Design and Simulation of pH-ISFET Readout Circuit for Low Thermal Sensitivity Applications Through an Automatic Selection of an Isothermal Point
Abstract The purpose of this paper is to present a high-performance pH-ISFET readout circuit, which carries out a temperature insensitivity, linearity and temporal drift compensation, by using a new architecture that automates the control of an isothermal point. Unlike many existing readout circuits...
Ausführliche Beschreibung
Autor*in: |
Harrak, Abdelkhalak [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Subsurface sensing technologies and applications - Dordrecht : Springer Science Business Media B.V., 2000, 23(2022), 1 vom: 03. März |
---|---|
Übergeordnetes Werk: |
volume:23 ; year:2022 ; number:1 ; day:03 ; month:03 |
Links: |
---|
DOI / URN: |
10.1007/s11220-022-00378-2 |
---|
Katalog-ID: |
SPR046382712 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR046382712 | ||
003 | DE-627 | ||
005 | 20230509122804.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220304s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11220-022-00378-2 |2 doi | |
035 | |a (DE-627)SPR046382712 | ||
035 | |a (SPR)s11220-022-00378-2-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Harrak, Abdelkhalak |e verfasserin |4 aut | |
245 | 1 | 0 | |a Design and Simulation of pH-ISFET Readout Circuit for Low Thermal Sensitivity Applications Through an Automatic Selection of an Isothermal Point |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 | ||
520 | |a Abstract The purpose of this paper is to present a high-performance pH-ISFET readout circuit, which carries out a temperature insensitivity, linearity and temporal drift compensation, by using a new architecture that automates the control of an isothermal point. Unlike many existing readout circuits in the literature, this circuit can be optimized for several isothermal pH values as desired and for any structure compatible with the standard ISFET sensor. To eliminate the effect of the temporal drift, generally observed in ISFET type sensors, the same readout circuit was used in conjunction with Machine Learning (ML) implementation. The ML model was trained using a dataset from simulations performed using the ISFET macro-model including the drift effect. Through simulations, we show that the proposed scheme reduces drastically the temperature sensitivity of the sensor to less than %$1.5\times 10^{-4}\,{\mathrm{pH}}/^{\circ }{\mathrm{C}}%$ for pH %$\pm \,2%$ around any isothermal point at a wide pH range (from 1 to 12). For small changes of the pH around the isothermal point, the readout circuit outperforms many other designs with a thermal sensibility of less than %$3.2\times 10^{-6}\,{\mathrm{pH}}/^\circ {\mathrm{C}}%$. Results show that the system was able to predict the long-term behavior of the pH-ISFET (several days) with a relative error, of the output, that not exceed %$0.19\%%$ for the 3-sigma testing. | ||
650 | 4 | |a PH-ISFET |7 (dpeaa)DE-He213 | |
650 | 4 | |a Readout circuit |7 (dpeaa)DE-He213 | |
650 | 4 | |a Isothermal point |7 (dpeaa)DE-He213 | |
650 | 4 | |a Temporal drift |7 (dpeaa)DE-He213 | |
650 | 4 | |a Neural network |7 (dpeaa)DE-He213 | |
700 | 1 | |a Naimi, Salah Eddine |0 (orcid)0000-0001-8753-1557 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Subsurface sensing technologies and applications |d Dordrecht : Springer Science Business Media B.V., 2000 |g 23(2022), 1 vom: 03. März |w (DE-627)320590305 |w (DE-600)2018843-2 |x 1573-9317 |7 nnns |
773 | 1 | 8 | |g volume:23 |g year:2022 |g number:1 |g day:03 |g month:03 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11220-022-00378-2 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
951 | |a AR | ||
952 | |d 23 |j 2022 |e 1 |b 03 |c 03 |
author_variant |
a h ah s e n se sen |
---|---|
matchkey_str |
