Bivariate Simulation of Potential Evapotranspiration Using Copula-GARCH Model
Abstract Developing statistical period and simulating the required values in case of data shortage increases certainty and reliability of simulations and statistical analyses, which is very important in studies on hydrology and water resources. Therefore, in this study, for simulating values of pote...
Ausführliche Beschreibung
Autor*in: |
Nazeri-Tahroudi, Mohammad [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Nature B.V. 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Water resources management - Dordrecht [u.a.] : Springer Science + Business Media B.V, 1987, 36(2022), 3 vom: 21. Jan., Seite 1007-1024 |
---|---|
Übergeordnetes Werk: |
volume:36 ; year:2022 ; number:3 ; day:21 ; month:01 ; pages:1007-1024 |
Links: |
---|
DOI / URN: |
10.1007/s11269-022-03065-9 |
---|
Katalog-ID: |
SPR046353011 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR046353011 | ||
003 | DE-627 | ||
005 | 20230507115852.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220227s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11269-022-03065-9 |2 doi | |
035 | |a (DE-627)SPR046353011 | ||
035 | |a (SPR)s11269-022-03065-9-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Nazeri-Tahroudi, Mohammad |e verfasserin |4 aut | |
245 | 1 | 0 | |a Bivariate Simulation of Potential Evapotranspiration Using Copula-GARCH Model |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Nature B.V. 2022 | ||
520 | |a Abstract Developing statistical period and simulating the required values in case of data shortage increases certainty and reliability of simulations and statistical analyses, which is very important in studies on hydrology and water resources. Therefore, in this study, for simulating values of potential evapotranspiration at Birjand Station located in eastern Iran, contemporaneous autoregressive moving average (CARMA), CARMA-generalized autoregressive conditional heteroskedasticity (GARCH), and Copula-GARCH models were used in statistical period of 1984–2019. The potential evapotranspiration and relative humidity time series were simulated using these three models. CARMA model has acceptable accuracy for simulating potential evapotranspiration values due to the effect of the second parameter on simulations. Nash–Sutcliffe efficiency (NSE) coefficient of CARMA model for simulating potential evapotranspiration values was estimated as 0.85. NSE coefficient of CARMA-GARCH model was obtained as 0.87 through extracting residuals of CARMA model and simulating variance of data using GARCH model. Comparing the CARMA and CARMA-GARCH models with each other, it was concluded that a combination of two linear and non-linear time series models increases simulation accuracy to some extent. Using Clayton copula (the selected copula from the studied copulas), the mentioned values were simulated by Copula-GARCH model. The results showed that among the three models used, Copula-GARCH model reduced root mean square error of bivariate simulation compared to CARMA and CARMA-GARCH models by 15 and 13%, respectively. The results also showed that the proposed model simulates the average, first, and third quarters and range of changes in the data by 5 and 95% better than the two CARMA and CARMA-GARCH models. | ||
650 | 4 | |a ARCH models |7 (dpeaa)DE-He213 | |
650 | 4 | |a CARMA model |7 (dpeaa)DE-He213 | |
650 | 4 | |a Conditional heteroskedasticity |7 (dpeaa)DE-He213 | |
650 | 4 | |a Clayton |7 (dpeaa)DE-He213 | |
650 | 4 | |a Simulation |7 (dpeaa)DE-He213 | |
700 | 1 | |a Ramezani, Yousef |0 (orcid)0000-0002-8085-9290 |4 aut | |
700 | 1 | |a De Michele, Carlo |4 aut | |
700 | 1 | |a Mirabbasi, Rasoul |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Water resources management |d Dordrecht [u.a.] : Springer Science + Business Media B.V, 1987 |g 36(2022), 3 vom: 21. Jan., Seite 1007-1024 |w (DE-627)315299924 |w (DE-600)2016360-5 |x 1573-1650 |7 nnns |
773 | 1 | 8 | |g volume:36 |g year:2022 |g number:3 |g day:21 |g month:01 |g pages:1007-1024 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11269-022-03065-9 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 36 |j 2022 |e 3 |b 21 |c 01 |h 1007-1024 |
author_variant |
m n t mnt y r yr m c d mc mcd r m rm |
---|---|
matchkey_str |
