver. Conclusions The developed DL method improved both liver SNR and lesion TBR indicating better image quality and lesion conspicuousness compared to GS method. Compared with the reference, it showed non-inferior image quality with reduced counts by 25–50% under various conditions. © The Author(s) 2022 |
abstractGer |
Purpose This study aimed to investigate the impact of a deep learning (DL)-based denoising method on the image quality and lesion detectability of 18F-FDG positron emission tomography (PET) images. Methods Fifty-two oncological patients undergoing an 18F-FDG PET/CT imaging with an acquisition of 180 s per bed position were retrospectively included. The list-mode data were rebinned into four datasets: 100% (reference), 75%, 50%, and 33.3% of the total counts, and then reconstructed by OSEM algorithm and post-processed with the DL and Gaussian filter (GS). The image quality was assessed using a 5-point Likert scale, and FDG-avid lesions were counted to measure lesion detectability. Standardized uptake values (SUVs) in livers and lesions, liver signal-to-noise ratio (SNR) and target-to-background ratio (TBR) values were compared between the methods. Subgroup analyses compared TBRs after categorizing lesions based on parameters like lesion diameter, uptake or patient habitus. Results The DL method showed superior performance regarding image noise and inferior performance regarding lesion contrast in the qualitative assessment. More than 96.8% of the lesions were successfully identified in DL images. Excellent agreements on SUV in livers and lesions were found. The DL method significantly improved the liver SNR for count reduction down to 33.3% (p < 0.001). Lesion TBR was not significantly different between DL and reference images of the 75% dataset; furthermore, there was no significant difference either for lesions of > 10 mm or lesions in BMIs of > 25. For the 50% dataset, there was no significant difference between DL and reference images for TBR of lesion with > 15 mm or higher uptake than liver. Conclusions The developed DL method improved both liver SNR and lesion TBR indicating better image quality and lesion conspicuousness compared to GS method. Compared with the reference, it showed non-inferior image quality with reduced counts by 25–50% under various conditions. © The Author(s) 2022 |
abstract_unstemmed |
Purpose This study aimed to investigate the impact of a deep learning (DL)-based denoising method on the image quality and lesion detectability of 18F-FDG positron emission tomography (PET) images. Methods Fifty-two oncological patients undergoing an 18F-FDG PET/CT imaging with an acquisition of 180 s per bed position were retrospectively included. The list-mode data were rebinned into four datasets: 100% (reference), 75%, 50%, and 33.3% of the total counts, and then reconstructed by OSEM algorithm and post-processed with the DL and Gaussian filter (GS). The image quality was assessed using a 5-point Likert scale, and FDG-avid lesions were counted to measure lesion detectability. Standardized uptake values (SUVs) in livers and lesions, liver signal-to-noise ratio (SNR) and target-to-background ratio (TBR) values were compared between the methods. Subgroup analyses compared TBRs after categorizing lesions based on parameters like lesion diameter, uptake or patient habitus. Results The DL method showed superior performance regarding image noise and inferior performance regarding lesion contrast in the qualitative assessment. More than 96.8% of the lesions were successfully identified in DL images. Excellent agreements on SUV in livers and lesions were found. The DL method significantly improved the liver SNR for count reduction down to 33.3% (p < 0.001). Lesion TBR was not significantly different between DL and reference images of the 75% dataset; furthermore, there was no significant difference either for lesions of > 10 mm or lesions in BMIs of > 25. For the 50% dataset, there was no significant difference between DL and reference images for TBR of lesion with > 15 mm or higher uptake than liver. Conclusions The developed DL method improved both liver SNR and lesion TBR indicating better image quality and lesion conspicuousness compared to GS method. Compared with the reference, it showed non-inferior image quality with reduced counts by 25–50% under various conditions. © The Author(s) 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_2446 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Deep learning-assisted PET imaging achieves fast scan/low-dose examination |
url |
https://dx.doi.org/10.1186/s40658-022-00431-9 |
remote_bool |
true |
author2 |
Qiao, Wenli Wang, Taisong Wang, Ying Li, Chenwei Lv, Yang Xi, Chen Liao, Shu Qian, Zheng Zhao, Jinhua |
author2Str |
Qiao, Wenli Wang, Taisong Wang, Ying Li, Chenwei Lv, Yang Xi, Chen Liao, Shu Qian, Zheng Zhao, Jinhua |
ppnlink |
785697993 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s40658-022-00431-9 |
up_date |
2024-07-03T20:44:59.706Z |
_version_ |
1803592138445815808 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR046158901</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507100850.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220205s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40658-022-00431-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR046158901</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40658-022-00431-9-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xing, Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Deep learning-assisted PET imaging achieves fast scan/low-dose examination</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Purpose This study aimed to investigate the impact of a deep learning (DL)-based denoising method on the image quality and lesion detectability of 18F-FDG positron emission tomography (PET) images. Methods Fifty-two oncological patients undergoing an 18F-FDG PET/CT imaging with an acquisition of 180 s per bed position were retrospectively included. The list-mode data were rebinned into four datasets: 100% (reference), 75%, 50%, and 33.3% of the total counts, and then reconstructed by OSEM algorithm and post-processed with the DL and Gaussian filter (GS). The image quality was assessed using a 5-point Likert scale, and FDG-avid lesions were counted to measure lesion detectability. Standardized uptake values (SUVs) in livers and lesions, liver signal-to-noise ratio (SNR) and target-to-background ratio (TBR) values were compared between the methods. Subgroup analyses compared TBRs after categorizing lesions based on parameters like lesion diameter, uptake or patient habitus. Results The DL method showed superior performance regarding image noise and inferior performance regarding lesion contrast in the qualitative assessment. More than 96.8% of the lesions were successfully identified in DL images. Excellent agreements on SUV in livers and lesions were found. The DL method significantly improved the liver SNR for count reduction down to 33.3% (p < 0.001). Lesion TBR was not significantly different between DL and reference images of the 75% dataset; furthermore, there was no significant difference either for lesions of > 10 mm or lesions in BMIs of > 25. For the 50% dataset, there was no significant difference between DL and reference images for TBR of lesion with > 15 mm or higher uptake than liver. Conclusions The developed DL method improved both liver SNR and lesion TBR indicating better image quality and lesion conspicuousness compared to GS method. Compared with the reference, it showed non-inferior image quality with reduced counts by 25–50% under various conditions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Positron emission tomography and computed tomography (PET/CT)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deep learning</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Denoising technique</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Image quality</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qiao, Wenli</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Taisong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Ying</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Chenwei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lv, Yang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xi, Chen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liao, Shu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qian, Zheng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Jinhua</subfield><subfield code="0">(orcid)0000-0002-8867-7985</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">EJNMMI Physics</subfield><subfield code="d">Berlin : SpringerOpen, 2014</subfield><subfield code="g">9(2022), 1 vom: 04. Feb.</subfield><subfield code="w">(DE-627)785697993</subfield><subfield code="w">(DE-600)2768912-8</subfield><subfield code="x">2197-7364</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:04</subfield><subfield code="g">month:02</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s40658-022-00431-9</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">04</subfield><subfield code="c">02</subfield></datafield></record></collection>
|
score |
7.402915 |