article:15739317:2022----::einnsmltoopifteducrutolwhrasniiiyplctoshogaatm |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s11220-022-00378-2 doi (DE-627)SPR046382712 (SPR)s11220-022-00378-2-e DE-627 ger DE-627 rakwb eng Harrak, Abdelkhalak verfasserin aut Design and Simulation of pH-ISFET Readout Circuit for Low Thermal Sensitivity Applications Through an Automatic Selection of an Isothermal Point 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract The purpose of this paper is to present a high-performance pH-ISFET readout circuit, which carries out a temperature insensitivity, linearity and temporal drift compensation, by using a new architecture that automates the control of an isothermal point. Unlike many existing readout circuits in the literature, this circuit can be optimized for several isothermal pH values as desired and for any structure compatible with the standard ISFET sensor. To eliminate the effect of the temporal drift, generally observed in ISFET type sensors, the same readout circuit was used in conjunction with Machine Learning (ML) implementation. The ML model was trained using a dataset from simulations performed using the ISFET macro-model including the drift effect. Through simulations, we show that the proposed scheme reduces drastically the temperature sensitivity of the sensor to less than %$1.5\times 10^{-4}\,{\mathrm{pH}}/^{\circ }{\mathrm{C}}%$ for pH %$\pm \,2%$ around any isothermal point at a wide pH range (from 1 to 12). For small changes of the pH around the isothermal point, the readout circuit outperforms many other designs with a thermal sensibility of less than %$3.2\times 10^{-6}\,{\mathrm{pH}}/^\circ {\mathrm{C}}%$. Results show that the system was able to predict the long-term behavior of the pH-ISFET (several days) with a relative error, of the output, that not exceed %$0.19\%%$ for the 3-sigma testing. PH-ISFET (dpeaa)DE-He213 Readout circuit (dpeaa)DE-He213 Isothermal point (dpeaa)DE-He213 Temporal drift (dpeaa)DE-He213 Neural network (dpeaa)DE-He213 Naimi, Salah Eddine (orcid)0000-0001-8753-1557 aut Enthalten in Subsurface sensing technologies and applications Dordrecht : Springer Science Business Media B.V., 2000 23(2022), 1 vom: 03. März (DE-627)320590305 (DE-600)2018843-2 1573-9317 nnns volume:23 year:2022 number:1 day:03 month:03 https://dx.doi.org/10.1007/s11220-022-00378-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 23 2022 1 03 03 |
spelling |
10.1007/s11220-022-00378-2 doi (DE-627)SPR046382712 (SPR)s11220-022-00378-2-e DE-627 ger DE-627 rakwb eng Harrak, Abdelkhalak verfasserin aut Design and Simulation of pH-ISFET Readout Circuit for Low Thermal Sensitivity Applications Through an Automatic Selection of an Isothermal Point 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract The purpose of this paper is to present a high-performance pH-ISFET readout circuit, which carries out a temperature insensitivity, linearity and temporal drift compensation, by using a new architecture that automates the control of an isothermal point. Unlike many existing readout circuits in the literature, this circuit can be optimized for several isothermal pH values as desired and for any structure compatible with the standard ISFET sensor. To eliminate the effect of the temporal drift, generally observed in ISFET type sensors, the same readout circuit was used in conjunction with Machine Learning (ML) implementation. The ML model was trained using a dataset from simulations performed using the ISFET macro-model including the drift effect. Through simulations, we show that the proposed scheme reduces drastically the temperature sensitivity of the sensor to less than %$1.5\times 10^{-4}\,{\mathrm{pH}}/^{\circ }{\mathrm{C}}%$ for pH %$\pm \,2%$ around any isothermal point at a wide pH range (from 1 to 12). For small changes of the pH around the isothermal point, the readout circuit outperforms many other designs with a thermal sensibility of less than %$3.2\times 10^{-6}\,{\mathrm{pH}}/^\circ {\mathrm{C}}%$. Results show that the system was able to predict the long-term behavior of the pH-ISFET (several days) with a relative error, of the output, that not exceed %$0.19\%%$ for the 3-sigma testing. PH-ISFET (dpeaa)DE-He213 Readout circuit (dpeaa)DE-He213 Isothermal point (dpeaa)DE-He213 Temporal drift (dpeaa)DE-He213 Neural network (dpeaa)DE-He213 Naimi, Salah Eddine (orcid)0000-0001-8753-1557 aut Enthalten in Subsurface sensing technologies and applications Dordrecht : Springer Science Business Media B.V., 2000 23(2022), 1 vom: 03. März (DE-627)320590305 (DE-600)2018843-2 1573-9317 nnns volume:23 year:2022 number:1 day:03 month:03 https://dx.doi.org/10.1007/s11220-022-00378-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 23 2022 1 03 03 |
allfields_unstemmed |