article:15731650:2022----::iaitsmltooptnilvptasiains |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s11269-022-03065-9 doi (DE-627)SPR046353011 (SPR)s11269-022-03065-9-e DE-627 ger DE-627 rakwb eng Nazeri-Tahroudi, Mohammad verfasserin aut Bivariate Simulation of Potential Evapotranspiration Using Copula-GARCH Model 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2022 Abstract Developing statistical period and simulating the required values in case of data shortage increases certainty and reliability of simulations and statistical analyses, which is very important in studies on hydrology and water resources. Therefore, in this study, for simulating values of potential evapotranspiration at Birjand Station located in eastern Iran, contemporaneous autoregressive moving average (CARMA), CARMA-generalized autoregressive conditional heteroskedasticity (GARCH), and Copula-GARCH models were used in statistical period of 1984–2019. The potential evapotranspiration and relative humidity time series were simulated using these three models. CARMA model has acceptable accuracy for simulating potential evapotranspiration values due to the effect of the second parameter on simulations. Nash–Sutcliffe efficiency (NSE) coefficient of CARMA model for simulating potential evapotranspiration values was estimated as 0.85. NSE coefficient of CARMA-GARCH model was obtained as 0.87 through extracting residuals of CARMA model and simulating variance of data using GARCH model. Comparing the CARMA and CARMA-GARCH models with each other, it was concluded that a combination of two linear and non-linear time series models increases simulation accuracy to some extent. Using Clayton copula (the selected copula from the studied copulas), the mentioned values were simulated by Copula-GARCH model. The results showed that among the three models used, Copula-GARCH model reduced root mean square error of bivariate simulation compared to CARMA and CARMA-GARCH models by 15 and 13%, respectively. The results also showed that the proposed model simulates the average, first, and third quarters and range of changes in the data by 5 and 95% better than the two CARMA and CARMA-GARCH models. ARCH models (dpeaa)DE-He213 CARMA model (dpeaa)DE-He213 Conditional heteroskedasticity (dpeaa)DE-He213 Clayton (dpeaa)DE-He213 Simulation (dpeaa)DE-He213 Ramezani, Yousef (orcid)0000-0002-8085-9290 aut De Michele, Carlo aut Mirabbasi, Rasoul aut Enthalten in Water resources management Dordrecht [u.a.] : Springer Science + Business Media B.V, 1987 36(2022), 3 vom: 21. Jan., Seite 1007-1024 (DE-627)315299924 (DE-600)2016360-5 1573-1650 nnns volume:36 year:2022 number:3 day:21 month:01 pages:1007-1024 https://dx.doi.org/10.1007/s11269-022-03065-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 36 2022 3 21 01 1007-1024 |
spelling |
10.1007/s11269-022-03065-9 doi (DE-627)SPR046353011 (SPR)s11269-022-03065-9-e DE-627 ger DE-627 rakwb eng Nazeri-Tahroudi, Mohammad verfasserin aut Bivariate Simulation of Potential Evapotranspiration Using Copula-GARCH Model 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2022 Abstract Developing statistical period and simulating the required values in case of data shortage increases certainty and reliability of simulations and statistical analyses, which is very important in studies on hydrology and water resources. Therefore, in this study, for simulating values of potential evapotranspiration at Birjand Station located in eastern Iran, contemporaneous autoregressive moving average (CARMA), CARMA-generalized autoregressive conditional heteroskedasticity (GARCH), and Copula-GARCH models were used in statistical period of 1984–2019. The potential evapotranspiration and relative humidity time series were simulated using these three models. CARMA model has acceptable accuracy for simulating potential evapotranspiration values due to the effect of the second parameter on simulations. Nash–Sutcliffe efficiency (NSE) coefficient of CARMA model for simulating potential evapotranspiration values was estimated as 0.85. NSE coefficient of CARMA-GARCH model was obtained as 0.87 through extracting residuals of CARMA model and simulating variance of data using GARCH model. Comparing the CARMA and CARMA-GARCH models with each other, it was concluded that a combination of two linear and non-linear time series models increases simulation accuracy to some extent. Using Clayton copula (the selected copula from the studied copulas), the mentioned values were simulated by