How to measure post-error slowing: The case of pre-error speeding
Abstract Post-error slowing is one of the most widely employed measures to study cognitive and behavioral consequences of error commission. Several methods have been proposed to quantify the post-error slowing effect, and we discuss two main methods: The traditional method of comparing response time...
Ausführliche Beschreibung
Autor*in: |
Pfister, Roland [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: Behavior research methods, instruments & computers - Austin, Tex. : Psychonomic Society Publ., 1984, 54(2021), 1 vom: 08. Juli, Seite 435-443 |
---|---|
Übergeordnetes Werk: |
volume:54 ; year:2021 ; number:1 ; day:08 ; month:07 ; pages:435-443 |
Links: |
---|
DOI / URN: |
10.3758/s13428-021-01631-4 |
---|
Katalog-ID: |
SPR04631332X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR04631332X | ||
003 | DE-627 | ||
005 | 20230507113917.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220223s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3758/s13428-021-01631-4 |2 doi | |
035 | |a (DE-627)SPR04631332X | ||
035 | |a (SPR)s13428-021-01631-4-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Pfister, Roland |e verfasserin |0 (orcid)0000-0002-4429-1052 |4 aut | |
245 | 1 | 0 | |a How to measure post-error slowing: The case of pre-error speeding |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2021 | ||
520 | |a Abstract Post-error slowing is one of the most widely employed measures to study cognitive and behavioral consequences of error commission. Several methods have been proposed to quantify the post-error slowing effect, and we discuss two main methods: The traditional method of comparing response times in correct post-error trials to response times of correct trials that follow another correct trial, and a more recent proposal of comparing response times in correct post-error trials to the corresponding correct pre-error trials. Based on thorough re-analyses of two datasets, we argue that the latter method provides an inflated estimate by also capturing the (partially) independent effect of pre-error speeding. We propose two solutions for improving the assessment of human error processing, both of which highlight the importance of distinguishing between initial pre-error speeding and later post-error slowing. | ||
650 | 4 | |a Post-error slowing |7 (dpeaa)DE-He213 | |
650 | 4 | |a Pre-error speeding |7 (dpeaa)DE-He213 | |
650 | 4 | |a Performance monitoring |7 (dpeaa)DE-He213 | |
650 | 4 | |a Response-time analysis |7 (dpeaa)DE-He213 | |
700 | 1 | |a Foerster, Anna |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Behavior research methods, instruments & computers |d Austin, Tex. : Psychonomic Society Publ., 1984 |g 54(2021), 1 vom: 08. Juli, Seite 435-443 |w (DE-627)32998067X |w (DE-600)2048669-8 |x 1532-5970 |7 nnns |
773 | 1 | 8 | |g volume:54 |g year:2021 |g number:1 |g day:08 |g month:07 |g pages:435-443 |
856 | 4 | 0 | |u https://dx.doi.org/10.3758/s13428-021-01631-4 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2014 | ||
951 | |a AR | ||
952 | |d 54 |j 2021 |e 1 |b 08 |c 07 |h 435-443 |
author_variant |
r p rp a f af |
---|---|
matchkey_str |
article:15325970:2021----::otmaueotrosoighcsop |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.3758/s13428-021-01631-4 doi (DE-627)SPR04631332X (SPR)s13428-021-01631-4-e DE-627 ger DE-627 rakwb eng Pfister, Roland verfasserin (orcid)0000-0002-4429-1052 aut How to measure post-error slowing: The case of pre-error speeding 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2021 Abstract Post-error slowing is one of the most widely employed measures to study cognitive and behavioral consequences of error commission. Several methods have been proposed to quantify the post-error slowing effect, and we discuss two main methods: The traditional method of comparing response times in correct post-error trials to response times of correct trials that follow another correct trial, and a more recent proposal of comparing response times in correct post-error trials to the corresponding correct pre-error trials. Based on thorough re-analyses of two datasets, we argue that the latter method provides an inflated estimate by also capturing the (partially) independent effect of pre-error speeding. We propose two solutions for improving the assessment of human error processing, both of which highlight the importance of distinguishing between initial pre-error speeding and later post-error slowing. Post-error slowing (dpeaa)DE-He213 Pre-error speeding (dpeaa)DE-He213 Performance monitoring (dpeaa)DE-He213 Response-time analysis (dpeaa)DE-He213 Foerster, Anna aut Enthalten in Behavior research methods, instruments & computers Austin, Tex. : Psychonomic Society Publ., 1984 54(2021), 1 vom: 08. Juli, Seite 435-443 (DE-627)32998067X (DE-600)2048669-8 1532-5970 nnns volume:54 year:2021 number:1 day:08 month:07 pages:435-443 https://dx.doi.org/10.3758/s13428-021-01631-4 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 AR 54 2021 1 08 07 435-443 |