10.1007/s11220-022-00378-2 doi (DE-627)SPR046382712 (SPR)s11220-022-00378-2-e DE-627 ger DE-627 rakwb eng Harrak, Abdelkhalak verfasserin aut Design and Simulation of pH-ISFET Readout Circuit for Low Thermal Sensitivity Applications Through an Automatic Selection of an Isothermal Point 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract The purpose of this paper is to present a high-performance pH-ISFET readout circuit, which carries out a temperature insensitivity, linearity and temporal drift compensation, by using a new architecture that automates the control of an isothermal point. Unlike many existing readout circuits in the literature, this circuit can be optimized for several isothermal pH values as desired and for any structure compatible with the standard ISFET sensor. To eliminate the effect of the temporal drift, generally observed in ISFET type sensors, the same readout circuit was used in conjunction with Machine Learning (ML) implementation. The ML model was trained using a dataset from simulations performed using the ISFET macro-model including the drift effect. Through simulations, we show that the proposed scheme reduces drastically the temperature sensitivity of the sensor to less than %$1.5\times 10^{-4}\,{\mathrm{pH}}/^{\circ }{\mathrm{C}}%$ for pH %$\pm \,2%$ around any isothermal point at a wide pH range (from 1 to 12). For small changes of the pH around the isothermal point, the readout circuit outperforms many other designs with a thermal sensibility of less than %$3.2\times 10^{-6}\,{\mathrm{pH}}/^\circ {\mathrm{C}}%$. Results show that the system was able to predict the long-term behavior of the pH-ISFET (several days) with a relative error, of the output, that not exceed %$0.19\%%$ for the 3-sigma testing. PH-ISFET (dpeaa)DE-He213 Readout circuit (dpeaa)DE-He213 Isothermal point (dpeaa)DE-He213 Temporal drift (dpeaa)DE-He213 Neural network (dpeaa)DE-He213 Naimi, Salah Eddine (orcid)0000-0001-8753-1557 aut Enthalten in Subsurface sensing technologies and applications Dordrecht : Springer Science Business Media B.V., 2000 23(2022), 1 vom: 03. März (DE-627)320590305 (DE-600)2018843-2 1573-9317 nnns volume:23 year:2022 number:1 day:03 month:03 https://dx.doi.org/10.1007/s11220-022-00378-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 23 2022 1 03 03 |
allfieldsGer |
10.1007/s11220-022-00378-2 doi (DE-627)SPR046382712 (SPR)s11220-022-00378-2-e DE-627 ger DE-627 rakwb eng Harrak, Abdelkhalak verfasserin aut Design and Simulation of pH-ISFET Readout Circuit for Low Thermal Sensitivity Applications Through an Automatic Selection of an Isothermal Point 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract The purpose of this paper is to present a high-performance pH-ISFET readout circuit, which carries out a temperature insensitivity, linearity and temporal drift compensation, by using a new architecture that automates the control of an isothermal point. Unlike many existing readout circuits in the literature, this circuit can be optimized for several isothermal pH values as desired and for any structure compatible with the standard ISFET sensor. To eliminate the effect of the temporal drift, generally observed in ISFET type sensors, the same readout circuit was used in conjunction with Machine Learning (ML) implementation. The ML model was trained using a dataset from simulations performed using the ISFET macro-model including the drift effect. Through simulations, we show that the proposed scheme reduces drastically the temperature sensitivity of the sensor to less than %$1.5\times 10^{-4}\,{\mathrm{pH}}/^{\circ }{\mathrm{C}}%$ for pH %$\pm \,2%$ around any isothermal point at a wide pH range (from 1 to 12). For small changes of the pH around the isothermal point, the readout circuit outperforms many other designs with a thermal sensibility of less than %$3.2\times 10^{-6}\,{\mathrm{pH}}/^\circ {\mathrm{C}}%$. Results show that the system was able to predict the long-term behavior of the pH-ISFET (several days) with a relative error, of the output, that not exceed %$0.19\%%$ for the 3-sigma testing. PH-ISFET (dpeaa)DE-He213 Readout circuit (dpeaa)DE-He213 Isothermal point (dpeaa)DE-He213 Temporal drift (dpeaa)DE-He213 Neural network (dpeaa)DE-He213 Naimi, Salah Eddine (orcid)0000-0001-8753-1557 aut Enthalten in Subsurface sensing technologies and applications Dordrecht : Springer Science Business Media B.V., 2000 23(2022), 1 vom: 03. März (DE-627)320590305 (DE-600)2018843-2 1573-9317 nnns volume:23 year:2022 number:1 day:03 month:03 https://dx.doi.org/10.1007/s11220-022-00378-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 23 2022 1 03 03 |