Copula-GARCH model. The results showed that among the three models used, Copula-GARCH model reduced root mean square error of bivariate simulation compared to CARMA and CARMA-GARCH models by 15 and 13%, respectively. The results also showed that the proposed model simulates the average, first, and third quarters and range of changes in the data by 5 and 95% better than the two CARMA and CARMA-GARCH models. ARCH models (dpeaa)DE-He213 CARMA model (dpeaa)DE-He213 Conditional heteroskedasticity (dpeaa)DE-He213 Clayton (dpeaa)DE-He213 Simulation (dpeaa)DE-He213 Ramezani, Yousef (orcid)0000-0002-8085-9290 aut De Michele, Carlo aut Mirabbasi, Rasoul aut Enthalten in Water resources management Dordrecht [u.a.] : Springer Science + Business Media B.V, 1987 36(2022), 3 vom: 21. Jan., Seite 1007-1024 (DE-627)315299924 (DE-600)2016360-5 1573-1650 nnns volume:36 year:2022 number:3 day:21 month:01 pages:1007-1024 https://dx.doi.org/10.1007/s11269-022-03065-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 36 2022 3 21 01 1007-1024 |
allfields_unstemmed |
10.1007/s11269-022-03065-9 doi (DE-627)SPR046353011 (SPR)s11269-022-03065-9-e DE-627 ger DE-627 rakwb eng Nazeri-Tahroudi, Mohammad verfasserin aut Bivariate Simulation of Potential Evapotranspiration Using Copula-GARCH Model 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2022 Abstract Developing statistical period and simulating the required values in case of data shortage increases certainty and reliability of simulations and statistical analyses, which is very important in studies on hydrology and water resources. Therefore, in this study, for simulating values of potential evapotranspiration at Birjand Station located in eastern Iran, contemporaneous autoregressive moving average (CARMA), CARMA-generalized autoregressive conditional heteroskedasticity (GARCH), and Copula-GARCH models were used in statistical period of 1984–2019. The potential evapotranspiration and relative humidity time series were simulated using these three models. CARMA model has acceptable accuracy for simulating potential evapotranspiration values due to the effect of the second parameter on simulations. Nash–Sutcliffe efficiency (NSE) coefficient of CARMA model for simulating potential evapotranspiration values was estimated as 0.85. NSE coefficient of CARMA-GARCH model was obtained as 0.87 through extracting residuals of CARMA model and simulating variance of data using GARCH model. Comparing the CARMA and CARMA-GARCH models with each other, it was concluded that a combination of two linear and non-linear time series models increases simulation accuracy to some extent. Using Clayton copula (the selected copula from the studied copulas), the mentioned values were simulated by Copula-GARCH model. The results showed that among the three models used, Copula-GARCH model reduced root mean square error of bivariate simulation compared to CARMA and CARMA-GARCH models by 15 and 13%, respectively. The results also showed that the proposed model simulates the average, first, and third quarters and range of changes in the data by 5 and 95% better than the two CARMA and CARMA-GARCH models. ARCH models (dpeaa)DE-He213 CARMA model (dpeaa)DE-He213 Conditional heteroskedasticity (dpeaa)DE-He213 Clayton (dpeaa)DE-He213 Simulation (dpeaa)DE-He213 Ramezani, Yousef (orcid)0000-0002-8085-9290 aut De Michele, Carlo aut Mirabbasi, Rasoul aut Enthalten in Water resources management Dordrecht [u.a.] : Springer Science + Business Media B.V, 1987 36(2022), 3 vom: 21. Jan., Seite 1007-1024 (DE-627)315299924 (DE-600)2016360-5 1573-1650 nnns volume:36 year:2022 number:3 day:21 month:01 pages:1007-1024 https://dx.doi.org/10.1007/s11269-022-03065-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 36 2022 3 21 01 1007-1024 |
allfieldsGer |