spelling |
10.3758/s13428-021-01631-4 doi (DE-627)SPR04631332X (SPR)s13428-021-01631-4-e DE-627 ger DE-627 rakwb eng Pfister, Roland verfasserin (orcid)0000-0002-4429-1052 aut How to measure post-error slowing: The case of pre-error speeding 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2021 Abstract Post-error slowing is one of the most widely employed measures to study cognitive and behavioral consequences of error commission. Several methods have been proposed to quantify the post-error slowing effect, and we discuss two main methods: The traditional method of comparing response times in correct post-error trials to response times of correct trials that follow another correct trial, and a more recent proposal of comparing response times in correct post-error trials to the corresponding correct pre-error trials. Based on thorough re-analyses of two datasets, we argue that the latter method provides an inflated estimate by also capturing the (partially) independent effect of pre-error speeding. We propose two solutions for improving the assessment of human error processing, both of which highlight the importance of distinguishing between initial pre-error speeding and later post-error slowing. Post-error slowing (dpeaa)DE-He213 Pre-error speeding (dpeaa)DE-He213 Performance monitoring (dpeaa)DE-He213 Response-time analysis (dpeaa)DE-He213 Foerster, Anna aut Enthalten in Behavior research methods, instruments & computers Austin, Tex. : Psychonomic Society Publ., 1984 54(2021), 1 vom: 08. Juli, Seite 435-443 (DE-627)32998067X (DE-600)2048669-8 1532-5970 nnns volume:54 year:2021 number:1 day:08 month:07 pages:435-443 https://dx.doi.org/10.3758/s13428-021-01631-4 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 AR 54 2021 1 08 07 435-443 |
allfields_unstemmed |
10.3758/s13428-021-01631-4 doi (DE-627)SPR04631332X (SPR)s13428-021-01631-4-e DE-627 ger DE-627 rakwb eng Pfister, Roland verfasserin (orcid)0000-0002-4429-1052 aut How to measure post-error slowing: The case of pre-error speeding 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2021 Abstract Post-error slowing is one of the most widely employed measures to study cognitive and behavioral consequences of error commission. Several methods have been proposed to quantify the post-error slowing effect, and we discuss two main methods: The traditional method of comparing response times in correct post-error trials to response times of correct trials that follow another correct trial, and a more recent proposal of comparing response times in correct post-error trials to the corresponding correct pre-error trials. Based on thorough re-analyses of two datasets, we argue that the latter method provides an inflated estimate by also capturing the (partially) independent effect of pre-error speeding. We propose two solutions for improving the assessment of human error processing, both of which highlight the importance of distinguishing between initial pre-error speeding and later post-error slowing. Post-error slowing (dpeaa)DE-He213 Pre-error speeding (dpeaa)DE-He213 Performance monitoring (dpeaa)DE-He213 Response-time analysis (dpeaa)DE-He213 Foerster, Anna aut Enthalten in Behavior research methods, instruments & computers Austin, Tex. : Psychonomic Society Publ., 1984 54(2021), 1 vom: 08. Juli, Seite 435-443 (DE-627)32998067X (DE-600)2048669-8 1532-5970 nnns volume:54 year:2021 number:1 day:08 month:07 pages:435-443 https://dx.doi.org/10.3758/s13428-021-01631-4 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 AR 54 2021 1 08 07 435-443 |
allfieldsGer |
10.3758/s13428-021-01631-4 doi (DE-627)SPR04631332X (SPR)s13428-021-01631-4-e DE-627 ger DE-627 rakwb eng Pfister, Roland verfasserin (orcid)0000-0002-4429-1052 aut How to measure post-error slowing: The case of pre-error speeding 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2021 Abstract Post-error slowing is one of the most widely employed measures to study cognitive and behavioral consequences of error commission. Several methods have been proposed to quantify the post-error slowing effect, and we discuss two main methods: The traditional method of comparing response times in correct post-error trials to response times of correct trials that follow another correct trial, and a more recent proposal of comparing response times in correct post-error trials to the corresponding correct pre-error trials. Based on thorough re-analyses of two datasets, we argue that the latter method provides an inflated estimate by also capturing the (partially) independent effect of pre-error speeding. We propose two solutions