allfieldsSound |
10.1007/s11220-022-00378-2 doi (DE-627)SPR046382712 (SPR)s11220-022-00378-2-e DE-627 ger DE-627 rakwb eng Harrak, Abdelkhalak verfasserin aut Design and Simulation of pH-ISFET Readout Circuit for Low Thermal Sensitivity Applications Through an Automatic Selection of an Isothermal Point 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract The purpose of this paper is to present a high-performance pH-ISFET readout circuit, which carries out a temperature insensitivity, linearity and temporal drift compensation, by using a new architecture that automates the control of an isothermal point. Unlike many existing readout circuits in the literature, this circuit can be optimized for several isothermal pH values as desired and for any structure compatible with the standard ISFET sensor. To eliminate the effect of the temporal drift, generally observed in ISFET type sensors, the same readout circuit was used in conjunction with Machine Learning (ML) implementation. The ML model was trained using a dataset from simulations performed using the ISFET macro-model including the drift effect. Through simulations, we show that the proposed scheme reduces drastically the temperature sensitivity of the sensor to less than %$1.5\times 10^{-4}\,{\mathrm{pH}}/^{\circ }{\mathrm{C}}%$ for pH %$\pm \,2%$ around any isothermal point at a wide pH range (from 1 to 12). For small changes of the pH around the isothermal point, the readout circuit outperforms many other designs with a thermal sensibility of less than %$3.2\times 10^{-6}\,{\mathrm{pH}}/^\circ {\mathrm{C}}%$. Results show that the system was able to predict the long-term behavior of the pH-ISFET (several days) with a relative error, of the output, that not exceed %$0.19\%%$ for the 3-sigma testing. PH-ISFET (dpeaa)DE-He213 Readout circuit (dpeaa)DE-He213 Isothermal point (dpeaa)DE-He213 Temporal drift (dpeaa)DE-He213 Neural network (dpeaa)DE-He213 Naimi, Salah Eddine (orcid)0000-0001-8753-1557 aut Enthalten in Subsurface sensing technologies and applications Dordrecht : Springer Science Business Media B.V., 2000 23(2022), 1 vom: 03. März (DE-627)320590305 (DE-600)2018843-2 1573-9317 nnns volume:23 year:2022 number:1 day:03 month:03 https://dx.doi.org/10.1007/s11220-022-00378-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 23 2022 1 03 03 |
language |
English |
source |
Enthalten in Subsurface sensing technologies and applications 23(2022), 1 vom: 03. März volume:23 year:2022 number:1 day:03 month:03 |
sourceStr |
Enthalten in Subsurface sensing technologies and applications 23(2022), 1 vom: 03. März volume:23 year:2022 number:1 day:03 month:03 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
PH-ISFET Readout circuit Isothermal point Temporal drift Neural network |
isfreeaccess_bool |
false |
container_title |
Subsurface sensing technologies and applications |
authorswithroles_txt_mv |
Harrak, Abdelkhalak @@aut@@ Naimi, Salah Eddine @@aut@@ |
publishDateDaySort_date |
2022-03-03T00:00:00Z |
hierarchy_top_id |
320590305 |
id |
SPR046382712 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR046382712</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509122804.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220304s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11220-022-00378-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR046382712</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11220-022-00378-2-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Harrak, Abdelkhalak</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Design and Simulation of pH-ISFET Readout Circuit for Low Thermal Sensitivity Applications Through an Automatic Selection of an Isothermal Point</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The purpose of this paper is to present a high-performance pH-ISFET readout circuit, which carries out a temperature insensitivity, linearity and temporal drift compensation, by using a new architecture that automates the control of an isothermal point. Unlike many existing readout circuits in the literature, this circuit can be optimized for several isothermal pH