10.1007/s11269-022-03065-9 doi (DE-627)SPR046353011 (SPR)s11269-022-03065-9-e DE-627 ger DE-627 rakwb eng Nazeri-Tahroudi, Mohammad verfasserin aut Bivariate Simulation of Potential Evapotranspiration Using Copula-GARCH Model 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2022 Abstract Developing statistical period and simulating the required values in case of data shortage increases certainty and reliability of simulations and statistical analyses, which is very important in studies on hydrology and water resources. Therefore, in this study, for simulating values of potential evapotranspiration at Birjand Station located in eastern Iran, contemporaneous autoregressive moving average (CARMA), CARMA-generalized autoregressive conditional heteroskedasticity (GARCH), and Copula-GARCH models were used in statistical period of 1984–2019. The potential evapotranspiration and relative humidity time series were simulated using these three models. CARMA model has acceptable accuracy for simulating potential evapotranspiration values due to the effect of the second parameter on simulations. Nash–Sutcliffe efficiency (NSE) coefficient of CARMA model for simulating potential evapotranspiration values was estimated as 0.85. NSE coefficient of CARMA-GARCH model was obtained as 0.87 through extracting residuals of CARMA model and simulating variance of data using GARCH model. Comparing the CARMA and CARMA-GARCH models with each other, it was concluded that a combination of two linear and non-linear time series models increases simulation accuracy to some extent. Using Clayton copula (the selected copula from the studied copulas), the mentioned values were simulated by Copula-GARCH model. The results showed that among the three models used, Copula-GARCH model reduced root mean square error of bivariate simulation compared to CARMA and CARMA-GARCH models by 15 and 13%, respectively. The results also showed that the proposed model simulates the average, first, and third quarters and range of changes in the data by 5 and 95% better than the two CARMA and CARMA-GARCH models. ARCH models (dpeaa)DE-He213 CARMA model (dpeaa)DE-He213 Conditional heteroskedasticity (dpeaa)DE-He213 Clayton (dpeaa)DE-He213 Simulation (dpeaa)DE-He213 Ramezani, Yousef (orcid)0000-0002-8085-9290 aut De Michele, Carlo aut Mirabbasi, Rasoul aut Enthalten in Water resources management Dordrecht [u.a.] : Springer Science + Business Media B.V, 1987 36(2022), 3 vom: 21. Jan., Seite 1007-1024 (DE-627)315299924 (DE-600)2016360-5 1573-1650 nnns volume:36 year:2022 number:3 day:21 month:01 pages:1007-1024 https://dx.doi.org/10.1007/s11269-022-03065-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 36 2022 3 21 01 1007-1024 |
allfieldsSound |
10.1007/s11269-022-03065-9 doi (DE-627)SPR046353011 (SPR)s11269-022-03065-9-e DE-627 ger DE-627 rakwb eng Nazeri-Tahroudi, Mohammad verfasserin aut Bivariate Simulation of Potential Evapotranspiration Using Copula-GARCH Model 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2022 Abstract Developing statistical period and simulating the required values in case of data shortage increases certainty and reliability of simulations and statistical analyses, which is very important in studies on hydrology and water resources. Therefore, in this study, for simulating values of potential evapotranspiration at Birjand Station located in eastern Iran, contemporaneous autoregressive moving average (CARMA), CARMA-generalized autoregressive conditional heteroskedasticity (GARCH), and Copula-GARCH models were used in statistical period of 1984–2019. The potential evapotranspiration and relative humidity time series were simulated using these three models. CARMA model has acceptable accuracy for simulating potential evapotranspiration values due to the effect of the second parameter on simulations. Nash–Sutcliffe efficiency (NSE) coefficient of CARMA model for simulating potential evapotranspiration values was estimated as 0.85. NSE coefficient of CARMA-GARCH model was obtained as 0.87 through extracting residuals of CARMA model and simulating variance of data using GARCH model. Comparing the CARMA and CARMA-GARCH models with each other, it was concluded that a combination of two linear and non-linear time series models increases simulation accuracy to some extent. Using Clayton copula (the selected copula from the studied copulas), the mentioned values were simulated by Copula-GARCH model. The results showed that among the three models used, Copula-GARCH model reduced root mean square error of bivariate simulation compared to CARMA and CARMA-GARCH models by 15 and 13%, respectively. The results also showed that the proposed model simulates the average, first, and third quarters and range of changes in the data by 5 and 95% better than the two CARMA and CARMA-GARCH models. ARCH models (dpeaa)DE-He213 CARMA model (dpeaa)DE-He213 Conditional heteroskedasticity (dpeaa)DE-He213 Clayton (dpeaa)DE-He213 Simulation (dpeaa)DE-He213 Ramezani, Yousef (orcid)0000-0002-8085-9290 aut De Michele, Carlo aut Mirabbasi, Rasoul aut Enthalten in Water resources management Dordrecht [u.a.] : Springer Science + Business Media B.V, 1987 36(2022), 3 vom: 21. Jan., Seite 1007-1024 (DE-627)315299924 (DE-600)2016360-5 1573-1650 nnns volume:36 year:2022 number:3 day:21 month:01 pages:1007-1024 https://dx.doi.org/10.1007/s11269-022-03065-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 36 2022 3 21 01 1007-1024 |