for improving the assessment of human error processing, both of which highlight the importance of distinguishing between initial pre-error speeding and later post-error slowing. Post-error slowing (dpeaa)DE-He213 Pre-error speeding (dpeaa)DE-He213 Performance monitoring (dpeaa)DE-He213 Response-time analysis (dpeaa)DE-He213 Foerster, Anna aut Enthalten in Behavior research methods, instruments & computers Austin, Tex. : Psychonomic Society Publ., 1984 54(2021), 1 vom: 08. Juli, Seite 435-443 (DE-627)32998067X (DE-600)2048669-8 1532-5970 nnns volume:54 year:2021 number:1 day:08 month:07 pages:435-443 https://dx.doi.org/10.3758/s13428-021-01631-4 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 AR 54 2021 1 08 07 435-443 |
allfieldsSound |
10.3758/s13428-021-01631-4 doi (DE-627)SPR04631332X (SPR)s13428-021-01631-4-e DE-627 ger DE-627 rakwb eng Pfister, Roland verfasserin (orcid)0000-0002-4429-1052 aut How to measure post-error slowing: The case of pre-error speeding 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2021 Abstract Post-error slowing is one of the most widely employed measures to study cognitive and behavioral consequences of error commission. Several methods have been proposed to quantify the post-error slowing effect, and we discuss two main methods: The traditional method of comparing response times in correct post-error trials to response times of correct trials that follow another correct trial, and a more recent proposal of comparing response times in correct post-error trials to the corresponding correct pre-error trials. Based on thorough re-analyses of two datasets, we argue that the latter method provides an inflated estimate by also capturing the (partially) independent effect of pre-error speeding. We propose two solutions for improving the assessment of human error processing, both of which highlight the importance of distinguishing between initial pre-error speeding and later post-error slowing. Post-error slowing (dpeaa)DE-He213 Pre-error speeding (dpeaa)DE-He213 Performance monitoring (dpeaa)DE-He213 Response-time analysis (dpeaa)DE-He213 Foerster, Anna aut Enthalten in Behavior research methods, instruments & computers Austin, Tex. : Psychonomic Society Publ., 1984 54(2021), 1 vom: 08. Juli, Seite 435-443 (DE-627)32998067X (DE-600)2048669-8 1532-5970 nnns volume:54 year:2021 number:1 day:08 month:07 pages:435-443 https://dx.doi.org/10.3758/s13428-021-01631-4 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 AR 54 2021 1 08 07 435-443 |
language |
English |
source |
Enthalten in Behavior research methods, instruments & computers 54(2021), 1 vom: 08. Juli, Seite 435-443 volume:54 year:2021 number:1 day:08 month:07 pages:435-443 |
sourceStr |
Enthalten in Behavior research methods, instruments & computers 54(2021), 1 vom: 08. Juli, Seite 435-443 volume:54 year:2021 number:1 day:08 month:07 pages:435-443 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Post-error slowing Pre-error speeding Performance monitoring Response-time analysis |
isfreeaccess_bool |
true |
container_title |
Behavior research methods, instruments & computers |
authorswithroles_txt_mv |
Pfister, Roland @@aut@@ Foerster, Anna @@aut@@ |
publishDateDaySort_date |
2021-07-08T00:00:00Z |
hierarchy_top_id |
32998067X |
id |
SPR04631332X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR04631332X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507113917.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220223s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3758/s13428-021-01631-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR04631332X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13428-021-01631-4-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pfister, Roland</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-4429-1052</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">How to measure post-error slowing: The case of pre-error speeding</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Post-error slowing is one of the most widely employed measures to study cognitive and behavioral consequences of error commission. Several methods have been proposed to quantify the post-error slowing effect, and we discuss two main methods: The traditional method of comparing response times in correct post-error trials to response times of correct trials that follow another correct trial, and a more recent proposal of comparing response times in correct post-error trials to the corresponding correct pre-error trials. Based on thorough re-analyses of two datasets, we argue that the latter method provides an inflated estimate by also capturing the (partially) independent effect of pre-error speeding. We propose two solutions for improving the assessment of human error processing, both of which highlight the importance of distinguishing between initial pre-error speeding and later post-error slowing.