values as desired and for any structure compatible with the standard ISFET sensor. To eliminate the effect of the temporal drift, generally observed in ISFET type sensors, the same readout circuit was used in conjunction with Machine Learning (ML) implementation. The ML model was trained using a dataset from simulations performed using the ISFET macro-model including the drift effect. Through simulations, we show that the proposed scheme reduces drastically the temperature sensitivity of the sensor to less than %$1.5\times 10^{-4}\,{\mathrm{pH}}/^{\circ }{\mathrm{C}}%$ for pH %$\pm \,2%$ around any isothermal point at a wide pH range (from 1 to 12). For small changes of the pH around the isothermal point, the readout circuit outperforms many other designs with a thermal sensibility of less than %$3.2\times 10^{-6}\,{\mathrm{pH}}/^\circ {\mathrm{C}}%$. Results show that the system was able to predict the long-term behavior of the pH-ISFET (several days) with a relative error, of the output, that not exceed %$0.19\%%$ for the 3-sigma testing.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PH-ISFET</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Readout circuit</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Isothermal point</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temporal drift</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural network</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Naimi, Salah Eddine</subfield><subfield code="0">(orcid)0000-0001-8753-1557</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Subsurface sensing technologies and applications</subfield><subfield code="d">Dordrecht : Springer Science Business Media B.V., 2000</subfield><subfield code="g">23(2022), 1 vom: 03. März</subfield><subfield code="w">(DE-627)320590305</subfield><subfield code="w">(DE-600)2018843-2</subfield><subfield code="x">1573-9317</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:03</subfield><subfield code="g">month:03</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11220-022-00378-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">03</subfield><subfield code="c">03</subfield></datafield></record></collection>
|
author |
Harrak, Abdelkhalak |
spellingShingle |
Harrak, Abdelkhalak misc PH-ISFET misc Readout circuit misc Isothermal point misc Temporal drift misc Neural network Design and Simulation of pH-ISFET Readout Circuit for Low Thermal Sensitivity Applications Through an Automatic Selection of an Isothermal Point |
authorStr |
Harrak, Abdelkhalak |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320590305 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1573-9317 |
topic_title |
Design and Simulation of pH-ISFET Readout Circuit for Low Thermal Sensitivity Applications Through an Automatic Selection of an Isothermal Point PH-ISFET (dpeaa)DE-He213 Readout circuit (dpeaa)DE-He213 Isothermal point (dpeaa)DE-He213 Temporal drift (dpeaa)DE-He213 Neural network (dpeaa)DE-He213 |
topic |
misc PH-ISFET misc Readout circuit misc Isothermal point misc Temporal drift misc Neural network |
topic_unstemmed |
misc PH-ISFET misc Readout circuit misc Isothermal point misc Temporal drift misc Neural network |
topic_browse |
misc PH-ISFET misc Readout circuit misc Isothermal point misc Temporal drift misc Neural network |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Subsurface sensing technologies and applications |
hierarchy_parent_id |
320590305 |
hierarchy_top_title |
Subsurface sensing technologies and applications |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320590305 (DE-600)2018843-2 |
title |
Design and Simulation of pH-ISFET Readout Circuit for Low Thermal Sensitivity Applications Through an Automatic Selection of an Isothermal Point |
ctrlnum |
(DE-627)SPR046382712 (SPR)s11220-022-00378-2-e |
title_full |
Design and Simulation of pH-ISFET Readout Circuit for Low Thermal Sensitivity Applications Through an Automatic Selection of an Isothermal Point |
author_sort |
Harrak, Abdelkhalak |
journal |
Subsurface sensing technologies and applications |
journalStr |
Subsurface sensing technologies and applications |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Harrak, Abdelkhalak Naimi, Salah Eddine |
container_volume |
23 |
format_se |
Elektronische Aufsätze |
author-letter |
Harrak, Abdelkhalak |
doi_str_mv |