language |
English |
source |
Enthalten in Water resources management 36(2022), 3 vom: 21. Jan., Seite 1007-1024 volume:36 year:2022 number:3 day:21 month:01 pages:1007-1024 |
sourceStr |
Enthalten in Water resources management 36(2022), 3 vom: 21. Jan., Seite 1007-1024 volume:36 year:2022 number:3 day:21 month:01 pages:1007-1024 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
ARCH models CARMA model Conditional heteroskedasticity Clayton Simulation |
isfreeaccess_bool |
false |
container_title |
Water resources management |
authorswithroles_txt_mv |
Nazeri-Tahroudi, Mohammad @@aut@@ Ramezani, Yousef @@aut@@ De Michele, Carlo @@aut@@ Mirabbasi, Rasoul @@aut@@ |
publishDateDaySort_date |
2022-01-21T00:00:00Z |
hierarchy_top_id |
315299924 |
id |
SPR046353011 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR046353011</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507115852.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11269-022-03065-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR046353011</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11269-022-03065-9-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nazeri-Tahroudi, Mohammad</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bivariate Simulation of Potential Evapotranspiration Using Copula-GARCH Model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Nature B.V. 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Developing statistical period and simulating the required values in case of data shortage increases certainty and reliability of simulations and statistical analyses, which is very important in studies on hydrology and water resources. Therefore, in this study, for simulating values of potential evapotranspiration at Birjand Station located in eastern Iran, contemporaneous autoregressive moving average (CARMA), CARMA-generalized autoregressive conditional heteroskedasticity (GARCH), and Copula-GARCH models were used in statistical period of 1984–2019. The potential evapotranspiration and relative humidity time series were simulated using these three models. CARMA model has acceptable accuracy for simulating potential evapotranspiration values due to the effect of the second parameter on simulations. Nash–Sutcliffe efficiency (NSE) coefficient of CARMA model for simulating potential evapotranspiration values was estimated as 0.85. NSE coefficient of CARMA-GARCH model was obtained as 0.87 through extracting residuals of CARMA model and simulating variance of data using GARCH model. Comparing the CARMA and CARMA-GARCH models with each other, it was concluded that a combination of two linear and non-linear time series models increases simulation accuracy to some extent. Using Clayton copula (the selected copula from the studied copulas), the mentioned values were simulated by Copula-GARCH model. The results showed that among the three models used, Copula-GARCH model reduced root mean square error of bivariate simulation compared to CARMA and CARMA-GARCH models by 15 and 13%, respectively. The results also showed that the proposed model simulates the average, first, and third quarters and range of changes in the data by 5 and 95% better than the two CARMA and CARMA-GARCH models.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ARCH models</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CARMA model</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conditional heteroskedasticity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clayton</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Simulation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ramezani, Yousef</subfield><subfield code="0">(orcid)0000-0002-8085-9290</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">De Michele, Carlo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mirabbasi, Rasoul</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Water resources management</subfield><subfield code="d">Dordrecht [u.a.] : Springer