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Post-error slowing</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pre-error speeding</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Performance monitoring</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Response-time analysis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Foerster, Anna</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Behavior research methods, instruments & computers</subfield><subfield code="d">Austin, Tex. : Psychonomic Society Publ., 1984</subfield><subfield code="g">54(2021), 1 vom: 08. Juli, Seite 435-443</subfield><subfield code="w">(DE-627)32998067X</subfield><subfield code="w">(DE-600)2048669-8</subfield><subfield code="x">1532-5970</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:54</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">day:08</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:435-443</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.3758/s13428-021-01631-4</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">54</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="b">08</subfield><subfield code="c">07</subfield><subfield code="h">435-443</subfield></datafield></record></collection>
|
author |
Pfister, Roland |
spellingShingle |
Pfister, Roland misc Post-error slowing misc Pre-error speeding misc Performance monitoring misc Response-time analysis How to measure post-error slowing: The case of pre-error speeding |
authorStr |
Pfister, Roland |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)32998067X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1532-5970 |
topic_title |
How to measure post-error slowing: The case of pre-error speeding Post-error slowing (dpeaa)DE-He213 Pre-error speeding (dpeaa)DE-He213 Performance monitoring (dpeaa)DE-He213 Response-time analysis (dpeaa)DE-He213 |
topic |
misc Post-error slowing misc Pre-error speeding misc Performance monitoring misc Response-time analysis |
topic_unstemmed |
misc Post-error slowing misc Pre-error speeding misc Performance monitoring misc Response-time analysis |
topic_browse |
misc Post-error slowing misc Pre-error speeding misc Performance monitoring misc Response-time analysis |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Behavior research methods, instruments & computers |
hierarchy_parent_id |
32998067X |
hierarchy_top_title |
Behavior research methods, instruments & computers |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)32998067X (DE-600)2048669-8 |
title |
How to measure post-error slowing: The case of pre-error speeding |
ctrlnum |
(DE-627)SPR04631332X (SPR)s13428-021-01631-4-e |
title_full |
How to measure post-error slowing: The case of pre-error speeding |
author_sort |
Pfister, Roland |
journal |
Behavior research methods, instruments & computers |
journalStr |
Behavior research methods, instruments & computers |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
435 |
author_browse |
Pfister, Roland Foerster, Anna |
container_volume |
54 |
format_se |
Elektronische Aufsätze |
author-letter |
Pfister, Roland |
doi_str_mv |
10.3758/s13428-021-01631-4 |
normlink |
(ORCID)0000-0002-4429-1052 |
normlink_prefix_str_mv |
(orcid)0000-0002-4429-1052 |
title_sort |
how to measure post-error slowing: the case of pre-error speeding |
title_auth |
How to measure post-error slowing: The case of pre-error speeding |
abstract |
Abstract Post-error slowing is one of the most widely employed measures to study cognitive and behavioral consequences of error commission. Several methods have been proposed to quantify the post-error slowing effect, and we discuss two main methods: The traditional method of comparing response times in correct post-error trials to response times of correct trials that follow another correct trial, and a more recent proposal of comparing response times in correct post-error trials to the corresponding correct pre-error trials. Based on thorough re-analyses of two datasets, we argue that the latter method provides an inflated estimate by also capturing the (partially) independent effect of pre-error speeding. We propose two solutions for improving the assessment of human error processing, both of which highlight the importance of distinguishing between initial pre-error speeding and later post-error slowing. © The Author(s) 2021 |
abstractGer |