10.1007/s11220-022-00378-2 |
normlink |
(ORCID)0000-0001-8753-1557 |
normlink_prefix_str_mv |
(orcid)0000-0001-8753-1557 |
title_sort |
design and simulation of ph-isfet readout circuit for low thermal sensitivity applications through an automatic selection of an isothermal point |
title_auth |
Design and Simulation of pH-ISFET Readout Circuit for Low Thermal Sensitivity Applications Through an Automatic Selection of an Isothermal Point |
abstract |
Abstract The purpose of this paper is to present a high-performance pH-ISFET readout circuit, which carries out a temperature insensitivity, linearity and temporal drift compensation, by using a new architecture that automates the control of an isothermal point. Unlike many existing readout circuits in the literature, this circuit can be optimized for several isothermal pH values as desired and for any structure compatible with the standard ISFET sensor. To eliminate the effect of the temporal drift, generally observed in ISFET type sensors, the same readout circuit was used in conjunction with Machine Learning (ML) implementation. The ML model was trained using a dataset from simulations performed using the ISFET macro-model including the drift effect. Through simulations, we show that the proposed scheme reduces drastically the temperature sensitivity of the sensor to less than %$1.5\times 10^{-4}\,{\mathrm{pH}}/^{\circ }{\mathrm{C}}%$ for pH %$\pm \,2%$ around any isothermal point at a wide pH range (from 1 to 12). For small changes of the pH around the isothermal point, the readout circuit outperforms many other designs with a thermal sensibility of less than %$3.2\times 10^{-6}\,{\mathrm{pH}}/^\circ {\mathrm{C}}%$. Results show that the system was able to predict the long-term behavior of the pH-ISFET (several days) with a relative error, of the output, that not exceed %$0.19\%%$ for the 3-sigma testing. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
abstractGer |
Abstract The purpose of this paper is to present a high-performance pH-ISFET readout circuit, which carries out a temperature insensitivity, linearity and temporal drift compensation, by using a new architecture that automates the control of an isothermal point. Unlike many existing readout circuits in the literature, this circuit can be optimized for several isothermal pH values as desired and for any structure compatible with the standard ISFET sensor. To eliminate the effect of the temporal drift, generally observed in ISFET type sensors, the same readout circuit was used in conjunction with Machine Learning (ML) implementation. The ML model was trained using a dataset from simulations performed using the ISFET macro-model including the drift effect. Through simulations, we show that the proposed scheme reduces drastically the temperature sensitivity of the sensor to less than %$1.5\times 10^{-4}\,{\mathrm{pH}}/^{\circ }{\mathrm{C}}%$ for pH %$\pm \,2%$ around any isothermal point at a wide pH range (from 1 to 12). For small changes of the pH around the isothermal point, the readout circuit outperforms many other designs with a thermal sensibility of less than %$3.2\times 10^{-6}\,{\mathrm{pH}}/^\circ {\mathrm{C}}%$. Results show that the system was able to predict the long-term behavior of the pH-ISFET (several days) with a relative error, of the output, that not exceed %$0.19\%%$ for the 3-sigma testing. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
abstract_unstemmed |
Abstract The purpose of this paper is to present a high-performance pH-ISFET readout circuit, which carries out a temperature insensitivity, linearity and temporal drift compensation, by using a new architecture that automates the control of an isothermal point. Unlike many existing readout circuits in the literature, this circuit can be optimized for several isothermal pH values as desired and for any structure compatible with the standard ISFET sensor. To eliminate the effect of the temporal drift, generally observed in ISFET type sensors, the same readout circuit was used in conjunction with Machine Learning (ML) implementation. The ML model was trained using a dataset from simulations performed using the ISFET macro-model including the drift effect. Through simulations, we show that the proposed scheme reduces drastically the temperature sensitivity of the sensor to less than %$1.5\times 10^{-4}\,{\mathrm{pH}}/^{\circ }{\mathrm{C}}%$ for pH %$\pm \,2%$ around any isothermal point at a wide pH range (from 1 to 12). For small changes of the pH around the isothermal point, the readout circuit outperforms many other designs with a thermal sensibility of less than %$3.2\times 10^{-6}\,{\mathrm{pH}}/^\circ {\mathrm{C}}%$. Results show that the system was able to predict the long-term behavior of the pH-ISFET (several days) with a relative error, of the output, that not exceed %$0.19\%%$ for the 3-sigma testing. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 |