Science + Business Media B.V, 1987</subfield><subfield code="g">36(2022), 3 vom: 21. Jan., Seite 1007-1024</subfield><subfield code="w">(DE-627)315299924</subfield><subfield code="w">(DE-600)2016360-5</subfield><subfield code="x">1573-1650</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:36</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3</subfield><subfield code="g">day:21</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:1007-1024</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11269-022-03065-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">36</subfield><subfield code="j">2022</subfield><subfield code="e">3</subfield><subfield code="b">21</subfield><subfield code="c">01</subfield><subfield code="h">1007-1024</subfield></datafield></record></collection>
|
author |
Nazeri-Tahroudi, Mohammad |
spellingShingle |
Nazeri-Tahroudi, Mohammad misc ARCH models misc CARMA model misc Conditional heteroskedasticity misc Clayton misc Simulation Bivariate Simulation of Potential Evapotranspiration Using Copula-GARCH Model |
authorStr |
Nazeri-Tahroudi, Mohammad |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)315299924 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1573-1650 |
topic_title |
Bivariate Simulation of Potential Evapotranspiration Using Copula-GARCH Model ARCH models (dpeaa)DE-He213 CARMA model (dpeaa)DE-He213 Conditional heteroskedasticity (dpeaa)DE-He213 Clayton (dpeaa)DE-He213 Simulation (dpeaa)DE-He213 |
topic |
misc ARCH models misc CARMA model misc Conditional heteroskedasticity misc Clayton misc Simulation |
topic_unstemmed |
misc ARCH models misc CARMA model misc Conditional heteroskedasticity misc Clayton misc Simulation |
topic_browse |
misc ARCH models misc CARMA model misc Conditional heteroskedasticity misc Clayton misc Simulation |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Water resources management |
hierarchy_parent_id |
315299924 |
hierarchy_top_title |
Water resources management |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)315299924 (DE-600)2016360-5 |
title |
Bivariate Simulation of Potential Evapotranspiration Using Copula-GARCH Model |
ctrlnum |
(DE-627)SPR046353011 (SPR)s11269-022-03065-9-e |
title_full |
Bivariate Simulation of Potential Evapotranspiration Using Copula-GARCH Model |
author_sort |
Nazeri-Tahroudi, Mohammad |
journal |
Water resources management |
journalStr |
Water resources management |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
1007 |
author_browse |
Nazeri-Tahroudi, Mohammad Ramezani, Yousef De Michele, Carlo Mirabbasi, Rasoul |
container_volume |
36 |
format_se |
Elektronische Aufsätze |
author-letter |
Nazeri-Tahroudi, Mohammad |
doi_str_mv |
10.1007/s11269-022-03065-9 |
normlink |
(ORCID)0000-0002-8085-9290 |
normlink_prefix_str_mv |
(orcid)0000-0002-8085-9290 |
title_sort |
bivariate simulation of potential evapotranspiration using copula-garch model |
title_auth |
Bivariate Simulation of Potential Evapotranspiration Using Copula-GARCH Model |
abstract |
Abstract Developing statistical period and simulating the required values in case of data shortage increases certainty and reliability of simulations and statistical analyses, which is very important in studies on hydrology and water resources. Therefore, in this study, for simulating values of potential evapotranspiration at Birjand Station located in eastern Iran, contemporaneous autoregressive moving average (CARMA), CARMA-generalized autoregressive conditional heteroskedasticity (GARCH), and Copula-GARCH models were used in statistical period of 1984–2019. The potential evapotranspiration and relative humidity time series were simulated using these three models. CARMA model has acceptable accuracy for simulating potential evapotranspiration values due to the effect of the second parameter on simulations. Nash–Sutcliffe efficiency (NSE) coefficient of CARMA model for simulating potential evapotranspiration values was estimated as 0.85. NSE coefficient of CARMA-GARCH model was obtained as 0.87 through extracting residuals of CARMA model and simulating variance of data using GARCH model. Comparing the CARMA and CARMA-GARCH models with each other, it was concluded that a combination of two linear and non-linear time series models increases simulation accuracy to some extent. Using Clayton copula (the selected copula from the studied copulas), the mentioned values were simulated by Copula-GARCH model. The results showed that among the three models used, Copula-GARCH model reduced root mean square error of bivariate simulation compared to CARMA and CARMA-GARCH models by 15 and 13%, respectively. The results also showed that the proposed model simulates the average, first, and third quarters and range of changes in the data by 5 and 95% better than the two CARMA and CARMA-GARCH models. © The Author(s), under exclusive licence to Springer Nature B.V. 2022 |