Abstract Post-error slowing is one of the most widely employed measures to study cognitive and behavioral consequences of error commission. Several methods have been proposed to quantify the post-error slowing effect, and we discuss two main methods: The traditional method of comparing response times in correct post-error trials to response times of correct trials that follow another correct trial, and a more recent proposal of comparing response times in correct post-error trials to the corresponding correct pre-error trials. Based on thorough re-analyses of two datasets, we argue that the latter method provides an inflated estimate by also capturing the (partially) independent effect of pre-error speeding. We propose two solutions for improving the assessment of human error processing, both of which highlight the importance of distinguishing between initial pre-error speeding and later post-error slowing. © The Author(s) 2021 |
abstract_unstemmed |
Abstract Post-error slowing is one of the most widely employed measures to study cognitive and behavioral consequences of error commission. Several methods have been proposed to quantify the post-error slowing effect, and we discuss two main methods: The traditional method of comparing response times in correct post-error trials to response times of correct trials that follow another correct trial, and a more recent proposal of comparing response times in correct post-error trials to the corresponding correct pre-error trials. Based on thorough re-analyses of two datasets, we argue that the latter method provides an inflated estimate by also capturing the (partially) independent effect of pre-error speeding. We propose two solutions for improving the assessment of human error processing, both of which highlight the importance of distinguishing between initial pre-error speeding and later post-error slowing. © The Author(s) 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 |
container_issue |
1 |
title_short |
How to measure post-error slowing: The case of pre-error speeding |
url |
https://dx.doi.org/10.3758/s13428-021-01631-4 |
remote_bool |
true |
author2 |
Foerster, Anna |
author2Str |
Foerster, Anna |
ppnlink |
32998067X |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3758/s13428-021-01631-4 |
up_date |
2024-07-03T21:45:46.422Z |
_version_ |
1803595962303643648 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR04631332X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507113917.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220223s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3758/s13428-021-01631-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR04631332X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13428-021-01631-4-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pfister, Roland</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-4429-1052</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">How to measure post-error slowing: The case of pre-error speeding</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Post-error slowing is one of the most widely employed measures to study cognitive and behavioral consequences of error commission. Several methods have been proposed to quantify the post-error slowing effect, and we discuss two main methods: The traditional method of comparing response times in correct post-error trials to response times of correct trials that follow another correct trial, and a more recent proposal of comparing response times in correct post-error trials to the corresponding correct pre-error trials. Based on thorough re-analyses of two datasets, we argue that the latter method provides an inflated estimate by also capturing the (partially) independent effect of pre-error speeding. We propose two solutions for improving the assessment of human error processing, both of which highlight the importance of distinguishing between initial pre-error speeding and later post-error slowing.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Post-error slowing</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pre-error speeding</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Performance monitoring</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Response-time analysis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Foerster, Anna</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Behavior research methods, instruments & computers</subfield><subfield code="d">Austin, Tex. : Psychonomic Society Publ., 1984</subfield><subfield code="g">54(2021), 1 vom: 08. Juli, Seite 435-443</subfield><subfield code="w">(DE-627)32998067X</subfield><subfield code="w">(DE-600)2048669-8</subfield><subfield code="x">1532-5970</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:54</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">day:08</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:435-443</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.3758/s13428-021-01631-4</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">54</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="b">08</subfield><subfield code="c">07</subfield><subfield code="h">435-443</subfield></datafield></record></collection>
|
score |
7.4014387 |