container_issue |
1 |
title_short |
Design and Simulation of pH-ISFET Readout Circuit for Low Thermal Sensitivity Applications Through an Automatic Selection of an Isothermal Point |
url |
https://dx.doi.org/10.1007/s11220-022-00378-2 |
remote_bool |
true |
author2 |
Naimi, Salah Eddine |
author2Str |
Naimi, Salah Eddine |
ppnlink |
320590305 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11220-022-00378-2 |
up_date |
2024-07-03T22:12:13.134Z |
_version_ |
1803597626092814336 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR046382712</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509122804.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220304s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11220-022-00378-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR046382712</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11220-022-00378-2-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Harrak, Abdelkhalak</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Design and Simulation of pH-ISFET Readout Circuit for Low Thermal Sensitivity Applications Through an Automatic Selection of an Isothermal Point</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The purpose of this paper is to present a high-performance pH-ISFET readout circuit, which carries out a temperature insensitivity, linearity and temporal drift compensation, by using a new architecture that automates the control of an isothermal point. Unlike many existing readout circuits in the literature, this circuit can be optimized for several isothermal pH values as desired and for any structure compatible with the standard ISFET sensor. To eliminate the effect of the temporal drift, generally observed in ISFET type sensors, the same readout circuit was used in conjunction with Machine Learning (ML) implementation. The ML model was trained using a dataset from simulations performed using the ISFET macro-model including the drift effect. Through simulations, we show that the proposed scheme reduces drastically the temperature sensitivity of the sensor to less than %$1.5\times 10^{-4}\,{\mathrm{pH}}/^{\circ }{\mathrm{C}}%$ for pH %$\pm \,2%$ around any isothermal point at a wide pH range (from 1 to 12). For small changes of the pH around the isothermal point, the readout circuit outperforms many other designs with a thermal sensibility of less than %$3.2\times 10^{-6}\,{\mathrm{pH}}/^\circ {\mathrm{C}}%$. Results show that the system was able to predict the long-term behavior of the pH-ISFET (several days) with a relative error, of the output, that not exceed %$0.19\%%$ for the 3-sigma testing.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PH-ISFET</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Readout circuit</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Isothermal point</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temporal drift</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural network</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Naimi, Salah Eddine</subfield><subfield code="0">(orcid)0000-0001-8753-1557</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Subsurface sensing technologies and applications</subfield><subfield code="d">Dordrecht : Springer Science Business Media B.V., 2000</subfield><subfield code="g">23(2022), 1 vom: 03. März</subfield><subfield code="w">(DE-627)320590305</subfield><subfield code="w">(DE-600)2018843-2</subfield><subfield code="x">1573-9317</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:03</subfield><subfield code="g">month:03</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11220-022-00378-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">03</subfield><subfield code="c">03</subfield></datafield></record></collection>
|
score |
7.4029255 |