abstractGer |
Abstract Developing statistical period and simulating the required values in case of data shortage increases certainty and reliability of simulations and statistical analyses, which is very important in studies on hydrology and water resources. Therefore, in this study, for simulating values of potential evapotranspiration at Birjand Station located in eastern Iran, contemporaneous autoregressive moving average (CARMA), CARMA-generalized autoregressive conditional heteroskedasticity (GARCH), and Copula-GARCH models were used in statistical period of 1984–2019. The potential evapotranspiration and relative humidity time series were simulated using these three models. CARMA model has acceptable accuracy for simulating potential evapotranspiration values due to the effect of the second parameter on simulations. Nash–Sutcliffe efficiency (NSE) coefficient of CARMA model for simulating potential evapotranspiration values was estimated as 0.85. NSE coefficient of CARMA-GARCH model was obtained as 0.87 through extracting residuals of CARMA model and simulating variance of data using GARCH model. Comparing the CARMA and CARMA-GARCH models with each other, it was concluded that a combination of two linear and non-linear time series models increases simulation accuracy to some extent. Using Clayton copula (the selected copula from the studied copulas), the mentioned values were simulated by Copula-GARCH model. The results showed that among the three models used, Copula-GARCH model reduced root mean square error of bivariate simulation compared to CARMA and CARMA-GARCH models by 15 and 13%, respectively. The results also showed that the proposed model simulates the average, first, and third quarters and range of changes in the data by 5 and 95% better than the two CARMA and CARMA-GARCH models. © The Author(s), under exclusive licence to Springer Nature B.V. 2022 |
abstract_unstemmed |
Abstract Developing statistical period and simulating the required values in case of data shortage increases certainty and reliability of simulations and statistical analyses, which is very important in studies on hydrology and water resources. Therefore, in this study, for simulating values of potential evapotranspiration at Birjand Station located in eastern Iran, contemporaneous autoregressive moving average (CARMA), CARMA-generalized autoregressive conditional heteroskedasticity (GARCH), and Copula-GARCH models were used in statistical period of 1984–2019. The potential evapotranspiration and relative humidity time series were simulated using these three models. CARMA model has acceptable accuracy for simulating potential evapotranspiration values due to the effect of the second parameter on simulations. Nash–Sutcliffe efficiency (NSE) coefficient of CARMA model for simulating potential evapotranspiration values was estimated as 0.85. NSE coefficient of CARMA-GARCH model was obtained as 0.87 through extracting residuals of CARMA model and simulating variance of data using GARCH model. Comparing the CARMA and CARMA-GARCH models with each other, it was concluded that a combination of two linear and non-linear time series models increases simulation accuracy to some extent. Using Clayton copula (the selected copula from the studied copulas), the mentioned values were simulated by Copula-GARCH model. The results showed that among the three models used, Copula-GARCH model reduced root mean square error of bivariate simulation compared to CARMA and CARMA-GARCH models by 15 and 13%, respectively. The results also showed that the proposed model simulates the average, first, and third quarters and range of changes in the data by 5 and 95% better than the two CARMA and CARMA-GARCH models. © The Author(s), under exclusive licence to Springer Nature B.V. 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
3 |
title_short |
Bivariate Simulation of Potential Evapotranspiration Using Copula-GARCH Model |
url |
https://dx.doi.org/10.1007/s11269-022-03065-9 |
remote_bool |
true |
author2 |
Ramezani, Yousef De Michele, Carlo Mirabbasi, Rasoul |
author2Str |
Ramezani, Yousef De Michele, Carlo Mirabbasi, Rasoul |
ppnlink |
315299924 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11269-022-03065-9 |
up_date |
2024-07-03T22:00:55.538Z |
_version_ |
1803596915591348224 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR046353011</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507115852.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11269-022-03065-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR046353011</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11269-022-03065-9-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nazeri-Tahroudi, Mohammad</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bivariate Simulation of Potential Evapotranspiration Using Copula-GARCH Model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Nature B.V. 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Developing statistical period and simulating the required values in case of data shortage increases certainty and reliability of simulations and statistical analyses, which is very important in studies on hydrology and water resources. Therefore, in this study, for simulating values of potential evapotranspiration at Birjand Station located in eastern Iran, contemporaneous autoregressive moving average (CARMA), CARMA-generalized autoregressive conditional heteroskedasticity (GARCH), and Copula-GARCH models were used in statistical period of 1984–2019. The potential evapotranspiration and relative humidity time series were simulated using these three models. CARMA model has acceptable accuracy for simulating potential evapotranspiration values due to the effect of the second parameter on simulations. Nash–Sutcliffe efficiency (NSE) coefficient of CARMA model for simulating potential evapotranspiration values was estimated as 0.85. NSE coefficient of CARMA-GARCH model was obtained as 0.87 through extracting residuals of CARMA model and simulating variance of data using GARCH model. Comparing the CARMA and CARMA-GARCH models with each other, it was concluded that a combination of two linear and non-linear time series models increases simulation accuracy to some extent. Using Clayton copula (the selected copula from the studied copulas), the mentioned values were simulated by Copula-GARCH model. The results showed that among the three models used, Copula-GARCH model reduced root mean square error of bivariate simulation compared to CARMA and CARMA-GARCH models by 15 and 13%, respectively. The results also showed that the proposed model simulates the average, first, and third quarters and range of changes in the data by 5 and 95% better than the two CARMA and CARMA-GARCH models.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ARCH models</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CARMA model</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conditional heteroskedasticity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clayton</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Simulation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ramezani, Yousef</subfield><subfield code="0">(orcid)0000-0002-8085-9290</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">De Michele, Carlo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mirabbasi, Rasoul</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Water resources management</subfield><subfield code="d">Dordrecht [u.a.] : Springer Science + Business Media B.V, 1987</subfield><subfield code="g">36(2022), 3 vom: 21. Jan., Seite 1007-1024</subfield><subfield code="w">(DE-627)315299924</subfield><subfield code="w">(DE-600)2016360-5</subfield><subfield code="x">1573-1650</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:36</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3</subfield><subfield code="g">day:21</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:1007-1024</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11269-022-03065-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">36</subfield><subfield code="j">2022</subfield><subfield code="e">3</subfield><subfield code="b">21</subfield><subfield code="c">01</subfield><subfield code="h">1007-1024</subfield></datafield></record></collection>
|
score |
7.400488 |